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Abstract

Ozone is of considerable importance to mankind because of its role as a shield for the biosphere against the Ultraviolet
(UV) radiation from the outer space, in particular from the sun. In the recent years the advancement in the science and
technology has increased the understanding of various phenomena of the environment and consequently the
predictability of many naturally occurring events. It has been Due to a serious reduction of O3 content in the atmosphere
life-forms on the earth are exposed to a new hazard in the form of an increase of harmful solar UV radiation intensity at
the sealevel. Obviously, this situation calls for an assessment, monitoring and prevention of the incidence of decreasein
the O3 concentration. The fluctuating dynamics of stratospheric ozone layer depletion (OLD) for Pakistan atmospheric
region has been introduced by mentioning the production and annihilation of ozone. The recent development in the
theory and application of wavelets are yielding powerful multi resolution techniques for the analysis of time series and
image data. Wavelets are the central idea of a broad framework for displaying and analyzing data. Wavelets possess a
simultaneous time-frequency localization that makes them useful in presenting complicated signals. In this
communication behaviour of ozone is explained on the basis of ozone profile, effects of periodic, a-periodic change
along with effects of monthly and seasonal variations using wavelet analysis.

1. Introduction

Ozone in the stratosphere acts to protect us from harmful
ultraviolet radiation from the sun that it absorbs. It has been
inspected that a small decrease in the ozone concentration can
lead to a large increase in the amount of ultraviolet (UV)
reaching Arabian sea specially around wavelength range of 290-
320 nm. Excessive UV exposure can cause skin cancers and in
large amounts can also harmful to plant growth. The highest
risks are in spring at extreme southerly latitudes or to a lesser
extent at extreme northerly latitudes, corresponding to the
formation of the ozone holes over Antarctic and Arctic polar
regions.The ozone layer is also a separate issue from climate
change and greenhouse warming. The CFC that cause ozone
layer depletion are greenhouse gases, but destruction of the
ozone layer reduces the greenhouse effect slightly as the ozone
also acts as greenhouse gas.
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Conversely, if the ozone destruction were to become serious
enough to reduce primary productivity of phytoplankton and
forest ecosystems, as a result of UV damage, this would affect
climate change. As with many environmental systems, al are
interconnected. The ozone (O3) forms from oxygen by reaction
under the influence of UV radiation. Shorter wavelength
radiation, of wavelength 175 nm or less, has sufficient energy to
dissociate oxygen into two separate free oxygen atoms. This
occurs at heights of about 50-60- km and results in very little
radiation this wavelength penetrating further. The free O atom
can then combine with O2 molecule to form Ozone. The ozone
forms in this above tropical and equatorial regions where solar
radiation is highest, and spreads around the globe to form this
layer at between 20 and 26 km in height.
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The ozone layer if expressed at standard temperature and
pressure would be 3 mm thick, yet it absorbs strongly enough in
the Uv region a to act as an amost complete shield against
radiation of wavelength less than around 295 nm.

02 - 20

Oxygen dissociates in presence of UV radiation
02+0 - 03

Ozone formation

However, in the presence of certain pollutants, chiefly
chlorofluorocarbons (CFC)s, ozone can be destroyed. Free
chlorine (Cl) radicals acts to strip O3 of an oxygen atom,
forming O2 and CIO that then loses the O to a free oxygen atom
toform O2 and Cl again [3]

03+ Cl - 02+ CIO Ozone destruction by Cl radical
ClIO+0O - ClI+02 Clradical free to act again

The net effect is to transform ozone into O2 while leaving the Cl
radical free to promote another reaction thus one molecule of
CFC can destroy alarge number of ozone molecules.

Nitric Oxide and hydroxyl (OH) radicals can act the same way.
The resulting reduction in the 0zone concentration depends upon
a balance between the processes of formation and annihilation.
The series of reactions as shown above that destroy ozone take
place mostly readily at low temperatures and so occur mainly
over the poles during the spring time. It has been investigated
that in the region of stratosphere there is little water vapors and
so no cloud. During the Antarctic winter temperatures plummet
and the temperature of stratosphere drops below around — 800 C,
polar stratospheric clouds can form. These clouds alow the
formation of highly reactive free Cl radicals. In the early spring
as thefirst rays of sun strike the clouds the reactions that destroy
ozone commence. This results in the so - called ozone hole over
the Antarctic that can be measured by means of remote sounding
equipment where the atmospheric absorption are observed. The
Antarctic ozone hole has occurred every winter for the past two
decades with increasing severity. During the summer the ozone
is replenished from the tropics. It has been observed that ozone
loss is less severe at Arctic because stratospheric temperatures
are not usualy low enough to alow clouds to form, abeit in
recent years an Arctic ozone hole has also formed. Reaching a
record low in the year 2000 [4].

While production of the most harmful CFCs is not subject to
strict international controls stemming from the Montreal
Protocol, they are very long-lived once they reach the
stratosphere and still being emitted from many sources. The
ozone hole appeared to have deteriorated more rapidly than
hoped or expected. It is thought this may be due to a feedback
with climate change. Increased CO2 levels in the troposphere
hold the Earth’s heat at the surface, resulting in lowering the
temperatures in the stratosphere. These lowering temperatures
promote PSCs that allow OLD more rapidly. Hence the ozone
holes have increased more rapidly in both size and level of
depletion. Obviously, this situation calls for an assessment,
monitoring and prevention of the incidence of decreasein the O3
concentration. In this communication we have studied to
quantify the wavelet characteristic for ozone layer depletion. In
order to strengthen the concepts of wavelet analysis we have
introduced some ideas of Fourier Analysis, Fourier Series,
Fourier Transform and fast Fourier transforms (fft) Using the

Fourier analysis, seasonal trends in atmospheric, meteorological
and environmental data sets can be removed.

2. Fourier Analysis, Fourier seriesand Fourier
Transform

We have introduced the basic idea of the signals then
sampling the characteristics for OLD. For this purpose we
have used Fourier analysis (also known as spectral
analysis, frequency analysis, or harmonic analysis) that
uses stationary or detrended data sets with inherent
periodicities. The time series can be represented by a
superposition of sines and cosines of various amplitudes
and frequencies as shown in the table 1. With this finite
data set of ozone depths (1960-2002) the range of
frequencies that can be discerned is limited on the low end
to fo = 1 / N (the fundamental frequency) by finite length
of the record and on the high end to f. = 1 /2 (the Nyquist
frequency) by the sample rate The fo comes from at least
one full oscillation. The Nyquist frequency from at least
two data points per period to define oscillation. The
reciprocal of these frequencies are the periods of the
corresponding oscillations. Therefore, it can be seen from
the figure.1.It depicts enhancement and depletion in the
ozone layer at height ranging from 25-55 km. Above sea
level with time The data has been supplied from the year
1960 to 2002.
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Figure 1. Temporal Fluctuation of Ozone
Concentration at Pakistan’s Stratosphere

A temporal variation for ozone depths is depicted in fig.1. Thus
with a finite data set as mentioned in this paper we can do the
best is approximate Xn by

N/2
Gl ZamCosm

+ m=1

2pmn

Xn= + bm Sin N

Where N /2 different frequencies or harmonics (f = mf0 ) have
amplitudes

N
2 > X,Cos 2pmn
N & N

am =



These equations constitute the discrete Fourier transform (DFT).
The coefficients values as given in the table. with periodogram
and density as well as the Hamming values they contain the data
points but are in frequency domain rather than the time domain.
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It has been noticed that we have power in each Fourier
component, called power spectral density or more simply
a power spectrum. Since the power is proportional to the
square of the amplitude of an oscillation and since there

are both sine and cosine terms 90° out of phase, the
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Sn = &m+ b2m

Only relative values of Sm are taken. Albeit it could be
normalized by various procedures.

Fourier analysis is a mathematical technique used to obtain the
frequency spectrum of an a-periodic signals, if the time domain
representation is given. Similarly, Fourier seriesis atechnique to
decompose the entire series into components and Fourier
transform is a technique to reduce the series into components.
The periodicity in the ozone layer sequence is found using FFT
that is equal to 11.98 as shown in the power spectrum of the
ozone data set figured4. Discrete time Signal processing
techniques to collect, store and analyze the data in which Fourier
transform, short time Fourier Transform (STFT) or frequency-
time spectrograms are found as shown in the above figures.

3. Wavelet Analysis

The word wavelet was adopted to express the idea of small
waves in an intuitive which is associated with localized waves
like function whose values fluctuate in short period, in order to a
function be called a wavelet. Wavelet analysis is a particular
time-or space-scale representation of signals that has been found
in atmospheric application like here in this case for the
characterization of ozone concentration.

Wavelet is the name given to a set of mathematical functions
used for image Compression, the actual wavelet analysis is a
mathematical technique, which is very useful for numerical
analysis and manipulation of multidimensional discrete signal
sets. Originally applied in geophysics to the analysis of seismic
signals, the wavelet transforms were better and broadly
formalized thanks to mathematicians, physicists, and engineers
efforts. In atmospheric applications, the main characteristic of
wavelet technique is the introduction of the time frequency
decomposition. When wavelet analysis is used to study a given
signal, it is essential to choose the best wavelet representation
for the signal under study. In statistical applications, the wavelet
transform is linear and covariant under translation and dilatation
transform. The wavelet transform can be used in the analysis of
non-stationary signals to obtain information on the frequency or
scale variations of those signals and to detect its structures
localization in time and or in space.

Wavelet analysis is not replacing frequency analysis but it is
rather an important refinement and expansion of it. The wave let
can also be of great help in uncovering the presence and absence
of certain frequencies in a physical system as OLD. Fourier
analysis analyses a signal globally, whereas wavelet analysis
looks into the signal locally.

4. Comparison between Fourier Transform and
Wavelet

It is a fact that most of the signals including the ozone layer
thickness cover a wide range of frequencies. Instead of transient
components thee is a frequently a direct correlation between the
characteristic frequency of a given segment of the ozone signal
and time duration of that signal. Wavelet analysis has a number
of advantages over Fourier analysis they are particularly
attractive. Unlike the Fourier transform that generates record
averaged values of amplitude and phase for each frequency
component or harmonic,o, the wavelet transform yields a
localized, “instantaneous” estimate for the amplitude ans phase
of each spectral component in the data set like ozone. This gives
wavelet analysis an advantage in the analysis of signals like
ozone concentration data set in which amplitudes and phases of
the harmonic components are changing rapidly in time and
space.

Decomposiion atlevel 5.5 =25+ d5+ dd+ d3+ d2+ d1.

oyl

Figure 5. Haar Wavelet with Level 5, Full Decomposition at Level 5.
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Figure 6. An Ozone Layer Signal Analyzed By Haar Wavelet. A
Decomposition of Order 5. The Signal SLivesInVoAnd It s
Decomposed I nto Its Approximation As AsA Member Of V.s And
Increasingly Finer Details Dj s A Member Of W_;,J=5/4,32,1.

Indeed the wavelets provide a framework for signal
decomposition in the form of a sequence of signals known as
approximation signals with decreasing resolution supplemented
by a sequence of additional touches called details as illustrated
in the ozone signal in figure 5 figure 6.

5. Conclusion

In this communication we have compared Fourier analysis and

wavelet analysis and found that Wavelet analysis has a number
of advantages over Fourier analysis they are particularly
attractive. Unlike the Fourier transform that generates record
averaged values of amplitude and phase for each frequency
component or harmonic,m, the wavelet transform yields a
localized, “instantaneous” estimate for the amplitude ans phase
of each spectral component in the data set like ozone.Wavelet
transformed spectral analysis is used to find significance
periodicities of the series. Also wavelet coherence analysis is
used to find the different phases of the periodicities of the OLD
data sets.
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