

Dimensionally Stable $Sn_{1-x-\nu}Ir_xSb_{\nu}O_{2+2.5\nu}$ Anodes for Acidic Water Electrolysis

A. A. El-Moneim^{*a*}*, H. Soliman^{*b*}

^aMaterials Science and Engineering Department, Egypt-Japan University of Science and Technology, P. O. Box. 21934, New Borg El-Arab City, Alexandria, Egypt

^bAdvanced Technology and New Materials Research Institute, Mubarak City for Scientific Research and Technology Applications (MuCSAT), P. O. Box. 21934, New Borg El-Arab City, Alexandria, Egypt

Abstract

Ti/Sn_{1-x-y}Ir_xSb_yO_{2+2.5y} (x=0-0.65 and y=0.05-0.16) electrodes were prepared by thermal calcinations of SnCl₄, SbCl₅ and H₄IrCl₆/butanol mixture precursors at 550°C on three dimensions titanium substrate. The electrodes were characterized and examined as dimensionally stable anodes for oxygen generation during electrolysis at 10⁴Am⁻² in 3M H₂SO₄ solution. Ti/Sn_{0.41}Ir_{0.46}Sb_{0.13}O_{2.325} and Ti/Sn_{0.29}Ir_{0.65}Sb_{0.06}O_{2.15} electrodes showed service life of 1300 and 2000h, respectively, compared with 400h for Ti/IrO₂ electrode. The specific electrocatalytic activity of Ti/Sn_{1-x-y}Ir_xSb_yO_{2+2.5y} electrodes was comparable to that of Ti/IrO₂ electrode, especially at low current density applications. Effective dispersion of Ir species in the SnO₂-Sb₂O₅ matrix and formation of single phase solid solution oxide with compact structure are responsible for the unique performance of these electrodes. The beneficial role of Ir in ternary oxides was discussed in terms of resistivity and crystal tortuosity of coatings. A mechanism for oxygen evolution reaction is proposed.

Keywords: composite, nanocrystalline, oxygen anode, cyclic voltammetry, XPS

1. Introduction

Oxygen evolution in acidic environment represents a very severe test for evaluating anode materials required for hydrogen fuel generation from proton exchange membrane water electrolysis, electrowinning and electrofloation processes. Only precious IrO2 and RuO2 are recommended anodes for such applications, however, the application of these anodes is strongly restricted by high costs and limited electrode Consequently composite materials, where the lifetime. precious compound is dispersed in a less active but more stable matrix, such as SnO₂ and TiO₂, are being intensively studied to offer less expensive electrodes which might show good electrocatalytic activity, stability toward anodic dissolution and electronic conductivity. For example, RuO₂-SnO₂ [1-2], IrO₂-SnO₂ [3-4], RuO₂-TiO₂-SnO₂ [5,6], and IrO₂-TiO₂-SnO₂ [7,8] systems are often adopted to improve the electrode performances for oxygen evolution in acidic media. Compared with SnO₂, SnO₂-Sb₂O₅ is known by its excellent optical property, electrical conductivity and stability in extremely acidic environments, beside it provides good properties for disposal of organic pollutants. In this regard, Chen et. al. utilized SnO₂-Sb₂O₅ as an excellent dispersing matrix for RuO₂ and IrO₂ electrocatalyts to develop anodes with excellent

* Corresponding author. Tel.: +020181229082

Fax: 02034599520;E-mail: ahmed.abdelmoneim@ejust.edu.eg

© 2010 International Association for Sharing Knowledge and Sustainability

DOI:10.5383/swes.02.01.006

electrocatalytic activity and stability for oxygen evolution during acidic water electrolysis [9,10]. The developed Ti/IrO₂–Sb₂O₅–SnO₂ and Ti/RuO₂-Sb₂O₅.SnO₂ electrodes containing at 5-10 mol % of RuO₂ or IrO₂ nominally in the coatings had a service life about two and three times higher than Ti/RuO₂ and IrO₂, respectively. In the present work, pretreated three dimensions titanium substrate was coated with IrO₂–SnO₂-Sb₂O₅ containing up to 40 mol.% IrO_x and investigated as dimensionally stable anodes with high electrocatalytic activity and service life during electrolysis in extremely acidic environment. Particular attention is given to the contribution of oxide composition, surface chemistry, roughness and structure to the activity and stability of the newly developed Ti/IrO₂-SnO₂-Sb₂O₅ anodes

2. Experimental

2.1.Electrode preparation and physciochemical characterization

Punched titanium substrate mesh of 100x50x1 mm in dimension was polished in 0.5 M HF solution for 5 min and then subjected for surface roughening by etching in 11.5 M H₂SO₄ solution at 80°C until hydrogen evolution was ceased. Pre-treated Ti substrate was coated with Sn_{1-x-y}Ir_xSb_yO_{2+2.5y} active layers by a thermal decomposition of 0.5M SnCl₄, 5H₂O, 0.5M SbCl₅.5H₂O and 0.5M H₄IrCl₆/butanol in precursor mixtures. The ternary oxides were produced by combining