
i
i

“output” — 2023/2/15 — 0:19 — page 1 — #1 i
i

i
i

i
i

Journal of Ubiquitous Systems & Pervasive Networks

Enhancement of the TSCH-Sim Simulator via Web Service Interface to
Support Co-simulation Optimization

Tarana Ara a, Aida Vatankhah a, Ramiro Liscano ∗a

aOntario Tech University, Oshawa, Canada, L1G 0C5

Abstract

Co-simulation is an important concept in the optimization of computer networks because a typical optimization scenario
integrates an optimization algorithm with a network simulator. In many cases optimization algorithms are implemented in
the MATLAB environment while network simulators are implemented as stand alone applications. In this paper we present
enhancements to the TSCH-Sim network simulator in order to facilitate its integration with an optimization algorithm.
The core enhancement is the definitions and implementation of a set of REST APIs for TSCH-Sim that allows a remote
optimization algorithm to set the network configuration, routes, and 802.15.4e TSCH schedule of a sensor network. The
significance of the REST API is demonstrated through the integration of a Differential Evolution based TSCH scheduling
optimizer executing in MATLAB leveraging the TSCH-Sim simulator through the REST APIs in order to find a TSCH
schedule that maximizes throughput.

Keywords: 802.15.4e TSCH, TSCH-Sim, REST-API, Co-simulation, DE Optimization, MATLAB Simulation

1. Introduction
Nowadays, one of the most trustworthy MAC protocols for
industrial IoT applications is the amended IEEE 802.15.4e
Time Slotted Channel Hopping (TSCH) standard [1] and the
IETF 6TSCH [2] initiative that supports IPv6 over 802.15.4e.
The TSCH protocol is targeted toward applications that require
high reliability and predictability by combining the time
synchronization and channel hopping approaches to ensure high
throughput, low latency, and energy efficiency. The multi-channel
technique of TSCH supports several simultaneous transmissions,
which results in an overall increase in network capacity and
reduced delay. Furthermore, the channel hopping mechanism
assists in mitigating the multi-path fading by constantly switching
between multiple frequency channels [3]. Consequently, it
improves the network’s reliability and lowers the energy
consumption that might require for data re-transmission.

The Key functionality of the TSCH protocol is the TDMA
transmission, reception, and idle schedule and the standard
does not specify the use of any particular scheduler allowing

manufacturers to implement and develop the best schedule for
their application. On the other hand, the 6TiSCH standard
has adopted the 6TiSCH minimal schedule. Recently, several
scheduling algorithms have been proposed for TSCH [3–8]
with the goal of creating an optimized and reliable scheduling
algorithm. Within our research lab, we have also developed
an optimization algorithm for the TSCH schedule based on
Differential Evolution (DE) optimization using the MATLAB
platform.

In order to optimize a TSCH schedule one has to integrate an
optimization algorithm with either a real network or a simulated
world. In terms of simplicity and cost-effectiveness the use of
simulation environments is commonly used for designing and
validating complex systems systems such as the simulation of
car pooling agents [9], traffic data collection [10] and security
in wireless networks [11], because of the flexibility in creating
scenarios for these systems and performing analysis on these
different scenarios.

Figure 1 is a sequence diagram that reflects a typical integration
between an optimization algorithm and a TSCH simulator that
captures the scenario of the optimization of a TSCH schedule. In
our work the optimization algorithm is developed in the MATLAB

∗Corresponding author. Tel.: +19057218668
Fax: +11111111111; E-mail: rliscano@ieee.org
© 2023 International Association for Sharing Knowledge and Sustainability. 1
DOI: 10.5383/JUSPN.18.02.003

Volume 18, No. 2 (2023) pp. 69-76

mailto:rliscano@ieee.org

i
i

“output” — 2023/2/15 — 0:19 — page 2 — #2 i
i

i
i

i
i

simulation environment while the TSCH simulator is TSCH-Sim
[12].

In order to achieve this co-simulation environment several
modifications were done to the TSCH-Sim simulator that include
the static configuration of routes and TSCH schedules as well
as the definition of a set of REST-APIs for TSCH-Sim.1 Details
of these modifications are presented in this paper along with an
example of a co-simulation scenario where a TSCH schedule is
determined that maximizes throughput for a heterogeneous sensor
network leveraging a DE optimization algorithm.

Fig. 1: Co-simulation between TSCH-SIM and optimizer
sequence diagram

The remainder of this paper is organized as follows: Section
2. is a discussion of recent works in TSCH scheduling and their
respective validation tools. The section 3. presents a background
study on TSCH scheduling with a simple example. Section 4.
describes the additional features added to TSCH-Sim to support
manual schedules and static routes and the REST API used to
integrate with other simulators like MATLAB. Section 5. presents
the TSCH schedule co-simulation optimization strategy that
integrates the DE optimization algorithm executing in MATLAB
with TSCH-Sim. In section 6. a dense network example is
shown that leverages the co-simulation architecture to find a
TSCH schedule that maximizes the throughput. Finally, Section
7. concludes the paper.

2. Related work
To the best of our knowledge, we found only three open-
source simulators that support TSCH network protocol during
the investigation. Those are Cooja [14], 6TiSCH simulator [15],
and TSCH-Sim [12]. However, none of these can be utilised
in their current implementation as they do not support manual
configuration of the routing and scheduling information and do

1 This paper enhances the work published in [13], by introducing REST-
APIs as a web interface to enable to TSCH-Sim simulator to coordinate
with other simulator.

not have an API interface that allows for the integration with an
optimization algorithm.

As mentioned in Section 1. there have been several works
that investigated different TSCH scheduling algorithms [3–8]. In
this paper, we are more interested in which particular simulators
were used to validate the schedule. Table 1 is a summary of the
papers and the approach used by the researchers to validate their
algorithm.

Table 1. TSCH scheduling papers and their respective validation
environments

Reference Validation Environment

[16] Hardware implementation
[5] TSCH Simulator
[6] Hardware implementation
[7] Cooja
[8] Hardware Implementation
[17] Hardware Implementation
[18] Custom Python simulator (defunct)
[19] NS3 (defunct)
[20] Custom Python simulator (defunct)
[21] 6TiSCH simulator

From this review, one can see that many papers have TSCH
implementations in actual sensor hardware. This code is custom
code and is difficult to work from although it is a better validation
of the scheduler than using a simulator. Such implementations
are subject to a limited number of sensors and a lack of several
re-configurations.

Even though there is some work that utilized the popular NS-
3 network simulator the official site of NS-3 does not have any
support for TSCH. This is also the situation for OMNeT++, which
is another popular network simulator. It does not include support
for the TSCH protocol.

OpenSim is the simulator associated with the OpenWSN
[22] library, which is the defacto standard TSCH and 6TiSCH
implementation for embedded devices. OpenSim though is more
of an emulator than a simulator allowing the running of the
OpenWSN firmware on the emulator prior to deploying it on the
actual hardware. It is not really a simulator that can be easily used
to create and test a TSCH schedule.

3. Background on TSCH
TSCH utilizes both time synchronization and frequency hopping
techniques in the MAC layer to support more reliable and high-
performance transmission. In TSCH, time is divided into a fixed-
duration slot called a time slot. A slot frame is made up of a
defined number of those time slots. To synchronize all the nodes
in a network, the slot-frame repeats periodically. In general, each
time slot’s duration in a frame ranges from 10ms to 20ms to deliver
a data packet and receive an acknowledgment between a pair of
nodes.

Another mechanism in the TSCH network is known as channel
hopping. This approach’s goal is to change the transmission
channel according to a known pattern constantly. With the

2

Tarana Ara et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 18 (2023) 69-76

i
i

“output” — 2023/2/15 — 0:19 — page 3 — #3 i
i

i
i

i
i

advantage of multiple channels, it allows more nodes to exchange
their packet simultaneously but using different channel offsets.
According to IEEE 802.15.4e, there are 16 channels available for
communication [23]. A channel offset represents each channel. In
TSCH, a schedule is a matrix of channel offset and time slots that
represents the cell. A cell located at the intersection between a
defined row and column (i.e., channel offset and time slot offset)
of that matrix describes a link between neighbor nodes at the
data link layer. A cell can be shared between multiple nodes or
dedicated. A shared cell allows two or more nodes to transmit
simultaneously, whereas a dedicated cell is bound to only one
transmission, yielding a contention-free message.

Each time slot in a network is identified by an Absolute Slot
Number (ASN). At the beginning of the network, ASN initialized
to 0 and gradually increased by one at each time slot. The physical
channel of a shared or dedicated cell can be calculated as

f = F [(ASN + Channel_Offset)%Nchannels] (1)

where F is a lookup table that contains a sequence of available
physical channels and Nchannels denotes the total number of
available channels.

From figure 2a, we can see a simple tree topology with five
nodes and a slot frame of length four with four-time slots and
channel offsets. Thereby, there are 16 cells in this slot frame.
Each cell in the TSCH slot frame is considered half-duplex. This
cell specification implies that a node cannot transmit and receive
or only receive from multiple nodes at the same timeslot, even
though it sticks with a different channel offset. This term is known
as collision and is depicted in figure 2b. In this figure, at slot 4,
node two has transmitted and received packets from two different
nodes. Again at slot 1, both nodes send a packet to the same
destination. Both of these scenarios result in a packet collision.

4. Modifications to TSCH-Sim
Even though several specific examples of TSCH scheduling
are available in TSCH-Sim [12] there was no mechanism
implemented to specify a static TSCH schedule with the
author choosing to "hard" code a scheduling algorithm into
the corresponding scheduler module. This was also the case
for routing, where several common routing algorithms were
implemented, such asRPL but no method for setting a static route.

The core architecture of TSCH-Sim comprises a number of
loosely structured components conceptually grouped into the
following three layers: interface, network, and device/link. It
is implemented in modular JavaScript using classes and code
separation in files representing the key software components. A
class diagram of the original code and the additional classes we
developed is shown in figure 3. The lowest layer is the data-
link layer that performs the routing and scheduling protocols,
maintaining the IEEE 802.15.4e amendment. We have modified
that layer to support Manual scheduler and Static routing.
Some changes are also done in the configuration file to reduce
the path dependency required to read the route and schedule
file. The intermediate is the network layer responsible for link
connectivity, radio propagation model, transmission range, and
packet generation. Finally, the highest layer is the interface
that implements the global configuration, building connections
between all required processes, time synchronization, and logging
file to visualize the outputs.

{" SOURCE ":2," DESTINATION ":1,"TS":1,"CO":1};

{" SOURCE ":3," DESTINATION ":1,"TS":2,"CO":2};

{" SOURCE ":4," DESTINATION ":2,"TS":3,"CO":1};

{" SOURCE ":5," DESTINATION ":2,"TS":4,"CO":2};

Listing 1: TSCH schedule JSON configuration example

4.1. The TSCH Manual Scheduler Module

A new manual scheduler module,"scheduler_manual.mjs",
was implemented that supports the specification of a schedule in
a JSON configuration file. The new module was a copy of the
Leaf-Forwarder module with the addition of a function to
read the schedule from a configuration file and add the schedule
to the corresponding nodes.

Defining a schedule manually requires declaring a time slot
and channel offset that a packet can be transmitted. A schedule
was specified in the "schedule.json" file and a sample of
the "schedule.json" file is depicted in Listing 1 for the 5
node topology shown in figure 2a. In this figure, the SOURCE and
DESTINATION specify the id of the current node and the id
of the next-hop node. TS and CO correspond to the time slot and
channel offset that the packet is to be transmitted and received
on for the respective transmitting and receiving nodes. To be
able to use this manually specified schedule we defined the new
scheduling approach as "ManualScheduler" and modified
the code in the "Node" module to refer to the manual scheduler
module if the TSCH-Sim main configuration file contains the
"SCHEDULING_ALGORITHM": "ManualScheduler" line.

{" NODE_ID ":2," DESTINATION_ID ":1," NEXTHOP_ID ":1};

{" NODE_ID ":3," DESTINATION_ID ":1," NEXTHOP_ID ":1};

{" NODE_ID ":4," DESTINATION_ID ":1," NEXTHOP_ID ":2};

{" NODE_ID ":5," DESTINATION_ID ":2," NEXTHOP_ID ":2};

{" NODE_ID ":5," DESTINATION_ID ":1," NEXTHOP_ID ":2};

Listing 2: TSCH ROUTE JSON configuration example

4.2. The Static Routing Module

For our experiments, we want to implement static routes so as
to properly evaluate the performance of our scheduler. A new
module, namely "routing_manual.mjs"was implemented
and integrated into the simulator. This new module was based on
the "routing_null.mjs" which contains empty functions
that can be populated for particular routing algorithms. For
static routes, this requires that a routing configuration file
"route.json" be read that specifies the static routes and
adds these to each of the nodes routing tables. An example
of "route.json" file for a tree network of five nodes is
depicted in the Listing 2. This example identifies the next-
hop node ID for a packet coming from a source node ID
to a particular destination ID. To enable static routing the
TSCH main configuration file must contain the statement
"ROUTING_ALGORITHM": "ManualRouting" in it.

4.3. TSCH-SIM REST APIs

4.3.1. REST-API Framework

An API (Application Programming Interface) is a set of
definitions and protocols that acts as a mediator to enable two
different systems or software to interact. The API architecture

3

Tarana Ara et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 18 (2023) 69-76

i
i

“output” — 2023/2/15 — 0:19 — page 4 — #4 i
i

i
i

i
i

1

2

54

3

(a)

 Slotframe size Time slot

 Cycle k Cycle k+1

 1 2 3 4 1 2 3 4

C
h

an
n

el
O

ff
se

t

1

2

3

4

 3 → 1 5 → 2 3 → 1 5 → 2

 2 → 1 2 → 1

4 → 2 4 → 2

5 → 2 5 → 2
 ASN 0 1 2 3 4 5 6 7

(b)

Fig. 2: (a) A tree network with 5 nodes; (b) Scheduling process in IEEE 802.15.4e TSCH.

Packet RPL routing
Orchestra
scheduler

Routing Scheduler

Node

Network

SimulatorConfiguration

Packet Source

Mobility model

Link model

Link

Logging File

Leaf-forwarder
routing

Null routing
6tisch

scheduler

Leaf-forwarder
scheduler

Data-link layer

Network layer

Interface layer

New addition

Static routing Manual
scheduler

Fig. 3: TSCH-Sim class diagram showing original and additional new classes

is generally explained in terms of a client and server interaction
model. Any software program invokes a request to the API to get
some information within the application is known as a client. On
the other hand, a server is another program that the application
uses, receives client requests, and responds back to the desired
resources. Resources can be any piece of information provided
by the server. The core advantage of the RESTful API is it
keeps both machines conveniently independent by simplifying
communication between client and server. This way, a client
system can grow smoothly with no dependency on the server, and
the server application can be modified without affecting the client.
One of the most popular types of API is REST or RESTful API. It
stands for Representational State Transfer, which means that the
server transfers back the resource in a standardized representation
whenever a client requests a resource using REST API [24]. This
representation is delivered through HTTP in several formats: XLT,
JSON, HTML, or plain text. Among these, JSON is the most
popular file format as it is readable by humans and machines.
Figure 4 illustrates a generic interface using REST-API between
a client and server machine. For our experiment, a lightweight
API communication has been proposed and implemented between
the server and client devices, slightly reducing resource-sharing
overheads. Calling a RESTful service over the HTTP protocol

HTTP Request =
HTTP method + URI

Resource
Representation in

JSON

REST Client REST Server

GET

POST

PUT

DELETE

HTTP Methods

Restful API

Fig. 4: Interaction between two distinct machine using REST API

can be implemented in many programming languages. For this
experiment, we used NodeJS, a web server technology based
on JavaScript. It used V8 JavaScript Engine with integrated
module add-ons. REST APIs are designed using resources, which
specifies any kind of data or object or services the client device can
access. Every resource has an identifier called Universal Resource
Identifier (URI) to uniquely identify the resource. It contains the
name and address of this particular resource. Generally, an HTTP
client manipulates a resource by connecting to the server that hosts

4

Tarana Ara et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 18 (2023) 69-76

i
i

“output” — 2023/2/15 — 0:19 — page 5 — #5 i
i

i
i

i
i

Table 2. TSCH-Sim REST APIs

REST API Description
POST, http://api/config
Requested Body:{
“SIMULATION_SEC”: x
“ROUTE”: []
“SCHEDULE”: []
………}

Writes a configuration file
to the TCH-Sim directory

GET, http://api/config Retrieves the TSCH-Sim
configuration file.

PUT, http://api/MatlabSchedule
Requested Body:
A TSCH schedule
{
"SCHEDULE": []
}

Updates a TSCH
schedule in TSCH-Sim
configuration file.
Response Body: Updated
Configuration file in JSON

GET, http://api/run_simulation Executes the TSCH-Sim
simulator.

GET, http://api/simulation_result Returns the simulation
results from TSCH-Sim
Response Body:{
"Throughput":
"Delay":
........}

it and sending an invoking method and path to the resource. In the
proposed approach, we used localhost for executing the actions of
the host. Three different endpoints are available to interact with
the TSCH-Sim simulator for our purposes. A GET request can
be made directly through the Uniform Resource Identifier (URL)
string, where the POST or PUT request allows the client to provide
the requested body as the input value.

In this implementation, the "api/config" endpoint takes the
configuration file as a parameter and responds with a positive
message if it successfully updates the configuration file. A client
can view or update any input file with the same endpoint.

The "api/run_simulation" endpoint is used to run the
simulator, and if any error occurs during the running phase, it
throws the corresponding error to the client.

The "api/ simulation_result" endpoint returns a complete
list of each node’s outcome and the performance metrics: delay,
throughput, and PDR values. The TSCH-Sim REST APIs those
have been implemented are depicted in table 2.

4.3.2. Co-Simulation Process

Every time the server receives the HTTP request from the
MATLAB Simulator, it starts processing based on the parameter
and embedded data. Our local host server is always listening on
port number 3000. The Initialization phase begins when the client
simulator (MATLAB) sends a configuration file of a particular
network topology by invoking the HTTP POST method with a
valid URI (http://api/config). The file format is JSON and contains
all the necessary information required to run the Simulator, such
as Simulation time, Routing, Scheduling, Links, Nodetypes,
Connection, and the Position of each node of the network. After
retrieving the information from the endpoint, the API decodes and
writes it to the TSCH-Sim simulator directory and responds with a
successful message to the client simulator. A client can also show

the provided input configuration file by simply calling an HTTP
GET method using the same URI. After viewing the configuration
file, a client can update or replace the recently provided parameters
or any particular portion of this file by invoking the PUT method.
Once the client sets all the parameters, an HTTP GET method
is called to run the child process TSCH-Sim simulator. As soon
as the Simulator finishes its running phase, the API sends the
status code "200" with the corresponding output as a successful
response. If the server finds any error during the running phase of
the simulation, it sends a status code as "404" notifying it of an
error. The output sent by the server is a JSON file containing the
performance metrics such as delay, throughput, and PDR of the
network.

5. TSCH Schedule Co-simulation Optimization
Strategy

In this paper, the TSCH-Sim REST API was used to find an
optimized TSCH schedule with the objective of maximizing the
throughout of the network. We leveraged Differential Evolution
(DE) for this implementation, however, any optimizer can be
used instead. DE is a population-based method that performs
optimization by iteratively trying to improve the candidate
solution according to a given objective function.

In every generation of the DE, a new schedule will be generated
which is explained thoroughly in [25]. Then, based on an objective
function, the fitness value of the new candidate will be evaluated
and compared to the current schedule. That is, the population of
the next generation will be established by comparing the results
of the objective function of the parent and child population where
the individual with the best objective function output will pass to
the next generation. The process is repeated until a termination
criteria is met. In our work, the fitness value calculations are done
in TSCH-SIM to obtain realistic values.

The DE optimization is developed in MATLAB and the TSCH-
SIM REST API is used to make a connection between MATLAB
and TSCH-SIM.

Figure 5 is a flowchart depicting the iteration steps of the
DE optimization and interaction with TSCH-Sim via the REST
APIs. The steps basically consist of the generation of a new
schedule, (SCHNew), and populate the JSON file with the
recently generated schedule and use the REST API PUT operation
to set the schedule. Then using the REST API GET requests
acquire the results of the simulation via a JSON file. In this
particular case we are interested in the throughput value from
the Result.json file. According to this value, the DE optimizer
will decide on whether to terminate the optimization process or
to continue it. Here, the termination criteria is set to reaching a
specific optimization iteration value.

6. Example Implementation Scenario
As an example scenario we created a collection tree network
topology consisting of 13 nodes connected to a root node as shown
in Figure 6. In this heterogeneous network, the Packet Rates (PR)
as well as the location of these sensor nodes are shown in Table 3.
Packet Rate of a node shows the number of packets that has been
generated in one second. For instance, a node with PR = 0.5
generates 0.5 packet in one second. Since nodes cannot generate

5

Tarana Ara et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 18 (2023) 69-76

i
i

“output” — 2023/2/15 — 0:19 — page 6 — #6 i
i

i
i

i
i

Table 3. Location and Packet rate of the 13 node tree network

ID 1 2 3 4 5 6 7 8 9 10 11 12 13
X (m) 20 22.5 17.5 17 26 22.5 17.5 22.5 20 25 14 25 28
Y (m) 25 22 22 27 22 19 19 16 14 14 19 10 13
PR (/s) 0 1 0.2 0.5 0.2 0.5 1 0.2 0.5 0.2 0.2 0.5 0.2

Fig. 5: MATLAB and TSCH-SIM communication diagram

a portion of a packet this would imply that a full packet would be
generated every 2 seconds.

For this configuration in TSCH-SIM, we have chosen thirteen
distinct node types as"node1","node2",..., "node13"
with an APP_PACKET_PERIOD_SEC of 1, 5, 2, 5, 2, 1, 5, 2,
5, 5, 2 and 5 second, respectively. The position of these nodes is

listed in Table 3 and the TSCH-SIM configuration file is depicted
in Listing 3 for this scenario.

Table 4. Optimal Schedule with slotframe size of 12
TS=1 TS=2 TS=3 TS=4 TS=5 TS=6

Ch=1 9,12 3,8 11 9,12 5,8
Ch=2 2,9,12 5 11
Ch=3 10,2,7 8 10,2,7 3
Ch=4 7 12 2,12 12

TS=7 TS=8 TS=9 TS=10 TS=11 TS=12
Ch=1 3,12 10 13 9,12 12
Ch=2 3,12 2,7 4
Ch=3 8 8,6 8
Ch=4 11,2 2,7 6,3

In the configuration file "NODE_TYPES", is an object key
that contains an array of different types of nodes used in the
simulation. Each distinct node type must hold some crucial
parameter such as the node’s name and the total number of
nodes (of this type) captured by the values of "START_ID"
and of "COUNT" representing the starting ID of the first node
of this type and the number of nodes of this type. The node’s
packet generation frequency and destination are specified with
the APP_PACKET_PERIOD_SEC key. The positions of the
nodes are specified with the "POSITION" key along with the
X and Y positions of the nodes. The "CONNECTION" key
indicates a connection between two neighboring nodes utilizing
"Logistic Loss" propagation model. It is important to
note that the "CONNECTION" specification of a network is
not the same as routes and is related the network layer 2
links between nodes and a connection is required between two
nodes in order for them to communicate and it must be bi-
directional if ACKs are used at the MAC layer. The scheduling
and routing are specified as manual by respectively specifying
the "ROUTING_ALGORITHM": "ManualRouting" and
"SCHEDULING_ALGORITHM": "ManualScheduler"keys.

We assumed a slotframe size of 12 and number of channels
to be 4 for analysis. The selected slotframe size is able to
include all the required transmissions in the specified time period.
Since the network is heterogeneous, the number of packets
generated in 12 time slots vary. The goal is to find a schedule
that can meet the specified throughput using the Customized
DE optimization algorithm. We kept the slotframe size static to
observe the throughput optimization according to the extracted
result from simulator. Matlab was used for Customized DE
optimization, however, to calculate the throughput, the TSCH-
SIM simulator was used to obtain more realistic results in the
network. Throughput is defined as the total number of successful
packet transmissions in the specified time. Our goal is to maximize
this value and reach to the optimal TSCH schedule using the
interaction between an optimizer and a simulator.

6

Tarana Ara et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 18 (2023) 69-76

i
i

“output” — 2023/2/15 — 0:19 — page 7 — #7 i
i

i
i

i
i

Fig. 6: A tree network with 13 nodes

The optimizer will choose between the recently generated
schedule and the already existing schedule according to the
fitness value of the objective function. As previously mentioned,
the objective of the optimizer in this paper is to maximize the
throughput of the network based on the defined data rates of the
sensors. As a consequence, providing that the recently schedule
has higher throughput in comparison with the existing one, the
new schedule will be replaced with the existing schedule.

The optimal schedule is shown in Listing 3. The maximum
iteration that was considered in this optimization is 500 and
slotframe size is assumed as 12 timeslots.

{" SIMULATION_DURATION_SEC ": 600,

"ROUTING_ALGORITHM ": "ManualRouting",

"SCHEDULING_ALGORITHM ":" ManualScheduler",

"NODE_TYPES ":[

{"NAME": "node1",

"START_ID ": 1,

"COUNT": 1},

{"NAME": "node2",

"START_ID ": 2,

"COUNT": 1,

"APP_PACKETS ":{" APP_PACKET_PERIOD_SEC ":1.00 ,

"TO_ID": 1} },

...

{"NAME": "node13",

"START_ID ": 13,

"COUNT": 1,

"APP_PACKETS ":{" APP_PACKET_PERIOD_SEC ":5.00 ,

"TO_ID ":1}}] ,

"POSITIONS ":[

{"ID":1,"X":20.00 ,"Y":25.00} ,

{"ID":2,"X":22.50 ,"Y":22.00} ,

...

{"ID":13,"X":28.00 ,"Y":13.00}] ,

"CONNECTIONS ":[

{" FROM_ID ":2," TO_ID":1,

"LINK_MODEL ":" LogisticLoss "},

{" FROM_ID ":1," TO_ID":2,

"LINK_MODEL ":" LogisticLoss "},

...

{" FROM_ID ":13, "TO_ID ":10,

"LINK_MODEL ":" LogisticLoss "},

{" FROM_ID ":10," TO_ID ":13,

"LINK_MODEL ":" LogisticLoss "}]

}

Listing 3: A sample of the configuration file for 13 nodes network

7. Conclusion
This paper presented the integration of two different services
utilizing the Rest-API protocol. Our goal is to maximize the
throughput of a network by determining an optimal schedule,
which is generated by the DE optimization algorithm. The
optimization was implemented in Matlab; however, the objective
function in the optimization process depends on the value that has
been extracted through TSCH-SIM. Matlab is a powerful tool for
numerical computation, and TSCH-SIM is a TSCH simulator.
To take advantage of both applications, we use REST-API to
make a connection between these two simulators. At present, the
API’s endpoint responds simulation result as a whole JSON file
instead of particular metrics (i.e., delay, throughput, PDR, and
so on). Again if any error occurs during the simulation running
phase, the API returns the 404-error status instead of providing
the specific error type. In the future, we plan to add these features
and the time synchronization approach to make it a more realistic
co-simulation.

References
[1] IEEE Standard Association et al. 802.15.4e-2012—IEEE

standard for local and metropolitan area networks—part
15.4: Low-rate wireless personal area networks (LR-
WPANs). IEEE Standard Association: Piscataway, NJ,
USA, 2012.

[2] Xavier Vilajosana, Kris Pister, and Thomas Watteyne.
Minimal IPv6 over the TSCH mode of IEEE 802.15.4e
(6TiSCH) configuration. Internet Engineering Task Force
RFC series, (RFC8180), 2017.

[3] Mohamed Mohamadi and Mustapha Reda Senouci.
Scheduling algorithms for IEEE 802.15.4 TSCH networks:
A survey. In International Conference on Computer Science
and its Applications, pages 4–13. Springer, 2018.

[4] Sana Rekik, Nouha Baccour, Mohamed Jmaiel, and Khalil
Drira. A performance analysis of Orchestra scheduling
for time-slotted channel hopping networks. Internet
Technology Letters, 1(3):e4, 2018.

[5] Xenofon Fafoutis, Atis Elsts, George Oikonomou, Robert
Piechocki, and Ian Craddock. Adaptive static scheduling in
IEEE 802.15.4 TSCH networks. In 2018 IEEE 4th World
Forum on Internet of Things (WF-IoT), pages 263–268.
IEEE, 2018.

[6] Huiung Park, Haeyong Kim, Kyeong Tae Kim, Seon-Tae
Kim, and Pyeongsoo Mah. Frame-type-aware static time
slotted channel hopping scheduling scheme for large-scale
smart metering networks. IEEE Access, 7:2200–2209,
2018.

7

Tarana Ara et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 18 (2023) 69-76

i
i

“output” — 2023/2/15 — 0:19 — page 8 — #8 i
i

i
i

i
i

[7] Sana Rekik, Nouha Baccour, Mohamed Jmaiel, Khalil
Drira, and Luigi Alfredo Grieco. Autonomous and traffic-
aware scheduling for TSCH networks. Computer Networks,
135:201–212, 2018.

[8] Seungbeom Jeong, Jeongyeup Paek, Hyung-Sin Kim, and
Saewoong Bahk. Tesla: Traffic-aware elastic slotframe
adjustment in TSCH networks. IEEE Access, 7:130468–
130483, 2019.

[9] Stephane Galland, Luk KNAPEN Ansar-Ul-Haque Yasar,
Luk Knapen, Nicolas Gaud, Tom Bellemans, and Davy
Janssens. Simulation of carpooling agents with the Janus
platform. J. Ubiquitous Syst. Pervasive Networks, 5(2):
9–15, 2014.

[10] Johan Holmgren, Henrik Fredriksson, and Mattias
Dahl. On the use of active mobile and stationary
devices for detailed traffic data collection: A simulation-
based evaluation. International Journal of Traffic and
Transportation Management, 2(02):35–42, 2020.

[11] Vishal Krishna Singha, Saurabh Vermaa, and Manish
Kumara. Evaluation of privacy preserving in-network
aggregation for different routing structures in WSNs.
Journal of Ubiquitous Systems & Pervasive Networks, 9
(2):15–19, 2017.

[12] Atis Elsts. TSCH-Sim: Scaling up simulations of TSCH
and 6TiSCH networks. Sensors, 20(19):5663, 2020.

[13] Tarana Ara, Tegveer Singh, Aida Vatankhah, and Ramiro
Liscano. Enhancement of the tsch-sim simulator to support
manual scheduling and routing. Procedia Computer
Science, 203:61–68, 2022.

[14] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas
Finne, and Thiemo Voigt. Cross-level sensor network
simulation with Cooja. In Proceedings. 2006 31st IEEE
conference on local computer networks, pages 641–648.
IEEE, 2006.

[15] Municio Esteban, Daneels Glenn, Malisa Vucinic, Steven
Latré, Jeroen Famaey, Yasuyuki Tanaka, Keoma Brun-
Laguna, Xavier Vilajosana, Kazushi Muraoka, and Thomas
Watteyne. Simulating 6TiSCH networks. Transactions on
emerging telecommunications technologies, 2018.

[16] Huiung Park, Haeyong Kim, Seon-Tae Kim, and Pyeongsoo
Mah. Multi-agent reinforcement-learning-based time-
slotted channel hopping medium access control scheduling

scheme. IEEE Access, 8:139727–139736, 2020.

[17] Sana Rekik, Nouha Baccour, and Mohamed Jmaiel.
Limitations of static autonomous scheduling for TSCH
protocol and advances in adaptive scheduling. In 2022 IEEE
12th Annual Computing and Communication Workshop and
Conference (CCWC), pages 1124–1129. IEEE, 2022.

[18] Andrew Tinka, Thomas Watteyne, and Kris Pister. A
decentralized scheduling algorithm for time synchronized
channel hopping. In International Conference on Ad Hoc
Networks, pages 201–216. Springer, 2010.

[19] Pascale Minet, Zied Soua, and Ines Khoufi. An adaptive
schedule for TSCH networks in the industry 4.0. In
2018 IFIP/IEEE International Conference on Performance
Evaluation and Modeling in Wired and Wireless Networks
(PEMWN), pages 1–6. IEEE, 2018.

[20] Atis Elsts, Xenofon Fafoutis, James Pope, George
Oikonomou, Robert Piechocki, and Ian Craddock.
Scheduling high-rate unpredictable traffic in IEEE 802.15.4
TSCH networks. In 2017 13th International Conference on
Distributed Computing in Sensor Systems (DCOSS), pages
3–10. IEEE, 2017.

[21] Seema Kharb and Anita Singhrova. Slot-frame length
optimization using hill climbing for energy efficient TSCH
network. Procedia computer science, 132:541–550, 2018.

[22] Thomas Watteyne, Xavier Vilajosana, Branko Kerkez,
Fabien Chraim, Kevin Weekly, Qin Wang, Steven Glaser,
and Kris Pister. OpenWSN: a standards-based low-
power wireless development environment. Transactions
on Emerging Telecommunications Technologies, 23(5):
480–493, 2012.

[23] Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice
Theoleyre. Scheduling for IEEE802.15.4-TSCH and slow
channel hopping mac in low power industrial wireless
networks: A survey. Computer Communications, 114:
84–105, 2017.

[24] Amazon Web Services. What is restful api? https://aws.
amazon.com/what-is/restful-api, 2023. Accessed: 2023-
01-24.

[25] Aida Vatankhah and Ramiro Liscano. Differential evolution
optimization of TSCH scheduling for heterogeneous sensor
networks. In 2022 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1491–1496, 2022.

8

Tarana Ara et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 18 (2023) 69-76

https://aws.amazon.com/what-is/restful-api
https://aws.amazon.com/what-is/restful-api

	Introduction
	Related work
	Background on TSCH
	Modifications to TSCH-Sim
	The TSCH Manual Scheduler Module
	The Static Routing Module
	TSCH-SIM REST APIs
	REST-API Framework
	Co-Simulation Process

	TSCH Schedule Co-simulation Optimization Strategy
	Example Implementation Scenario
	Conclusion

