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Abstract 

User-Equipments (UEs) capable of working with cloud computing have grown exponentially in recent years, 
leading to a significant increase in the amount of data production. Moreover, upcoming Internet-of-Things (IoT) 
applications such as virtual and augmented reality, video streaming, intelligent transportation, and healthcare will 
require low latency, communications, and processing. Edge computing is a revolutionary criterion in which 
dispersed edge nodes supply resources near end devices because of the limited resources available on UEs. Rather 
than transmitting massive amounts of data to the cloud, edge nodes could filter, analyze, and process the data they 
receive using local resources. Mobile Edge Computing (MEC), in particular, when user mobility is considered, has 
the potential to significantly reduce processing delays and network traffic between UEs and servers. This research 
demonstrated a novel technique for migration that minimizes delay and downtime by utilizing edge computing. 
Our proposed method syncs more frequently than the pre-copy method which is the most used migration method 
that synchronizes (sync) the source and destination only based on multiple rounds. When compared to established 
migration methodologies, our results indicate that our mechanism has less latency, downtime, migration time, and 
packet loss. These results allow delay-sensitive applications that require ultra-low latency to function smoothly 
during migration. 
 
Keywords: delay (latency), mobile edge computing (MEC), downtime, hand-off (handover), live migration, fog computing. 
 

  

1. Introduction 

Consider Internet-of-Things (IoT) apps that monitor the 
sensors of a physical object. Data must be processed in real-
time or near real-time if the application has strict Quality of 
Service (QoS) and Quality of Experience (QoE) requirements. 
Accessing cloud resources may require multiple hops. The 
latency in communicating data from data sources to the cloud 
may not be timely enough for a delay-sensitive application that 
requires real-time responses [2-4]. 

Fog computing was proposed with the goal to distribute 
computing, storage, control and networking services at the 
network edge, where data is generated [5]. This reduces the 
latency since fewer hops are required to transfer data. 
However, complications occur if a mobile User Equipment 
(UE) moves, and hence it may move away from the node that 

is hosting a service with which it is communicating with. Real-
time video streaming and conferencing, face recognition, 
online gaming, augmented reality (AR), and virtual reality 
(VR) are examples of applications [6] impacted by mobility. 
Mobile Edge Computing (MEC) envisions that fog computing 
resources are provided at the edge of the network [7]. Services 
can be deployed as a virtual machine (VM) or as a container 
that is placed on a fog node. Migrating VM/containers that 
encapsulate a service between edge nodes can be used to deal 
with UE mobility. 

Migration in MEC typically refers to the process of 
moving a running virtual machine (VM) or a container from 
the current edge node to either an edge node or cloud without 
disconnecting applications [8]. Hand-off is a component of 
migration [6] and is triggered when a device disconnects from 
an edge node's access point (AP) and connects to the AP of 
another edge node. VM/container migration typically results in 
downtime ranging from a few seconds to a few minutes [6, 9-
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17]. This downtime accounts for a significant portion of the 
delay [18, 19]. Furthermore, the UE is unable to access 
services and data during hand-off because it must relocate from 
the previous connection point to the next. Their downtimes are 
typically greater than one second, which negatively affects 
latency, QoS, and QoE requirements, while low latency and 
real-time apps, such as some AR applications, are in demand. 
An AR application in a head-mounted device, for example, 
requires less than 17 millisecond (ms) of end-to-end delay to 
function smoothly [20], whereas most research delays and 
downtimes exceed this number and cannot support real-time 
responses. These findings highlight the need for a new 
approach to further reduce delay and downtime for modern 
applications, which could also be integrated into most existing 
techniques.  

Efforts have been made to reduce VM/container migration 
downtime when a UE hands off from one edge node to 
another. Data transfers are required when migrating VMs or 
containers. Recent research has focused on reducing the 
amount of data transferred during hand-off using different 
metrics such as runtime and offline characteristics. Their 
research focuses on predicting the best time to trigger a hand-
off and improving the selection of edge nodes to allow for 
shorter processing times [9-11, 21]. These approaches mostly 
use live migration approaches borrowed from cloud 
computing, which uses the pre-copy migration technique, to 
reduce migration downtime [6, 9-17, 21].  

During migration, the pre-copy method transfers data 
from the source to the destination in predefined rounds [22], 
whereas our proposed approach synchronizes data between 
source and destination more frequently as data at the source 
changes. The main advantage of our proposed technique is that 
more frequent synchronization results in less data transfer 
during hand-off. 

Most researchers use the pre-copy method, while the work 
described in this paper focuses on an alternative to pre-copy 
that improves the performance of the migration method by 
reducing downtime when handover is triggered. 

The rest of this paper is organized as follows: Section 2 
provides background information on traditional migration 
techniques and related work. Section 3 discusses the design of 
our approach to edge infrastructure. Section 4 evaluates the 
proposed method, and Section 5 concludes this paper. 

2. Background and related work 

2.1. Background: Fundamental Migration Techniques in 
Mobile Edge Computing 

 
Stateless migration occurs when the state (which may 

include CPU, register, signal, and memory states) of the 
services of the users is not saved; otherwise, it is stateful 
migration [10, 22]. The primary focus of this paper is on 
stateful migration techniques. In this subsection, we provide a 
sketch of the most fundamental approaches to stateful 
migration. We will use these methods for comparison and 
evaluation in section IV. 

Cold migration: The VM/container execution is halted at 
the source. The VM/container is then transferred to the 
destination and resumes as soon as the VM/container becomes 
available at the destination. Apps hosted on the UE cannot 
access their service during this time until the VM/container 
restarts execution at the new location. Cold migration produces 
a lengthy downtime compared to live migration methods [22]) 
since live migration methods enable VMs/containers to 

continue running during most of the migration process [22, 
23]. These techniques are described below. 

Post-copy migration: This live migration technique first 
freezes the VM/container to stop run-time state modification 
and then transfers the latest state to the destination. The 
VM/container continues operating at the target while the 
remainder of the latest state is being transferred. The 
VM/container is connected to the destination while still 
reading data from the source until the state transfer is 
completed [22]. 

Pre-copy migration: With this live migration technique, 
the entire VM/container state from the source to the destination 
is transferred. It then transmits modified memory pages, called 
dirty pages, over several iterations. It later stops the 
VM/container execution at the source node to copy the last 
dirty page to the destination. Finally, the VM/container 
continues execution at the destination [22]. Pre-copy requires 
more data transfer than post-copy during migration since dirty 
pages must be periodically sent before hand-off. However, 
post-copy causes longer delays because it still has some data in 
the source that must be read from the destination until the state 
transfer is completed [22]. 

Hybrid-copy migration: Both pre-copy and post-copy 
methods, as previously discussed, have drawbacks: (i) Non-
deterministic downtime occurs during the pre-copy phase; (ii) 
service performance during the post-copy stage is affected by 
faulted pages [22]. The first stage of hybrid-copy migration is 
identical to pre-copy migration, sending the entire state and 
then dirty pages to the destination while the virtual machine or 
container remains operational on the origin [24, 25]. The 
VM/container is then paused after the hand-off is triggered, 
and its state is transmitted. The VM/container can be restarted 
at the target when the state and memory have been delivered. 
The most recent VM/container's execution state and memory 
pages are now present in the target. However, pages may have 
been dirtied throughout the pre-copy process. Accordingly, the 
final phase of the hybrid method is to transfer dirty pages to 
the target using the post-copy method [26]. Since the hybrid 
technique sends only the dirty pages after the hand-off, it 
typically transfers fewer memory pages than post-copy. 
According to the abovementioned research findings, the hybrid 
technique outperforms both pre- and post-copy migrations. 

2.2. Migration Strategies in Mobile Edge Computing 
 
Researchers employ various strategies to reduce migration 

time. In recent years the focus has been on various prediction-
based, e.g., [9-11, 21] and, e.g., data transfer [6, 12-17] 
approaches that are used to reduce migration time. The data 
transfer approach papers focus on reducing the amount of data 
transferred during hand-off to fundamentally reduce downtime, 
resulting in significantly reduced latency and migration time 
and, as a result, user QoE. While prediction-based methods 
reduce downtime, latency, and migration time when compared 
to other ML techniques, they do not fundamentally reduce 
them. In the following, we will provide a brief description of 
each paper. Current research focuses on prediction-based 
approaches or data transfer approaches. 

Data Transfer: To reduce transfer size during hand-off, 
Ma et al. [6, 15] proposed an improved migration technique 
based on the hierarchical structure of the container file system. 
Transferring the basic image only at the beginning of the 
migration, followed by iterative memory difference, can help 
reduce transfer size during hand-off. In the best-case scenario, 
they had 2.7 seconds of downtime. Machen et al. [14] proposed 
a layered migration framework that supports container and 
virtual machine technologies. The framework breaks the 
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application down into various layers and transfers only the 
missing layers to the destination. This layered method can 
reduce downtime by transmitting less data from the source to 
the destination during hand-off. They assessed their 
performance using various applications, such as video 
streaming and gaming servers. They significantly lowered 
overall migration times but with a 2-second average downtime 
for a blank container. This time is still unacceptable for delay-
sensitive applications, such as the stated head-mounted AR 
application. Farris et al. [16] used the pre-copy technique in 
stateless migration to achieve low latency by transferring as 
little data as possible during hand-off. They send data ahead of 
time before handing off to achieve lower latency. In the best-
case scenario, their experiments had more than a second 
latency. To reduce downtime and migration time, Addad et al. 
[12] use memory, partial, and full migration strategies with 
predefined and non-predefined paths, as well as different 
numbers of pre-copy iterations. They accomplish this by 
storing the container files in a shared storage pool accessible to 
all edge nodes and proactively sending data, resulting in less 
data to transfer during hand-off. They evaluate their 
performance using video streaming and blank containers, but 
they have more than one second of downtime in their best-case 
scenario. Most papers on reducing downtime and delays aim to 
reduce transfer time during hand-off by reducing data transfer 
during that period. On the other hand, Zhou et al. [13] propose 
a hardware accelerator concept to expedite data transmission 
reduction computations and, as a result, service migration. 
They achieve about 300 ms of downtime in their best-case 
scenario. Puliafito et al. [17] stated that an AR application that 
uses a smart helmet should have a maximum end-to-end 
latency of 20 ms. This study used pre-copy and proactively 
sent data using compression before hand-off, resulting in less 
data transfer during hand-off. Despite their proposal, they still 
have 3.67 seconds of downtime in the best-case scenario.  

Prediction-Based Approaches: Handover can be 
triggered when the value of a metric such as the Received 
Signal Strength Indicator (RSSI) falls below a preset threshold 
value. The ideal threshold value would provide sufficiently for 
the migration process to occur with minimal disruption of 
service. However, there are other factors to be considered, e.g., 
the load on the wireless links and the speed of the UE. This 
makes it difficult to determine a fixed threshold value. A poor 
threshold value results in the handover being done too late or 
too early. Prediction-based approaches consider multiple 
metrics as well as a prediction of the UE’s movement to 
determine the migration destination. For example, Ngo et al. 
[11] used the pre-copy method and proactively sent data prior 
to hand-off by memory checkpointing before and during the 
migration phase in order to determine the time to trigger hand-
off and the destination edge node. The downtime period and 
migration start simultaneously in their work, unlike other work 
where the migration starts earlier than the downtime. The 
downtown period in this work covers the handover time, which 
represents the time that the service is unavailable, but it also 
includes a period of time when the service is up. Although this 
re-definition influences results, in the best-case scenario, their 
experiments show about 7 seconds of total downtime and about 
300 ms of end-to-end delay, even with this re-definition. This 
also makes it difficult to compare with most work where 
downtime corresponds to handover. Yang et al. [9] developed a 
multi-tier MEC server deployment framework based on the 
pre-copy method in order to predict the next node based on the 
UE’s position, direction, speed, and delay requirements. Their 
experiments demonstrate several seconds of downtime when 
using various prediction-based techniques with varying UE 
speeds. Majeed et al. [10] use four regression models to predict 

offloading time in MEC using various runtime and offline 
metrics such as CPU and disk utilization, network bandwidth, 
and container image size to reduce end-to-end latency 
compared to their other evaluated ML approaches. In the best-
case scenario, they achieved 1.4 seconds of delay by 
proactively transferring data prior to hand-off and employing 
the pre-copy technique. Pomalo et al. [21] used K-Nearest 
Neighbor, Logistic Regression, Random Forest, and XGBoost 
machine learning (ML) algorithms to predict how much time 
the migration service should start in advance to the new edge 
node in order to continue service without interruptions. Their 
results were evaluated by comparing these ML approaches to 
determine which method best-handled service continuity. This 
study requires the path type, e.g. main road, highway, and 
train, to predict the proper migration start time; otherwise, it 
produces long downtimes. Furthermore, they stated that their 
approach still has downtime but did not specify its exact 
amount. The research mentioned above reduces downtime 
when compared to other ML algorithms. The downtime is 
reduced because handover is triggered earlier by taking into 
consideration factors such as the load on the wireless links and 
the speed of the UE. Our work is able to reduce downtime 
regardless of when the handover is triggered. As a result, in 
most cases, the two method groups mentioned above, 
prediction-based and data-transfer, can be combined with some 
modifications to achieve better performance results. 

2.3. Contribution 
 
The pre-copy migration method is used in most of the 

studies mentioned. Most of the included work described in this 
section still results in significant downtime, delay, and 
migration time. The issue with the previously mentioned 
studies is that they continue to use pre-copy as the primary 
transfer method [6, 9-17, 21] while reducing transfer size 
during hand-off [6, 12-17]. Consider an AR application in a 
head-mounted device. This app requires a latency of less than 
17 ms to operate appropriately [20], whereas the above-
mentioned research latencies and even solely downtimes 
outputs exceed 17 ms. As a result of such a long delay, the 
user's QoE may suffer, and there is a demand for a new 
approach to smoother migration that replaces the pre-copy 
migration technique. 

MiGrror [1] and Hybrid-MiGrror are two solutions to the 
problem stated above; it is intended for applications that 
require low latency or real-time response. Using MiGrror and 
Hybrid-MiGrror rather than pre-copy and hybrid-copy can 
result in less downtime, delay, and migration time. The pre-
copy technique is based on rounds, but memory contents may 
change more than once during a round, and the source must 
wait for a certain amount of time before sending dirty pages 
from the source to the destination. As a result, the source may 
send dirty pages at a low rate until the hand-off triggers. To 
improve the efficiency of future IoT and 5G applications, a 
new design is required that synchronizes more frequent 
memory differences from the source to destination during 
migration, reducing the transfer size during hand-off and, thus, 
downtime and delay. In the remainder of this paper, we will 
present our approach as a complement to current research, i.e. 
prediction-based methods and other techniques, since it can be 
used instead of pre-copy, resulting in less downtime and delays 
than pre-copy. 

3. MiGrror and Hybrid-MiGrror: mirroring service 
on fog/edge migration 
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This section describes the MiGrror and Hybrid-MiGrror 
migration methods, which are based on VM/container 
mirroring (a combination of the terms migration and mirror). 
Mirroring is used in our technique to synchronize the source 
and destination VM/containers more rapidly during hand-off. 

3.1. Description of Pre-Copy 
 
This subsection presents the pre-copy method. With pre-

copy, a node is selected for migration. A VM/container is 
initialized on the target node. This is followed by transferring 
the memory state to the target node even as the VM/container 
executes on the source node. This transfer is round 1. For 
round i, where i > 1, a page is transmitted if it has been written 
to (dirtied). The rounds typically end based on a predefined 
number. At this point, the VM/container on the source node is 
terminated, and devices using it are now expected to use the 
VM/container on the target node. It is critically important to 
minimize the downtime when the VM/container stops running. 
During this time, the VM/container stops running, and the 
service/data are inaccessible. Since downtime contributes to 
performance loss, this should be kept as low as possible, if not 
zero. We define downtime as follows: 

tdowntime = ttransfer + tresume (1) 

where ttransfer is the time required to transfer the last dirty 
memory of the VM/container, which is calculated as follows: 

ttransfer = Amount of the last dirty memory (bits) / second (2) 

This is defined as the time necessary to disconnect from 
the current AP (the AP of the source edge node) and connect to 
the next AP (AP of the destination edge node). We 
define tresume as the time needed to resume a VM/container at 
the destination based on the received data after hand-off. 
Since ttransfer has the largest impact on downtime and migration 
time when compared to other stated parameters [22], we 
focused on ttransfer to reduce downtime. 

 
Fig. 1. The distinction between MiGrror and Pre-Copy methods. 
 

 
Fig. 2. Workflow of MiGrror. 

3.2. Description of MiGrror 
 

Figure 1 depicts the distinction between the MiGrror and 
pre-copy approaches. Assume a UE is moving from one node 
to another. As illustrated in Figure 1, pre-copy transmits dirty 
memory at the end of a round representing a predefined 
amount of time. With MiGrror, the goal is to reduce the 
amount of data that must be transferred during downtime in 
order to achieve higher performance; therefore, we focused on 
reducing ttransfer. The distinction between the two methods is 
that MiGrror, as shown at the bottom of Figure 1, uses events 
to synchronize (sync) the source and destination as events 
occur, rather than waiting for the end of a round as pre-copy 
does. Each memory change at the source causes an event to be 
generated, indicating that the source and destination must be 
synced. MiGrror does not need to wait for a period of time to 
elapse. Instead, MiGrror allows the possibility of multiple 
synchronizations of the source and destination during the 
period of time that corresponds to the pre-copy's round in order 
to mirror the current VM/container available at the destination. 
These n MiGrror sync events and m rounds of pre-copy are 
depicted in Figure 1. In most cases, n is expected to be larger 
than m since MiGrror syncs as soon as a memory change 
occurs and sends memory differences as soon as they become 
available. A small amount of dirty memory remains when 
hand-off is triggered. After the hand-off trigger, this data is the 
last memory difference that the source sends to the destination 
for synchronization. This is less memory than the last round in 
pre-copy since other memory differences have already been 
transmitted. As a result, ttransfer is reduced in MiGrror when 
compared to pre-copy. Consequently, as shown in Figure 1, 
downtime is reduced compared to pre-copy. The diagram's 
right-most section represents the resumption time required to 
restart the VM/container at the destination. The remainder of 
this section will discuss MiGrror. 

Figure 2 shows the design details of our entire workflow. 
The source edge node is the node that is currently providing 
services to end-user applications. After these steps are 
completed, the destination will provide the migrated service. 

3.3. The Hybrid-MiGrror Migration Method 
 
We intend to reduce the amount of data sent after hand-

off since the destination will need to remotely read the data 
from the source, increasing the delay. The hybrid-copy method 
has a significant disadvantage due to the remote read, which 
increases the end-to-end latency. Therefore, if we synchronize 
the source and destination faster in the pre-hand-off phase of 
hybrid migration by replacing the pre-copy with the MiGrror, 
we can reduce data to transfer in the post-hand-off phase. As a 
result, we use MiGrror for fast synchronization of the source 
and target during the pre-hand-off phase. Thus, a mirror of the 
source’s VM/container is ready at the destination throughout 
the migration process. While the device is still connected to the 
source during the pre-hand-off phase, the destination is ready 
for the UE to hand off and connect to the target when it enters 
the destination’s range during the post-hand-off phase. 

3.3.1. General Overview of the Migration Procedure 
The Hybrid-MiGrror approach is divided into three 

phases, as shown in Figure 3: pre-hand-off, hand-off, and post-
hand-off. We will first briefly explain these phases, followed 
by a more in-depth discussion in the rest of this section. 

3.3.1.1 Pre-hand-off Phase 
In the first phase, the source sends the current 

VM/container’s memory and runtime states to the destination. 
Afterwards, each memory modification causes an event to 

be generated in the source edge node. The source re-transmits 
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modified memory pages (dirty pages) to the destination. These 
events may occur several times prior to the hand-off being 
triggered. As a result, this process is repeated while the 
VM/container is running at the source. 

3.3.1.2 Hand-off Phase 
During the hand-off phase, the VM/container is stopped at 

the source node and copies the minimum required memory and 
state to the destination. The VM/container is then reloaded at 
the destination. 

 
Fig. 3. Hybrid-MiGrror Major Migration Procedures. 

3.3.1.3 Post-hand-off Phase 
The VM/container is now running at the destination. 

However, some data at the source was not copied since it was 
dirtied during the latest copy event and hand-off. This data 
should be transferred to the destination node proactively by the 
source node. Furthermore, if the VM/container requires data 
that has not yet been transferred from the source, a page fault is 
generated in order to access the required page. 

3.3.2. The Hybrid MiGrror, Step-by-Step 
Hybrid MiGrror begins with the pre-hand-off phase, 

which is comprised of five steps: 
S1: Transfer the Base Image 
When a UE approaches the source, the source edge node 

or cloud sends the base image to the next prospective edge 
node, the target (Figure 3, first step). 

S2: Transfer the Pre-Dump Memory 
The source edge node synchronizes (syncs) a memory 

snapshot to the destination before receiving the migration 
request (Figure 3, step 2). To decrease the size of the 
transmitted memory image during hand-off, this technique first 
checkpoints the source VM/container and then dumps (stores 
memory content) a snapshot of VM/container memory in step 
S2 without disrupting the VM/container service at the source 
edge node. 

S3: Migration Request and Checkpoint 
After receiving the migration request from the cloud/edge 

node, the source edge node captures a memory snapshot to 
synchronize in the following steps to the target (Figure 3, step 
3). The source node monitors changes in memory events and 

the hand-off signal event. When a memory change event 
occurs, the VM/container on the source edge node performs a 
checkpoint to capture a memory snapshot. The dirty memory is 
then identified by comparing the latest snapshot with the 
previous one for memory deltas. 

S4: Transfer Memory Delta 
The memory delta is then transferred from the source to 

the target edge node and reassembled (Figure 3, step 4). This 
technique transmits memory deltas from the source edge node 
to the destination in order to provide synchronous mirroring 
without interfering with the VM/container service at the source 
as the source sends a copy to the destination. It may sync to 
one or more nodes, depending on the policy. 

S5: Apply Memory Delta 
When a memory delta arrives at its destination, an event is 

generated to apply the received memory delta into the 
VM/container's memory (Figure 3, step 5). The VM/container 
is now restored at the target with the most current source 
changes. 

Since the source and destination are synchronized, 
a mirror of the source's VM/container continues to run at the 
target as a result of steps S1 through S5 in the pre-hand-off 
phase. Furthermore, depending on the needs of the application, 
mirroring may begin prior to the migration request. 

Hand-off phase: The second phase starts after the edge-
cloud control mechanism initiates the hand-off. This phase 
consists of four steps, which are as follows: 

S6: Stop VM/container 
The source edge node stops the VM/container to prevent 

further memory and state modification. 
S7: Transfer Minimal Memory and States 
At this point, only the most recent minimum memory and 

runtime states required at the destination to reload the 
VM/container in the next steps should be transferred from the 
source to the destination. This action reduces the amount of 
data transferred during hand-off and, as a result, downtime to a 
bare minimum. 

S8: Hand-off 
The destination now contains all the required data. This 

data was obtained as a result of stages S1 through S7 
execution. The control is now passed to the next edge node 
(target). 

S9: Reload the VM/container 
The target edge node reloads the VM/container with the 

most recent updates obtained in step S7. Steps S8 and S9 can 
be completed simultaneously. 

Steps S6 through S9 are completed during the downtime 
period, as indicated in Figure 3. During this period, the UE is 
unable to use its services from the source or destination. 
Therefore, this time must be kept as short as possible. 

The last phase, the post-hand-off, consists of three steps. 
The VM/container executing at the destination can start 
running at this point, but it may still have data at another edge 
node (source) that needs to be transferred since some data is 
not transferred during downtime. 

S10: Clean-Up and Failure Recovery 
The current VM/container is removed, leaving the source 

edge node memory clean. The aim is to wait a certain amount 
of time before removing the VM/container from the source. 
The waiting period has the advantage of serving as a backup if 
the connection to the next node fails or if the UE goes back. 

S11: Service Running on the Target 
After reloading the VM/container at step S9, the 

VM/container can run at the destination. The target edge node 
will now service the UE. Steps S10 and S11 could be 
completed simultaneously to save time because they will be 
performed in separate nodes. 
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Step S12, as depicted in Figure 3, is divided into two 
subordinate steps, S12.1 and S12.2, which complete their tasks 
concurrently. 

S12.1: Transfer the Remaining Pages 
Despite employing the MiGrror concept in the first phase, 

which causes less data to remain at the source than live 
migration approaches that have not yet been transmitted, the 
source proactively transmits the remaining migrated 
VM/container data to the destination. This step avoids multiple 
fault pages at the destination, which causes significant delays 
since the target must read the faulty pages remotely from the 
source. 

S12.2: Transfer Faulted Pages 
The remaining data is delivered proactively by the source; 

however, the destination VM/container may require data that 
has not yet been transferred. As a result, the target issues a 
page fault to the source in order to access the required part of 
the VM/container's memory. 

Our motivation for employing this strategy is to provide 
up-to-date data and services to the destination node for the 
incoming UE and its applications as soon as possible. As a 
result of combining the two principles, the delay of the Hybrid-
MiGrror approach would be kept to a minimum level as the 
result of these actions: (i) Using the MiGrror concept prior to 
hand-off and (ii) transferring the least amount of data feasible 
during the hand-off phase. Since less data remains at the source 
during the post-hand-off phase to transfer, the Hybrid-MiGrror 
causes fewer delays than live migration techniques, resulting in 
page faults and lengthy delays. This contributes to keeping the 
delay to a minimum for the real-time and near-real-time 
applications mentioned in the introduction. Consequently, the 
migration process could be faster and smoother than if only 
live migration methods were used. 

In the final phase, the target edge node will proceed to 
step S1 to prepare for a possible future migration. 

 

 

 

 
Fig. 4-A, 4-B, and 4-C. A smart city scenario. A: top, B: 
middle, C: bottom. (Image location: Nathan Phillips Square, 

Toronto, ON Canada, from maps.google.ca. Red car from 
ferrari.com, both accessed Dec. 2020). 

3.4. A Smart City Scenario 
Assume a road on which a mobile UE is traversing. The 

mobile UE could run applications such as video conferencing, 
VR, or an autonomous vehicle. As shown in Figure 4-A,B, and 
C, a UE will go out of the node i range and enter the node j 
range. In this figure, node i is the source node, and node j is the 
destination. 

We can see a model of mobility, edge nodes, migration, 
and hand-off in Figure 4-A,B, and C. As the figure shows, the 
end-user moves from point A to C while keeping the 
connection alive for apps and their services. Figure 4-A shows 
the user located at point A; the migration starts here. Mirroring 
starts in the first phase of Hybrid-MiGrror when the end-user 
is in the range of node II. Therefore, a live copy of the source 
node's data resides at the destination and is ready to be used. 

As the end-user device moves forward, it reaches point B 
presented in Figure 4-B. The hand-off is triggered when the 
UE is at point B. It passes the connection from the current edge 
node (node i) to the new one (node j). At this point, application 
data should have finished transferring from edge node i to j, 
allowing apps to continue to provide services when the end-
user hands-off and reaches point C, as shown in Figure 4-C. As 
soon as the hand-off is completed in the third phase of the 
Hybrid-MiGrror, the destination actively fetches the remaining 
VM/container's data from the source. 

When the user reaches point C, the previous node has 
already finished the VM/container migration (source node i). 
Thus, apps receive their service from the new edge node 
(destination node j). Each time a user goes from one point to 
another, this process happens. Since data is synchronized 
swiftly from the source to the destination, the applications' 
response time at points B and C will take minimum delay 
regarding migration interruptions. Our proposed technique also 
helps apps handle their services while the end-user crosses 
from one edge node range to another. This performance has a 
cost, which might be losing some of the network bandwidth 
during synchronization. 

4. Results and Discussions 
 

This section covers the simulation setup and presents 
insights obtained from the proposed method's simulation 
results. 

4.1. Simulation Setup 
 
The simulations in this section are run using MobFogSim 

[27], extended to deliver results. We also make use of UEs' 
real-time movement patterns. These patterns are embedded in 
MobFogSim by using the Simulation for Urban Mobility 
(SUMO) [28] and Luxembourg SUMO Traffic (LuST) [29]. 
The LuST is a dataset that analyzed vehicles in Luxembourg 
for 24 hours in 2015, covering an area of 156 km2 and 932 km 
of road. Our simulation used this dataset to determine the 
vehicle's location, speed, timing, and movement direction. 

This study evaluated the performance of our proposed 
techniques using a virtual machine running on an Ubuntu 
18.04.5 LTS with a 2.2 GHz quad-core CPU, 64 GBs of 
storage, and 32 GBs of RAM. We assumed a mobile edge 
computing infrastructure with 2 Mega Bits Per Second (Mbps) 
bandwidth for each UE and 100 Mbps bandwidth for each AP. 
Other features, such as a processing limit of 300 MIPS, can 
also be used to describe UE configuration. A million 
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Instructions Per Second (MIPS) is a unit of measurement for 
computing power. 

We made different assumptions regarding the input values 
as part of the simulation environment. We chose a square 10 × 
10 km region with 144 edge nodes evenly distributed around 
the area as the environment. Each edge node is linked to a 
single access point with a signal range of 1000 meters. When 
the user approaches the migration point, which is configured as 
40 meters from the coverage border of the connected access 
point, the migration procedure begins (source node). Among 
the potential edge nodes present in the user's route, our 
migration strategy selects the candidate edge node with the 
shortest distance (Euclidean distance) between the user and the 
access point. The stated dataset determines the user speed, and 
the network bandwidth between edge nodes is set to 1000 
Mbps with a latency of 1 ms. These values are summarized in 
Table 1 and Table 2. We ran 50 simulations with identical 
setups and randomly selected users from the LuST dataset in 
each simulation run. Therefore, we have the same bandwidth 
and latency between network edges, but there may be different 
users with different speeds and directions in each run. The 
average of the 50 simulation runs for each method is then used 
in the results. The simulation ends once the user has finished 
the migration steps. 
 
Table 1. Configuration of various devices 
Device Type Downlink Bandwidth Uplink Bandwidth 
Mobile-Device (UE) 2 Mbps 2 Mbps 
Access Point 100 Mbps 100 Mbps 
 
Table 2. Input parameters and values assumed in experiments 
Parameter Value 
Access point range (radius) 1000 m 
Number of edge nodes 12×12 (144) 
Density of edge nodes per access points 1:1 
Migration strategy Shortest Distance  
Migration point Static (40 m) 
User's speed Variable, based on the dataset 
Network Bandwidth between edge nodes 1000 Mbps 
Network Latency between edge nodes 1 ms 

4.2. Performance Characteristics 
 
The techniques are evaluated using five metrics which are 

described below. 

4.2.1. Average Delay 
The average latency is defined as the average delay 

between mobile user equipment running an application and the 
edge node running the corresponding VM/container. The 
definition of delay does not include packet loss in this paper as 
they never arrived at the destination, and we cannot measure 
their delay. A lower value means that users must wait less time 
to acquire data from the migrated service hosted on the 
destination edge node, and as a result, the performance of their 
running applications improves. 

4.2.2. Downtime 
Downtime is the time it takes to relocate a paused virtual 

machine or container from one edge node to another and restart 
it. The VM/container stops functioning during this time, and 
the services and data associated with it are no longer accessible 
to the user. 

4.2.3. Average Migration Time 
The average migration time is the average time it takes to 

prepare, complete multiple transfers, and restart the 
VM/container at the destination edge node. Migration is 

completed when the VM/container resumes at the target edge 
node for the final time with all the required data. 

4.2.4. Network Usage 
Network usage refers to the amount of data exchanged 

between the source and destination nodes for the duration of 
the migration, from when migration initiates until the 
migration is completed. 

4.2.5. Packet Loss 
Packet loss during downtime refers to the number of 

packets that user equipment needs to send to or receive from an 
edge node but is unable to do so due to a lack of connectivity 
between the UE and the edge node. This measure represents a 
pause in service delivery. 

4.3. Simulation Results 
 
The pre-copy, MiGrror, Hybrid-Copy and Hybrid-

MiGrror simulation results are compared in terms of metrics 
described in the previous subsection. Notably, in our 
experiments with hybrid migrations, we employed a post-copy 
via active pushing since it produces less delay and migration 
time than other types of post-copy [30]. 

 
Fig. 5. Average Delay. 

Figure 5 depicts the average delay. The average delay 
does not account for lost packets and only evaluates packets 
that reach their destination. As shown in the figure, MiGrror 
has lower average latency when compared to the pre-copy 
method. Since we use MiGrror in the first phase rather than 
pre-copy, we expected a lower average delay in our proposed 
hybrid method. Figure 5 illustrates that Hybrid-MiGrror has 
more than a 10% lower average delay than hybrid-copy. As a 
result, delay-sensitive apps can run more smoothly, resulting in 
a better user experience. Based on these findings, it is 
reasonable to conclude that applications using Hybrid-MiGrror 
will have less waiting time before accessing the migrated 
service. This performance contributes to the smooth running of 
latency-sensitive applications while maintaining high 
performance in the edge environment. This latency should be 
acceptable for most applications, especially for 5G applications 
requiring a minimal delay, generally less than 15ms end-to-end 
latency [31]. 
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Fig. 6. Average Downtime. 

Another factor that we take into consideration is 
downtime. The downtime associated with the pre-copy 
migration is the longest, lasting more than 10ms, as shown in 
Figure 6. The downtime for the MiGrror migration is 50% less 
than that for the pre-copy migration. Both hybrid migration 
techniques have roughly the same amount of downtime, which 
is less than the downtime for pre-copy and MiGrror 
procedures, around 3ms. Hybrid versions have less downtime 
since they do not need to wait for all the remaining memory 
and state to be transferred from the source to the destination in 
order to resume the VM/container at the target, as explained in 
section 3.3.2. 

 
Fig. 7. Average Migration Time. 

Figure 7 represents the average migration time for each 
technique. MiGrror and pre-copy migration techniques require 
less migration time than hybrid methods since all data is 
delivered before and during hand-off. However, both hybrid 
approaches require slightly more migration time than the other 
two methods, albeit only by about 5% since both methods use 
the post-copy strategy in their third phase. Furthermore, 
Hybrid-MiGrror takes less time to migrate than hybrid-copy 
since it uses MiGrror in the first phase and has less data to 
transfer at the source when the UE hands off to the destination. 
As a result, less data is required to be sent after hand-off than 
with the hybrid-copy method. 

 
Fig. 8. Network Usage. 

The amount of data sent for migration is shown in Figure 
8. Since all techniques transfer memory pages multiple times 
before handing them off, their network bandwidth 

consumption is considerable. MiGrror uses more bandwidth 
than pre-copy as it syncs the source and destination more 
frequently than pre-copy. The network consumption of the 
Hybrid-MiGrror is greater than that of the hybrid-copy, as 
shown in the figure. This is due to the deployment of MiGrror 
in the first step of the proposed method. 

Furthermore, the amount of data transferred by pre-copy 
and hybrid-copy methods is roughly the same. Similarly, as 
illustrated in Figure 8, MiGrror and Hybrid-MiGrror have 
almost the same data transmission. They sent the most data 
because they sent more memory deltas than the other two 
migration methods; however, they used only 5% more 
bandwidth. This increased bandwidth usage is because 
MiGrror and Hybrid-MiGrror sync more frequently during 
migration than pre-copy and hybrid-copy. Sync events data 
transfer is low. Even though there  are a high number of sync 
events, the small volume produced by a sync event results in 
the amount of data transferred during migration rising by 5%. 
Moreover, Hybrid-MiGrror synchronizes using local network 
bandwidth rather than the remote traffic that applications 
currently use to communicate with cloud servers. 

The data transmission volume may be an issue when 
using the proposed methodology since a less bandwidth-
intensive technique is preferable. 5G networks, on the other 
hand, have more than ten times the bandwidth of 4G networks, 
ranging from 1 to 10 Gbps [32]. Edge nodes using our 
migration methodology may sync with each other more 
frequently than previous approaches, consuming more 
bandwidth in order to provide reasonable downtime for future 
highly delay-sensitive applications requiring a low-latency 
response. It is still dependent on the application's requirements 
and use-cases. An app may require ultra-low latency or be 
bandwidth constrained. Different criteria influence the use of 
the stated migration techniques, which should be considered 
when selecting a migration approach. 

 
Fig. 9. Packet Loss. 

Figure 9 shows that the pre-copy method has the highest 
packet loss during downtime since it causes more downtime 
than other methods; it affects packet loss. At the same time, the 
MiGrror has a packet loss of slightly more than 1%. Both 
hybrid techniques have the lowest packet loss during 
downtime, around 0.6 percent. This result was expected since 
they had the shortest downtime of the evaluated techniques, 
indicating another advantage of hybrid migration methods. 

4.4. Discussions 
 
Although MiGrror significantly reduces the delay 

compared to pre-copy, Hybrid-MiGrror will reduce the delay 
even further. The major distinction between the four migration 
methods is that the Hybrid-MiGrror reduces delay with 
negligible impact on other parameters. Therefore, Hybrid-
MiGrror can offer services with low delay and downtime for 
real-time applications despite a slight increase in migration 
time and network usage. The reason that the Hybrid-MiGrror 
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network usage is slightly higher than the hybrid-copy is that 
despite more frequent syncs, the data transfer amount in each 
sync event is insignificant. This is because doing more 
frequent syncs reduces the volume of data transferred in each 
sync event. 

5. Conclusion 
 

This study investigated the significance of VM/container 
migration in mobile edge computing. Migration may consider 
the edge node's geographical location with respect to the user, 
the user's direction and speed, as well as the network 
characteristics of both the user and the edge node. Four distinct 
migration mechanisms were depicted and simulated. We 
account for the user's movement and wireless connection in the 
simulation. Our research discovered that Hybrid-MiGrror 
performs well when supporting MEC applications with mobile 
users, especially when the real-time response is critical. Even 
though MiGrror can serve the majority of latency-critical 
applications, when it comes to applications requiring a real-
time response, Hybrid-MiGrror performs better by reducing 
delay and downtime. Delay-insensitive applications may use 
the pre-copy or hybrid-copy method when the delay is not 
critical since, despite reducing delay and downtime, MiGrror 
and Hybrid-MiGrror use higher network bandwidth. 

Future research should define and enhance various 
migration mechanisms in the fog/edge computing environment 
for various scenarios/use-cases. It would be worthwhile to 
consider trade-offs in various scenarios. In order to provide a 
higher quality of service to applications, different methods may 
be required in different situations; for example, Hybrid-
MiGrror has a lower delay and a longer migration time than 
MiGrror. 

A Hybrid-MiGrror extension can be used in stateless 
migration. Because this container does not need to store states, 
it can replicate by cloning or mirroring from the source node or 
cloud to the prospective destination node/nodes without 
requiring migration. However, some data may still be linked to 
containers, as containers require this data in order to retain the 
user's data. 

Furthermore, combining Hybrid-MiGrror with existing 
machine learning (ML) and non-ML approaches would also 
contribute to a promising method for minimizing delay and 
downtime. Synchronizing from a source to multiple nodes 
should be beneficial when the source is uncertain of the 
following potential node to migrate to or when the application 
wants cooperation with more than one node to improve 
performance. 
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