
 Journal of Ubiquitous Systems & Pervasive Networks
Volume 18, No. 1 (2023) pp. 39-48

* Corresponding author. Tel.: +15196613566
Fax: +15196613515; E-mail: arezaza6@uwo.ca
© 2023 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.18.01.006

1

Hybrid-MiGrror: An Extension to the Hybrid Live Migration to Support
Mobility in Edge Computing **

Arshin Rezazadeh a *, Davood Abednezhad b, Hanan Lutfiyya a

a Computer Science Department, Western University, London ON N6A 3K7 Canada

b Information and Communications Technology, Khouzestan Oxin Steel Company, Ahvaz, Iran

** (Invited Paper) Data from this extended paper were partially presented and published in the proceedings of the 17th
international conference on future networks and communications (FNC) [1].

Abstract

User-Equipments (UEs) capable of working with cloud computing have grown exponentially in recent years,
leading to a significant increase in the amount of data production. Moreover, upcoming Internet-of-Things (IoT)
applications such as virtual and augmented reality, video streaming, intelligent transportation, and healthcare will
require low latency, communications, and processing. Edge computing is a revolutionary criterion in which
dispersed edge nodes supply resources near end devices because of the limited resources available on UEs. Rather
than transmitting massive amounts of data to the cloud, edge nodes could filter, analyze, and process the data they
receive using local resources. Mobile Edge Computing (MEC), in particular, when user mobility is considered, has
the potential to significantly reduce processing delays and network traffic between UEs and servers. This research
demonstrated a novel technique for migration that minimizes delay and downtime by utilizing edge computing.
Our proposed method syncs more frequently than the pre-copy method which is the most used migration method
that synchronizes (sync) the source and destination only based on multiple rounds. When compared to established
migration methodologies, our results indicate that our mechanism has less latency, downtime, migration time, and
packet loss. These results allow delay-sensitive applications that require ultra-low latency to function smoothly
during migration.

Keywords: delay (latency), mobile edge computing (MEC), downtime, hand-off (handover), live migration, fog computing.

1. Introduction

Consider Internet-of-Things (IoT) apps that monitor the
sensors of a physical object. Data must be processed in real-
time or near real-time if the application has strict Quality of
Service (QoS) and Quality of Experience (QoE) requirements.
Accessing cloud resources may require multiple hops. The
latency in communicating data from data sources to the cloud
may not be timely enough for a delay-sensitive application that
requires real-time responses [2-4].

Fog computing was proposed with the goal to distribute
computing, storage, control and networking services at the
network edge, where data is generated [5]. This reduces the
latency since fewer hops are required to transfer data.
However, complications occur if a mobile User Equipment
(UE) moves, and hence it may move away from the node that

is hosting a service with which it is communicating with. Real-
time video streaming and conferencing, face recognition,
online gaming, augmented reality (AR), and virtual reality
(VR) are examples of applications [6] impacted by mobility.
Mobile Edge Computing (MEC) envisions that fog computing
resources are provided at the edge of the network [7]. Services
can be deployed as a virtual machine (VM) or as a container
that is placed on a fog node. Migrating VM/containers that
encapsulate a service between edge nodes can be used to deal
with UE mobility.

Migration in MEC typically refers to the process of
moving a running virtual machine (VM) or a container from
the current edge node to either an edge node or cloud without
disconnecting applications [8]. Hand-off is a component of
migration [6] and is triggered when a device disconnects from
an edge node's access point (AP) and connects to the AP of
another edge node. VM/container migration typically results in
downtime ranging from a few seconds to a few minutes [6, 9-

Arshin Rezazadeh et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 18 (2023) 39-48

2

17]. This downtime accounts for a significant portion of the
delay [18, 19]. Furthermore, the UE is unable to access
services and data during hand-off because it must relocate from
the previous connection point to the next. Their downtimes are
typically greater than one second, which negatively affects
latency, QoS, and QoE requirements, while low latency and
real-time apps, such as some AR applications, are in demand.
An AR application in a head-mounted device, for example,
requires less than 17 millisecond (ms) of end-to-end delay to
function smoothly [20], whereas most research delays and
downtimes exceed this number and cannot support real-time
responses. These findings highlight the need for a new
approach to further reduce delay and downtime for modern
applications, which could also be integrated into most existing
techniques.

Efforts have been made to reduce VM/container migration
downtime when a UE hands off from one edge node to
another. Data transfers are required when migrating VMs or
containers. Recent research has focused on reducing the
amount of data transferred during hand-off using different
metrics such as runtime and offline characteristics. Their
research focuses on predicting the best time to trigger a hand-
off and improving the selection of edge nodes to allow for
shorter processing times [9-11, 21]. These approaches mostly
use live migration approaches borrowed from cloud
computing, which uses the pre-copy migration technique, to
reduce migration downtime [6, 9-17, 21].

During migration, the pre-copy method transfers data
from the source to the destination in predefined rounds [22],
whereas our proposed approach synchronizes data between
source and destination more frequently as data at the source
changes. The main advantage of our proposed technique is that
more frequent synchronization results in less data transfer
during hand-off.

Most researchers use the pre-copy method, while the work
described in this paper focuses on an alternative to pre-copy
that improves the performance of the migration method by
reducing downtime when handover is triggered.

The rest of this paper is organized as follows: Section 2
provides background information on traditional migration
techniques and related work. Section 3 discusses the design of
our approach to edge infrastructure. Section 4 evaluates the
proposed method, and Section 5 concludes this paper.

2. Background and related work

2.1. Background: Fundamental Migration Techniques in
Mobile Edge Computing

Stateless migration occurs when the state (which may

include CPU, register, signal, and memory states) of the
services of the users is not saved; otherwise, it is stateful
migration [10, 22]. The primary focus of this paper is on
stateful migration techniques. In this subsection, we provide a
sketch of the most fundamental approaches to stateful
migration. We will use these methods for comparison and
evaluation in section IV.

Cold migration: The VM/container execution is halted at
the source. The VM/container is then transferred to the
destination and resumes as soon as the VM/container becomes
available at the destination. Apps hosted on the UE cannot
access their service during this time until the VM/container
restarts execution at the new location. Cold migration produces
a lengthy downtime compared to live migration methods [22])
since live migration methods enable VMs/containers to

continue running during most of the migration process [22,
23]. These techniques are described below.

Post-copy migration: This live migration technique first
freezes the VM/container to stop run-time state modification
and then transfers the latest state to the destination. The
VM/container continues operating at the target while the
remainder of the latest state is being transferred. The
VM/container is connected to the destination while still
reading data from the source until the state transfer is
completed [22].

Pre-copy migration: With this live migration technique,
the entire VM/container state from the source to the destination
is transferred. It then transmits modified memory pages, called
dirty pages, over several iterations. It later stops the
VM/container execution at the source node to copy the last
dirty page to the destination. Finally, the VM/container
continues execution at the destination [22]. Pre-copy requires
more data transfer than post-copy during migration since dirty
pages must be periodically sent before hand-off. However,
post-copy causes longer delays because it still has some data in
the source that must be read from the destination until the state
transfer is completed [22].

Hybrid-copy migration: Both pre-copy and post-copy
methods, as previously discussed, have drawbacks: (i) Non-
deterministic downtime occurs during the pre-copy phase; (ii)
service performance during the post-copy stage is affected by
faulted pages [22]. The first stage of hybrid-copy migration is
identical to pre-copy migration, sending the entire state and
then dirty pages to the destination while the virtual machine or
container remains operational on the origin [24, 25]. The
VM/container is then paused after the hand-off is triggered,
and its state is transmitted. The VM/container can be restarted
at the target when the state and memory have been delivered.
The most recent VM/container's execution state and memory
pages are now present in the target. However, pages may have
been dirtied throughout the pre-copy process. Accordingly, the
final phase of the hybrid method is to transfer dirty pages to
the target using the post-copy method [26]. Since the hybrid
technique sends only the dirty pages after the hand-off, it
typically transfers fewer memory pages than post-copy.
According to the abovementioned research findings, the hybrid
technique outperforms both pre- and post-copy migrations.

2.2. Migration Strategies in Mobile Edge Computing

Researchers employ various strategies to reduce migration

time. In recent years the focus has been on various prediction-
based, e.g., [9-11, 21] and, e.g., data transfer [6, 12-17]
approaches that are used to reduce migration time. The data
transfer approach papers focus on reducing the amount of data
transferred during hand-off to fundamentally reduce downtime,
resulting in significantly reduced latency and migration time
and, as a result, user QoE. While prediction-based methods
reduce downtime, latency, and migration time when compared
to other ML techniques, they do not fundamentally reduce
them. In the following, we will provide a brief description of
each paper. Current research focuses on prediction-based
approaches or data transfer approaches.

Data Transfer: To reduce transfer size during hand-off,
Ma et al. [6, 15] proposed an improved migration technique
based on the hierarchical structure of the container file system.
Transferring the basic image only at the beginning of the
migration, followed by iterative memory difference, can help
reduce transfer size during hand-off. In the best-case scenario,
they had 2.7 seconds of downtime. Machen et al. [14] proposed
a layered migration framework that supports container and
virtual machine technologies. The framework breaks the

Arshin Rezazadeh et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 18 (2023) 39-48

3

application down into various layers and transfers only the
missing layers to the destination. This layered method can
reduce downtime by transmitting less data from the source to
the destination during hand-off. They assessed their
performance using various applications, such as video
streaming and gaming servers. They significantly lowered
overall migration times but with a 2-second average downtime
for a blank container. This time is still unacceptable for delay-
sensitive applications, such as the stated head-mounted AR
application. Farris et al. [16] used the pre-copy technique in
stateless migration to achieve low latency by transferring as
little data as possible during hand-off. They send data ahead of
time before handing off to achieve lower latency. In the best-
case scenario, their experiments had more than a second
latency. To reduce downtime and migration time, Addad et al.
[12] use memory, partial, and full migration strategies with
predefined and non-predefined paths, as well as different
numbers of pre-copy iterations. They accomplish this by
storing the container files in a shared storage pool accessible to
all edge nodes and proactively sending data, resulting in less
data to transfer during hand-off. They evaluate their
performance using video streaming and blank containers, but
they have more than one second of downtime in their best-case
scenario. Most papers on reducing downtime and delays aim to
reduce transfer time during hand-off by reducing data transfer
during that period. On the other hand, Zhou et al. [13] propose
a hardware accelerator concept to expedite data transmission
reduction computations and, as a result, service migration.
They achieve about 300 ms of downtime in their best-case
scenario. Puliafito et al. [17] stated that an AR application that
uses a smart helmet should have a maximum end-to-end
latency of 20 ms. This study used pre-copy and proactively
sent data using compression before hand-off, resulting in less
data transfer during hand-off. Despite their proposal, they still
have 3.67 seconds of downtime in the best-case scenario.

Prediction-Based Approaches: Handover can be
triggered when the value of a metric such as the Received
Signal Strength Indicator (RSSI) falls below a preset threshold
value. The ideal threshold value would provide sufficiently for
the migration process to occur with minimal disruption of
service. However, there are other factors to be considered, e.g.,
the load on the wireless links and the speed of the UE. This
makes it difficult to determine a fixed threshold value. A poor
threshold value results in the handover being done too late or
too early. Prediction-based approaches consider multiple
metrics as well as a prediction of the UE’s movement to
determine the migration destination. For example, Ngo et al.
[11] used the pre-copy method and proactively sent data prior
to hand-off by memory checkpointing before and during the
migration phase in order to determine the time to trigger hand-
off and the destination edge node. The downtime period and
migration start simultaneously in their work, unlike other work
where the migration starts earlier than the downtime. The
downtown period in this work covers the handover time, which
represents the time that the service is unavailable, but it also
includes a period of time when the service is up. Although this
re-definition influences results, in the best-case scenario, their
experiments show about 7 seconds of total downtime and about
300 ms of end-to-end delay, even with this re-definition. This
also makes it difficult to compare with most work where
downtime corresponds to handover. Yang et al. [9] developed a
multi-tier MEC server deployment framework based on the
pre-copy method in order to predict the next node based on the
UE’s position, direction, speed, and delay requirements. Their
experiments demonstrate several seconds of downtime when
using various prediction-based techniques with varying UE
speeds. Majeed et al. [10] use four regression models to predict

offloading time in MEC using various runtime and offline
metrics such as CPU and disk utilization, network bandwidth,
and container image size to reduce end-to-end latency
compared to their other evaluated ML approaches. In the best-
case scenario, they achieved 1.4 seconds of delay by
proactively transferring data prior to hand-off and employing
the pre-copy technique. Pomalo et al. [21] used K-Nearest
Neighbor, Logistic Regression, Random Forest, and XGBoost
machine learning (ML) algorithms to predict how much time
the migration service should start in advance to the new edge
node in order to continue service without interruptions. Their
results were evaluated by comparing these ML approaches to
determine which method best-handled service continuity. This
study requires the path type, e.g. main road, highway, and
train, to predict the proper migration start time; otherwise, it
produces long downtimes. Furthermore, they stated that their
approach still has downtime but did not specify its exact
amount. The research mentioned above reduces downtime
when compared to other ML algorithms. The downtime is
reduced because handover is triggered earlier by taking into
consideration factors such as the load on the wireless links and
the speed of the UE. Our work is able to reduce downtime
regardless of when the handover is triggered. As a result, in
most cases, the two method groups mentioned above,
prediction-based and data-transfer, can be combined with some
modifications to achieve better performance results.

2.3. Contribution

The pre-copy migration method is used in most of the

studies mentioned. Most of the included work described in this
section still results in significant downtime, delay, and
migration time. The issue with the previously mentioned
studies is that they continue to use pre-copy as the primary
transfer method [6, 9-17, 21] while reducing transfer size
during hand-off [6, 12-17]. Consider an AR application in a
head-mounted device. This app requires a latency of less than
17 ms to operate appropriately [20], whereas the above-
mentioned research latencies and even solely downtimes
outputs exceed 17 ms. As a result of such a long delay, the
user's QoE may suffer, and there is a demand for a new
approach to smoother migration that replaces the pre-copy
migration technique.

MiGrror [1] and Hybrid-MiGrror are two solutions to the
problem stated above; it is intended for applications that
require low latency or real-time response. Using MiGrror and
Hybrid-MiGrror rather than pre-copy and hybrid-copy can
result in less downtime, delay, and migration time. The pre-
copy technique is based on rounds, but memory contents may
change more than once during a round, and the source must
wait for a certain amount of time before sending dirty pages
from the source to the destination. As a result, the source may
send dirty pages at a low rate until the hand-off triggers. To
improve the efficiency of future IoT and 5G applications, a
new design is required that synchronizes more frequent
memory differences from the source to destination during
migration, reducing the transfer size during hand-off and, thus,
downtime and delay. In the remainder of this paper, we will
present our approach as a complement to current research, i.e.
prediction-based methods and other techniques, since it can be
used instead of pre-copy, resulting in less downtime and delays
than pre-copy.

3. MiGrror and Hybrid-MiGrror: mirroring service
on fog/edge migration

Arshin Rezazadeh et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 18 (2023) 39-48

4

This section describes the MiGrror and Hybrid-MiGrror
migration methods, which are based on VM/container
mirroring (a combination of the terms migration and mirror).
Mirroring is used in our technique to synchronize the source
and destination VM/containers more rapidly during hand-off.

3.1. Description of Pre-Copy

This subsection presents the pre-copy method. With pre-

copy, a node is selected for migration. A VM/container is
initialized on the target node. This is followed by transferring
the memory state to the target node even as the VM/container
executes on the source node. This transfer is round 1. For
round i, where i > 1, a page is transmitted if it has been written
to (dirtied). The rounds typically end based on a predefined
number. At this point, the VM/container on the source node is
terminated, and devices using it are now expected to use the
VM/container on the target node. It is critically important to
minimize the downtime when the VM/container stops running.
During this time, the VM/container stops running, and the
service/data are inaccessible. Since downtime contributes to
performance loss, this should be kept as low as possible, if not
zero. We define downtime as follows:

tdowntime = ttransfer + tresume (1)

where ttransfer is the time required to transfer the last dirty
memory of the VM/container, which is calculated as follows:

ttransfer = Amount of the last dirty memory (bits) / second (2)

This is defined as the time necessary to disconnect from
the current AP (the AP of the source edge node) and connect to
the next AP (AP of the destination edge node). We
define tresume as the time needed to resume a VM/container at
the destination based on the received data after hand-off.
Since ttransfer has the largest impact on downtime and migration
time when compared to other stated parameters [22], we
focused on ttransfer to reduce downtime.

Fig. 1. The distinction between MiGrror and Pre-Copy methods.

Fig. 2. Workflow of MiGrror.

3.2. Description of MiGrror

Figure 1 depicts the distinction between the MiGrror and
pre-copy approaches. Assume a UE is moving from one node
to another. As illustrated in Figure 1, pre-copy transmits dirty
memory at the end of a round representing a predefined
amount of time. With MiGrror, the goal is to reduce the
amount of data that must be transferred during downtime in
order to achieve higher performance; therefore, we focused on
reducing ttransfer. The distinction between the two methods is
that MiGrror, as shown at the bottom of Figure 1, uses events
to synchronize (sync) the source and destination as events
occur, rather than waiting for the end of a round as pre-copy
does. Each memory change at the source causes an event to be
generated, indicating that the source and destination must be
synced. MiGrror does not need to wait for a period of time to
elapse. Instead, MiGrror allows the possibility of multiple
synchronizations of the source and destination during the
period of time that corresponds to the pre-copy's round in order
to mirror the current VM/container available at the destination.
These n MiGrror sync events and m rounds of pre-copy are
depicted in Figure 1. In most cases, n is expected to be larger
than m since MiGrror syncs as soon as a memory change
occurs and sends memory differences as soon as they become
available. A small amount of dirty memory remains when
hand-off is triggered. After the hand-off trigger, this data is the
last memory difference that the source sends to the destination
for synchronization. This is less memory than the last round in
pre-copy since other memory differences have already been
transmitted. As a result, ttransfer is reduced in MiGrror when
compared to pre-copy. Consequently, as shown in Figure 1,
downtime is reduced compared to pre-copy. The diagram's
right-most section represents the resumption time required to
restart the VM/container at the destination. The remainder of
this section will discuss MiGrror.

Figure 2 shows the design details of our entire workflow.
The source edge node is the node that is currently providing
services to end-user applications. After these steps are
completed, the destination will provide the migrated service.

3.3. The Hybrid-MiGrror Migration Method

We intend to reduce the amount of data sent after hand-

off since the destination will need to remotely read the data
from the source, increasing the delay. The hybrid-copy method
has a significant disadvantage due to the remote read, which
increases the end-to-end latency. Therefore, if we synchronize
the source and destination faster in the pre-hand-off phase of
hybrid migration by replacing the pre-copy with the MiGrror,
we can reduce data to transfer in the post-hand-off phase. As a
result, we use MiGrror for fast synchronization of the source
and target during the pre-hand-off phase. Thus, a mirror of the
source’s VM/container is ready at the destination throughout
the migration process. While the device is still connected to the
source during the pre-hand-off phase, the destination is ready
for the UE to hand off and connect to the target when it enters
the destination’s range during the post-hand-off phase.

3.3.1. General Overview of the Migration Procedure
The Hybrid-MiGrror approach is divided into three

phases, as shown in Figure 3: pre-hand-off, hand-off, and post-
hand-off. We will first briefly explain these phases, followed
by a more in-depth discussion in the rest of this section.

3.3.1.1 Pre-hand-off Phase
In the first phase, the source sends the current

VM/container’s memory and runtime states to the destination.
Afterwards, each memory modification causes an event to

be generated in the source edge node. The source re-transmits

Arshin Rezazadeh et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 18 (2023) 39-48

5

modified memory pages (dirty pages) to the destination. These
events may occur several times prior to the hand-off being
triggered. As a result, this process is repeated while the
VM/container is running at the source.

3.3.1.2 Hand-off Phase
During the hand-off phase, the VM/container is stopped at

the source node and copies the minimum required memory and
state to the destination. The VM/container is then reloaded at
the destination.

Fig. 3. Hybrid-MiGrror Major Migration Procedures.

3.3.1.3 Post-hand-off Phase
The VM/container is now running at the destination.

However, some data at the source was not copied since it was
dirtied during the latest copy event and hand-off. This data
should be transferred to the destination node proactively by the
source node. Furthermore, if the VM/container requires data
that has not yet been transferred from the source, a page fault is
generated in order to access the required page.

3.3.2. The Hybrid MiGrror, Step-by-Step
Hybrid MiGrror begins with the pre-hand-off phase,

which is comprised of five steps:
S1: Transfer the Base Image
When a UE approaches the source, the source edge node

or cloud sends the base image to the next prospective edge
node, the target (Figure 3, first step).

S2: Transfer the Pre-Dump Memory
The source edge node synchronizes (syncs) a memory

snapshot to the destination before receiving the migration
request (Figure 3, step 2). To decrease the size of the
transmitted memory image during hand-off, this technique first
checkpoints the source VM/container and then dumps (stores
memory content) a snapshot of VM/container memory in step
S2 without disrupting the VM/container service at the source
edge node.

S3: Migration Request and Checkpoint
After receiving the migration request from the cloud/edge

node, the source edge node captures a memory snapshot to
synchronize in the following steps to the target (Figure 3, step
3). The source node monitors changes in memory events and

the hand-off signal event. When a memory change event
occurs, the VM/container on the source edge node performs a
checkpoint to capture a memory snapshot. The dirty memory is
then identified by comparing the latest snapshot with the
previous one for memory deltas.

S4: Transfer Memory Delta
The memory delta is then transferred from the source to

the target edge node and reassembled (Figure 3, step 4). This
technique transmits memory deltas from the source edge node
to the destination in order to provide synchronous mirroring
without interfering with the VM/container service at the source
as the source sends a copy to the destination. It may sync to
one or more nodes, depending on the policy.

S5: Apply Memory Delta
When a memory delta arrives at its destination, an event is

generated to apply the received memory delta into the
VM/container's memory (Figure 3, step 5). The VM/container
is now restored at the target with the most current source
changes.

Since the source and destination are synchronized,
a mirror of the source's VM/container continues to run at the
target as a result of steps S1 through S5 in the pre-hand-off
phase. Furthermore, depending on the needs of the application,
mirroring may begin prior to the migration request.

Hand-off phase: The second phase starts after the edge-
cloud control mechanism initiates the hand-off. This phase
consists of four steps, which are as follows:

S6: Stop VM/container
The source edge node stops the VM/container to prevent

further memory and state modification.
S7: Transfer Minimal Memory and States
At this point, only the most recent minimum memory and

runtime states required at the destination to reload the
VM/container in the next steps should be transferred from the
source to the destination. This action reduces the amount of
data transferred during hand-off and, as a result, downtime to a
bare minimum.

S8: Hand-off
The destination now contains all the required data. This

data was obtained as a result of stages S1 through S7
execution. The control is now passed to the next edge node
(target).

S9: Reload the VM/container
The target edge node reloads the VM/container with the

most recent updates obtained in step S7. Steps S8 and S9 can
be completed simultaneously.

Steps S6 through S9 are completed during the downtime
period, as indicated in Figure 3. During this period, the UE is
unable to use its services from the source or destination.
Therefore, this time must be kept as short as possible.

The last phase, the post-hand-off, consists of three steps.
The VM/container executing at the destination can start
running at this point, but it may still have data at another edge
node (source) that needs to be transferred since some data is
not transferred during downtime.

S10: Clean-Up and Failure Recovery
The current VM/container is removed, leaving the source

edge node memory clean. The aim is to wait a certain amount
of time before removing the VM/container from the source.
The waiting period has the advantage of serving as a backup if
the connection to the next node fails or if the UE goes back.

S11: Service Running on the Target
After reloading the VM/container at step S9, the

VM/container can run at the destination. The target edge node
will now service the UE. Steps S10 and S11 could be
completed simultaneously to save time because they will be
performed in separate nodes.

Arshin Rezazadeh et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 18 (2023) 39-48

6

Step S12, as depicted in Figure 3, is divided into two
subordinate steps, S12.1 and S12.2, which complete their tasks
concurrently.

S12.1: Transfer the Remaining Pages
Despite employing the MiGrror concept in the first phase,

which causes less data to remain at the source than live
migration approaches that have not yet been transmitted, the
source proactively transmits the remaining migrated
VM/container data to the destination. This step avoids multiple
fault pages at the destination, which causes significant delays
since the target must read the faulty pages remotely from the
source.

S12.2: Transfer Faulted Pages
The remaining data is delivered proactively by the source;

however, the destination VM/container may require data that
has not yet been transferred. As a result, the target issues a
page fault to the source in order to access the required part of
the VM/container's memory.

Our motivation for employing this strategy is to provide
up-to-date data and services to the destination node for the
incoming UE and its applications as soon as possible. As a
result of combining the two principles, the delay of the Hybrid-
MiGrror approach would be kept to a minimum level as the
result of these actions: (i) Using the MiGrror concept prior to
hand-off and (ii) transferring the least amount of data feasible
during the hand-off phase. Since less data remains at the source
during the post-hand-off phase to transfer, the Hybrid-MiGrror
causes fewer delays than live migration techniques, resulting in
page faults and lengthy delays. This contributes to keeping the
delay to a minimum for the real-time and near-real-time
applications mentioned in the introduction. Consequently, the
migration process could be faster and smoother than if only
live migration methods were used.

In the final phase, the target edge node will proceed to
step S1 to prepare for a possible future migration.

Fig. 4-A, 4-B, and 4-C. A smart city scenario. A: top, B:
middle, C: bottom. (Image location: Nathan Phillips Square,

Toronto, ON Canada, from maps.google.ca. Red car from
ferrari.com, both accessed Dec. 2020).

3.4. A Smart City Scenario
Assume a road on which a mobile UE is traversing. The

mobile UE could run applications such as video conferencing,
VR, or an autonomous vehicle. As shown in Figure 4-A,B, and
C, a UE will go out of the node i range and enter the node j
range. In this figure, node i is the source node, and node j is the
destination.

We can see a model of mobility, edge nodes, migration,
and hand-off in Figure 4-A,B, and C. As the figure shows, the
end-user moves from point A to C while keeping the
connection alive for apps and their services. Figure 4-A shows
the user located at point A; the migration starts here. Mirroring
starts in the first phase of Hybrid-MiGrror when the end-user
is in the range of node II. Therefore, a live copy of the source
node's data resides at the destination and is ready to be used.

As the end-user device moves forward, it reaches point B
presented in Figure 4-B. The hand-off is triggered when the
UE is at point B. It passes the connection from the current edge
node (node i) to the new one (node j). At this point, application
data should have finished transferring from edge node i to j,
allowing apps to continue to provide services when the end-
user hands-off and reaches point C, as shown in Figure 4-C. As
soon as the hand-off is completed in the third phase of the
Hybrid-MiGrror, the destination actively fetches the remaining
VM/container's data from the source.

When the user reaches point C, the previous node has
already finished the VM/container migration (source node i).
Thus, apps receive their service from the new edge node
(destination node j). Each time a user goes from one point to
another, this process happens. Since data is synchronized
swiftly from the source to the destination, the applications'
response time at points B and C will take minimum delay
regarding migration interruptions. Our proposed technique also
helps apps handle their services while the end-user crosses
from one edge node range to another. This performance has a
cost, which might be losing some of the network bandwidth
during synchronization.

4. Results and Discussions

This section covers the simulation setup and presents
insights obtained from the proposed method's simulation
results.

4.1. Simulation Setup

The simulations in this section are run using MobFogSim

[27], extended to deliver results. We also make use of UEs'
real-time movement patterns. These patterns are embedded in
MobFogSim by using the Simulation for Urban Mobility
(SUMO) [28] and Luxembourg SUMO Traffic (LuST) [29].
The LuST is a dataset that analyzed vehicles in Luxembourg
for 24 hours in 2015, covering an area of 156 km2 and 932 km
of road. Our simulation used this dataset to determine the
vehicle's location, speed, timing, and movement direction.

This study evaluated the performance of our proposed
techniques using a virtual machine running on an Ubuntu
18.04.5 LTS with a 2.2 GHz quad-core CPU, 64 GBs of
storage, and 32 GBs of RAM. We assumed a mobile edge
computing infrastructure with 2 Mega Bits Per Second (Mbps)
bandwidth for each UE and 100 Mbps bandwidth for each AP.
Other features, such as a processing limit of 300 MIPS, can
also be used to describe UE configuration. A million

Arshin Rezazadeh et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 18 (2023) 39-48

7

Instructions Per Second (MIPS) is a unit of measurement for
computing power.

We made different assumptions regarding the input values
as part of the simulation environment. We chose a square 10 ×
10 km region with 144 edge nodes evenly distributed around
the area as the environment. Each edge node is linked to a
single access point with a signal range of 1000 meters. When
the user approaches the migration point, which is configured as
40 meters from the coverage border of the connected access
point, the migration procedure begins (source node). Among
the potential edge nodes present in the user's route, our
migration strategy selects the candidate edge node with the
shortest distance (Euclidean distance) between the user and the
access point. The stated dataset determines the user speed, and
the network bandwidth between edge nodes is set to 1000
Mbps with a latency of 1 ms. These values are summarized in
Table 1 and Table 2. We ran 50 simulations with identical
setups and randomly selected users from the LuST dataset in
each simulation run. Therefore, we have the same bandwidth
and latency between network edges, but there may be different
users with different speeds and directions in each run. The
average of the 50 simulation runs for each method is then used
in the results. The simulation ends once the user has finished
the migration steps.

Table 1. Configuration of various devices
Device Type Downlink Bandwidth Uplink Bandwidth
Mobile-Device (UE) 2 Mbps 2 Mbps
Access Point 100 Mbps 100 Mbps

Table 2. Input parameters and values assumed in experiments
Parameter Value
Access point range (radius) 1000 m
Number of edge nodes 12×12 (144)
Density of edge nodes per access points 1:1
Migration strategy Shortest Distance
Migration point Static (40 m)
User's speed Variable, based on the dataset
Network Bandwidth between edge nodes 1000 Mbps
Network Latency between edge nodes 1 ms

4.2. Performance Characteristics

The techniques are evaluated using five metrics which are

described below.

4.2.1. Average Delay
The average latency is defined as the average delay

between mobile user equipment running an application and the
edge node running the corresponding VM/container. The
definition of delay does not include packet loss in this paper as
they never arrived at the destination, and we cannot measure
their delay. A lower value means that users must wait less time
to acquire data from the migrated service hosted on the
destination edge node, and as a result, the performance of their
running applications improves.

4.2.2. Downtime
Downtime is the time it takes to relocate a paused virtual

machine or container from one edge node to another and restart
it. The VM/container stops functioning during this time, and
the services and data associated with it are no longer accessible
to the user.

4.2.3. Average Migration Time
The average migration time is the average time it takes to

prepare, complete multiple transfers, and restart the
VM/container at the destination edge node. Migration is

completed when the VM/container resumes at the target edge
node for the final time with all the required data.

4.2.4. Network Usage
Network usage refers to the amount of data exchanged

between the source and destination nodes for the duration of
the migration, from when migration initiates until the
migration is completed.

4.2.5. Packet Loss
Packet loss during downtime refers to the number of

packets that user equipment needs to send to or receive from an
edge node but is unable to do so due to a lack of connectivity
between the UE and the edge node. This measure represents a
pause in service delivery.

4.3. Simulation Results

The pre-copy, MiGrror, Hybrid-Copy and Hybrid-

MiGrror simulation results are compared in terms of metrics
described in the previous subsection. Notably, in our
experiments with hybrid migrations, we employed a post-copy
via active pushing since it produces less delay and migration
time than other types of post-copy [30].

Fig. 5. Average Delay.

Figure 5 depicts the average delay. The average delay
does not account for lost packets and only evaluates packets
that reach their destination. As shown in the figure, MiGrror
has lower average latency when compared to the pre-copy
method. Since we use MiGrror in the first phase rather than
pre-copy, we expected a lower average delay in our proposed
hybrid method. Figure 5 illustrates that Hybrid-MiGrror has
more than a 10% lower average delay than hybrid-copy. As a
result, delay-sensitive apps can run more smoothly, resulting in
a better user experience. Based on these findings, it is
reasonable to conclude that applications using Hybrid-MiGrror
will have less waiting time before accessing the migrated
service. This performance contributes to the smooth running of
latency-sensitive applications while maintaining high
performance in the edge environment. This latency should be
acceptable for most applications, especially for 5G applications
requiring a minimal delay, generally less than 15ms end-to-end
latency [31].

Arshin Rezazadeh et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 18 (2023) 39-48

8

Fig. 6. Average Downtime.

Another factor that we take into consideration is
downtime. The downtime associated with the pre-copy
migration is the longest, lasting more than 10ms, as shown in
Figure 6. The downtime for the MiGrror migration is 50% less
than that for the pre-copy migration. Both hybrid migration
techniques have roughly the same amount of downtime, which
is less than the downtime for pre-copy and MiGrror
procedures, around 3ms. Hybrid versions have less downtime
since they do not need to wait for all the remaining memory
and state to be transferred from the source to the destination in
order to resume the VM/container at the target, as explained in
section 3.3.2.

Fig. 7. Average Migration Time.

Figure 7 represents the average migration time for each
technique. MiGrror and pre-copy migration techniques require
less migration time than hybrid methods since all data is
delivered before and during hand-off. However, both hybrid
approaches require slightly more migration time than the other
two methods, albeit only by about 5% since both methods use
the post-copy strategy in their third phase. Furthermore,
Hybrid-MiGrror takes less time to migrate than hybrid-copy
since it uses MiGrror in the first phase and has less data to
transfer at the source when the UE hands off to the destination.
As a result, less data is required to be sent after hand-off than
with the hybrid-copy method.

Fig. 8. Network Usage.

The amount of data sent for migration is shown in Figure
8. Since all techniques transfer memory pages multiple times
before handing them off, their network bandwidth

consumption is considerable. MiGrror uses more bandwidth
than pre-copy as it syncs the source and destination more
frequently than pre-copy. The network consumption of the
Hybrid-MiGrror is greater than that of the hybrid-copy, as
shown in the figure. This is due to the deployment of MiGrror
in the first step of the proposed method.

Furthermore, the amount of data transferred by pre-copy
and hybrid-copy methods is roughly the same. Similarly, as
illustrated in Figure 8, MiGrror and Hybrid-MiGrror have
almost the same data transmission. They sent the most data
because they sent more memory deltas than the other two
migration methods; however, they used only 5% more
bandwidth. This increased bandwidth usage is because
MiGrror and Hybrid-MiGrror sync more frequently during
migration than pre-copy and hybrid-copy. Sync events data
transfer is low. Even though there are a high number of sync
events, the small volume produced by a sync event results in
the amount of data transferred during migration rising by 5%.
Moreover, Hybrid-MiGrror synchronizes using local network
bandwidth rather than the remote traffic that applications
currently use to communicate with cloud servers.

The data transmission volume may be an issue when
using the proposed methodology since a less bandwidth-
intensive technique is preferable. 5G networks, on the other
hand, have more than ten times the bandwidth of 4G networks,
ranging from 1 to 10 Gbps [32]. Edge nodes using our
migration methodology may sync with each other more
frequently than previous approaches, consuming more
bandwidth in order to provide reasonable downtime for future
highly delay-sensitive applications requiring a low-latency
response. It is still dependent on the application's requirements
and use-cases. An app may require ultra-low latency or be
bandwidth constrained. Different criteria influence the use of
the stated migration techniques, which should be considered
when selecting a migration approach.

Fig. 9. Packet Loss.

Figure 9 shows that the pre-copy method has the highest
packet loss during downtime since it causes more downtime
than other methods; it affects packet loss. At the same time, the
MiGrror has a packet loss of slightly more than 1%. Both
hybrid techniques have the lowest packet loss during
downtime, around 0.6 percent. This result was expected since
they had the shortest downtime of the evaluated techniques,
indicating another advantage of hybrid migration methods.

4.4. Discussions

Although MiGrror significantly reduces the delay

compared to pre-copy, Hybrid-MiGrror will reduce the delay
even further. The major distinction between the four migration
methods is that the Hybrid-MiGrror reduces delay with
negligible impact on other parameters. Therefore, Hybrid-
MiGrror can offer services with low delay and downtime for
real-time applications despite a slight increase in migration
time and network usage. The reason that the Hybrid-MiGrror

Arshin Rezazadeh et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 18 (2023) 39-48

9

network usage is slightly higher than the hybrid-copy is that
despite more frequent syncs, the data transfer amount in each
sync event is insignificant. This is because doing more
frequent syncs reduces the volume of data transferred in each
sync event.

5. Conclusion

This study investigated the significance of VM/container
migration in mobile edge computing. Migration may consider
the edge node's geographical location with respect to the user,
the user's direction and speed, as well as the network
characteristics of both the user and the edge node. Four distinct
migration mechanisms were depicted and simulated. We
account for the user's movement and wireless connection in the
simulation. Our research discovered that Hybrid-MiGrror
performs well when supporting MEC applications with mobile
users, especially when the real-time response is critical. Even
though MiGrror can serve the majority of latency-critical
applications, when it comes to applications requiring a real-
time response, Hybrid-MiGrror performs better by reducing
delay and downtime. Delay-insensitive applications may use
the pre-copy or hybrid-copy method when the delay is not
critical since, despite reducing delay and downtime, MiGrror
and Hybrid-MiGrror use higher network bandwidth.

Future research should define and enhance various
migration mechanisms in the fog/edge computing environment
for various scenarios/use-cases. It would be worthwhile to
consider trade-offs in various scenarios. In order to provide a
higher quality of service to applications, different methods may
be required in different situations; for example, Hybrid-
MiGrror has a lower delay and a longer migration time than
MiGrror.

A Hybrid-MiGrror extension can be used in stateless
migration. Because this container does not need to store states,
it can replicate by cloning or mirroring from the source node or
cloud to the prospective destination node/nodes without
requiring migration. However, some data may still be linked to
containers, as containers require this data in order to retain the
user's data.

Furthermore, combining Hybrid-MiGrror with existing
machine learning (ML) and non-ML approaches would also
contribute to a promising method for minimizing delay and
downtime. Synchronizing from a source to multiple nodes
should be beneficial when the source is uncertain of the
following potential node to migrate to or when the application
wants cooperation with more than one node to improve
performance.

Acknowledgments
This work is partially funded by the Natural Sciences and

Engineering Research Council of Canada.

References
1. Rezazadeh, A., D. Abednezhad, and H. Lutfiyya, MiGrror:

Mitigating Downtime in Mobile Edge Computing, An
Extension to Live Migration. Procedia Computer Science,
2022. 203: p. 41-50.

2. Habibi, P., et al., Fog Computing: A Comprehensive
Architectural Survey. IEEE access, 2020. 8: p. 69105-69133.

3. Debauche, O., et al., Towards Landslides Early Warning
System With Fog - Edge Computing And Artificial
Intelligence. Journal of Ubiquitous Systems and Pervasive
Networks, 2021. 15: p. 11-17.

4. Abdelaziza, J., M. Adda, and H. McHeick, An Architectural
Model for Fog Computing. Journal of Ubiquitous Systems and
Pervasive Networks, 2018. 10: p. 21-25.

5. Bonomi, F., et al., Fog computing and its role in the internet of
things, in Proceedings of the first edition of the MCC
workshop on Mobile cloud computing. 2012, Association for
Computing Machinery: Helsinki, Finland. p. 13–16.

6. Ma, L., et al., Efficient Live Migration of Edge Services
Leveraging Container Layered Storage. IEEE Transactions on
Mobile Computing, 2019. 18(9): p. 2020-2033.

7. Chiang, M. and T. Zhang, Fog and IoT: An Overview of
Research Opportunities. IEEE Internet of Things Journal,
2016. 3(6): p. 854-864.

8. Martinez, I., A.S. Hafid, and A. Jarray, Design, Resource
Management and Evaluation of Fog Computing Systems: A
Survey. IEEE Internet of Things Journal, 2020: p. 2494-2516.

9. Yang, R., H. He, and W. Zhang, Multitier Service Migration
Framework Based on Mobility Prediction in Mobile Edge
Computing. Wireless Communications and Mobile
Computing, 2021. 2021: p. 1-13.

10. Majeed, A.A., et al. Modelling Fog Offloading Performance. in
2020 IEEE 4th International Conference on Fog and Edge
Computing (ICFEC). 2020.

11. Ngo, M.V., et al. Coordinated Container Migration and Base
Station Handover in Mobile Edge Computing. in GLOBECOM
2020 - 2020 IEEE Global Communications Conference. 2020.

12. Addad, R.A., et al., Fast Service Migration in 5G Trends and
Scenarios. IEEE Network, 2020. 34(2): p. 92-98.

13. Zhou, Z., et al. Hardware-assisted Service Live Migration in
Resource-limited Edge Computing Systems. in 2020 57th
ACM/IEEE Design Automation Conference (DAC). 2020.

14. Machen, A., et al., Live Service Migration in Mobile Edge
Clouds. IEEE Wireless Communications, 2018. 25(1): p. 140-
147.

15. Ma, L., S. Yi, and Q. Li, Efficient service handoff across edge
servers via docker container migration, in Proceedings of the
Second ACM/IEEE Symposium on Edge Computing. 2017,
Association for Computing Machinery: San Jose, California. p.
Article 11.

16. Farris, I., et al., Providing ultra-short latency to user-centric
5G applications at the mobile network edge. Transactions on
Emerging Telecommunications Technologies, 2018. 29(4): p. 1-
14.

17. Puliafito, C., et al., Design and evaluation of a fog platform
supporting device mobility through container migration.
Pervasive and Mobile Computing, 2021. 74: p. 101415.

18. Souza Junior, P., D. Miorandi, and G. Pierre. Stateful
Container Migration in Geo-Distributed Environments. in
CloudCom 2020 - 12th IEEE International Conference on
Cloud Computing Technology and Science. 2020. Bangkok,
Thailand: IEEE.

19. Bonanni, M., F. Chiti, and R. Fantacci, Mobile Mist Computing
for the Internet of Vehicles. Internet Technology Letters,
2020. 3(6): p. 1-6.

20. Salman, S.M., et al. Fog Computing for Augmented Reality:
Trends, Challenges and Opportunities. in 2020 IEEE
International Conference on Fog Computing (ICFC). 2020.

21. Pomalo, M., et al. Service Migration in Multi-domain Cellular
Networks based on Machine Learning Approaches. in 2020 7th
International Conference on Internet of Things: Systems,
Management and Security (IOTSMS). 2020.

22. Puliafito, C., et al., Container Migration in the Fog: A
Performance Evaluation. Sensors, 2019. 19(7): p. 1-22.

Arshin Rezazadeh et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 18 (2023) 39-48

10

23. Martins, R.d.J., et al., Virtual Network Functions Migration
Cost: from Identification to Prediction. Computer Networks,
2020. 181: p. 1-16.

24. Conforti, L., et al. Extending the QUIC Protocol to Support
Live Container Migration at the Edge. in 2021 IEEE 22nd
International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM). 2021.

25. Deshpande, U., et al. Agile Live Migration of Virtual
Machines. in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 2016.

26. Zhang, F., et al., A Survey on Virtual Machine Migration:
Challenges, Techniques, and Open Issues. IEEE
Communications Surveys & Tutorials, 2018. 20(2): p. 1206-
1243.

27. Puliafito, C., et al., MobFogSim: Simulation of mobility and
migration for fog computing. Simulation Modelling Practice
and Theory, 2020. 101: p. 1-25.

28. Behrisch, M., et al., SUMO – Simulation of Urban MObility:
An Overview, in SIMUL 2011, S. Aida Omerovic, et al.,
Editors. 2011, ThinkMind: Barcelona.

29. Codeca, L., R. Frank, and T. Engel. Luxembourg SUMO Traffic
(LuST) Scenario: 24 hours of mobility for vehicular
networking research. in 2015 IEEE Vehicular Networking
Conference (VNC). 2015.

30. Hu, L., et al., HMDC: Live Virtual Machine Migration Based
on Hybrid Memory Copy and Delta Compression. Applied
Mathematics & Information Sciences, 2013. 7(2L): p. 639-646.

31. Panwar, S., Breaking the millisecond barrier: Robots and self-
driving cars will need completely reengineered networks.
IEEE Spectrum, 2020. 57(11): p. 44-49.

32. Agiwal, M., A. Roy, and N. Saxena, Next Generation 5G
Wireless Networks: A Comprehensive Survey. IEEE
Communications Surveys & Tutorials, 2016. 18(3): p. 1617-
1655.

