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Abstract 
Towards realising autonomous UAVs, this paper investigates one of the fundamental autonomous flying research 
problems, i.e., the ability of a vehicle to control its flying behaviour autonomously, without reliance on external 
infrastructure like Instrument Landing Systems or GPS.  In this paper we experiment with a physical UAV prototype 
with embedded intelligent control capabilities, utilising a Long Short Term Memory (LSTM) neural network, in order to 
learn lift-off control sequences using self-training. The initial results are promising and show potential for embedding 
LSTMs in the control systems of autonomous UAVs. 
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1. Introduction 

1.1 Autonomous systems 
 
An autonomous system makes the best use of available 
resources to achieve the specified mission. [1]. Autonomous 
control systems are designed to perform well under significant 
uncertainties in the system and environment for extended 
periods of time, while at the same time be able to compensate 
for system failures without external intervention [2]. 
Autonomous control systems therefore, go beyond basic 
automation: Instead of performing specific tasks repeatedly and 
without variation, autonomous control systems adjust in real 
time to changing environments or inputs and optimize towards 
multiple goals. Intelligent control systems help equipment and 
machinery adapt in real time to changing inputs or 
environmental conditions, unlike more static and rigid control 
systems. 
During the past decades, autonomous systems have attracted 
considerable attention due to their capability of performing 
various operations with minimal or without human supervision. 
Because of their salient features of high autonomy and 
mobility, autonomous systems are vital for numerous civilian 
and military applications in marine, ground, aeronautics, and 
aerospace.   

 
 

1.2 Autonomous aerial vehicles 
 
Autonomous drones are unmanned aerial vehicles (UAVs) that 
operate without the need for a human pilot (local or remote). 
These vehicles carry out tasks and make decisions 
autonomously, regarding taking off landing, and mission 
performance. Autonomous industrial drones are typically used 
for monitoring industrial and critical infrastructure sites 
conduct routine maintenance, oversee safe and secure 
operations, ensure business continuity after severe weather and 
other incidents, and maintain compliance. 
 

Autonomous UAVs differ fundamentally from other vehicles 
that operate different degrees of automation. For instance, 
many UAVs are able to land automatically; however to do so 
they rely on external infrastructure like Instrument Landing 
System (ILS), GPS or visual landmarks. In contrast, 
autonomous UAVs can achieve that by relying only on on-
board systems. 
Autonomous UAVs range from small urban air vehicles to 
large commercial aircraft, and typically utilise computer vision, 
radar (LiDAR)  and machine learning technologies in order to 
sense their surrounding environment and calculate how best to 
navigate within it.  
 
1.3 Limitations of current control systems 
 
Current commercial controller systems have several 
limitations. Traditional control approaches such as   Model 
Predictive Controller (MPCs), Proportional Integral 
Derivatives (PIDs), and other Advanced Process Controllers 
(APCs), typically operate on a set of deterministic instructions 
and in predictable environments [3]. Such controllers must be 
programmatically retuned for different scenarios, conditions, 
environments or goals. Additionally, current commercial 
controllers are only capable of focusing on one optimization 
goal at a time–for example, maximizing throughput or 
minimizing energy usage.  

 
1.4 Intelligent controllers 
 
Autonomous control systems are designed to perform well 
under significant uncertainties in the system and environment 
for extended periods of time, and they must be able to 
compensate for system failures without external intervention. 
However, with the ever-increasing mission complexity of 
autonomous systems, the existing control algorithms become 
inadequate for high control efficiency and enhanced control 
performance, especially under diverse and challenging 
environmental conditions, and requirements for cooperative 
operations with multiple autonomous systems. In addition, 
autonomous system controllers must comply with system 
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safety, performance optimization, fault detection and human-
machine interaction constraints and goals. 
 
1.5 Application of neural networks to intelligent control 
 
Different intelligent control of autonomous systems approaches 
has been based on technologies including neural networks, 
fuzzy logic systems, learning and adaptive control, model 
predictive control, and so on.  
In the past few decades, neural networks have gained in 
popularity in control and in particular in optimal control [3]. 
We can distinguish two main approaches for training neural 
networks in the context of control: supervised and 
reinforcement learning (RL) [4]. 
In RL, the system follows a trial and error method by 
interacting with its environment. For instance, in [5], RL is 
used to derive a controller for the steering angle of an 
autonomous vehicle from LiDAR measurements. 
 
1.5.1 Long Short Term Memory neural networks 

 
LSTM [6] are deep neural network architectures that belong to 
the family of recurrent neural networks (RNN). In RNNs, and 
in contrast to feedforward networks architectures, the neuron 
connections form cyclical graphs that correspond to temporal 
paths. RNNs however, suffer from what is known as the 
problems of vanishing gradient (the network stops learning), 
and exploding gradient (the network never converges to the 
point of minimum cost) [6].  LSTM however, eliminate both 
the above problems and hence are more suitable for the 
processing of complex sequential data. LSTM layers consist of 
cells that store historical state information, and of gates that 
control the flow of information through these cells. There are 
three types of gates in LSTMs: forget, update, and output. The 
forget gate decides what information should be kept. 
Information from the previous hidden state and information 
from the current input is passed through a sigmoid function that 
outputs a number between 0 and 1, where value closer to 1 
cause the retaining of the data, while, values closer to 0 cause 
the discarding of the data. The update gate chooses which new 
data will be stored in the cell. The gate passes the previous 
hidden state and current input into a sigmoid function that 
transforms the values in the range 0 to 1. 0 means not 
important, and 1 means important. First, a sigmoid layer 
chooses which values will be changed and then a tanh layer 
creates a vector of new candidate values that could be added to 
the state.  Finally, the output gate computes the output of the 
LSTM cell as a combination of the cell state and the new data, 
to decide what the next hidden state should be. First, the 
previous hidden state and the current input are passed through a 
sigmoid function. Then the newly modified cell state is passed 
to the tanh function. The tanh output is multiplied with the 
sigmoid output to create the new hidden state. The new cell 
state and the new hidden is then carried over to the next time 
step. The hidden state is used for predictions. 
Because of their inherent capabilities in processing long 
sequences of inter-dependent data, LSTM networks have found 
applications in robotics [7], traffic prediction [8], time series 
prediction such as stock and share prices [9] and others. As a 
type of recurrent neural network (RNN), the long short-term 
memory (LSTM) neural network has been proven to be very 
effective in solving the time series problems, and thus has been 
widely used in pedestrian trajectory prediction, intersection 
vehicle destination prediction, and highway vehicle trajectory 
prediction.  
 

1.6 Main research challenges addressed in this paper 
 
Ongoing research aims to increase the control efficiency, 
robustness, and self-adaptation of autonomous systems to 
unexpected internal and external environmental changes, to 
improve the operational intelligence of single or multiple 
autonomous systems; and to explore novel control strategies 
and mission planning.  
Under the above research agenda, this paper researches the 
feasibility of implementing autonomous capability in UAVs by 
means of low cost, non-proprietary and off-the shelf hardware 
and software components, that support onboard machine 
learning capability and do not require external computing or 
networking infrastructure. Thus, we propose that an 
autonomous UAV must possess on board (machine) learning 
capabilities that help it to implement intelligent, self learning 
and adaptive control.  At the same time, the machine learning 
mechanisms implemented must be efficient as the computing 
capacity available onboard is usually limited. Hardware 
limitations are an impediment to use, for example, high 
performance model predictive controllers (MPCs) whose  
optimization process is computationally expensive [3]. 
In this paper we describe the experimental results from   
training a physical UAV autonomous prototype that we have 
developed and which we have trained to carry out initially 
simple tasks such as lift-off, with assistance from an LSTM 
neural network.  Thus, the learning strategy we employed is 
similar to that of Reinforcement Learning techniques (RL) of 
learning through trial and error. The autonomous UAV follows 
an initial control strategy for lift off which it repeats several 
times, in order to learn from successful lift off control 
sequences with the use of a LSTM neural network. 

 
1.7 Structure of the paper 

 
The paper is organised as follows. The next section presents 
the high level architecture of the autonomous UAV controller 
and then the more detailed hardware and software 
architectures, including that of the onboard LSTM neural 
network. Section 3 describes the experiments with the physical 
prototype of the autonomous UAV and discussed its findings. 
Section 4 discusses related work, the contributions of this 
research as well as plans for future research. 

2. Architecture of the autonomous UAV controller 

2.1 Control Model 
 

 
Fig. 1. Control Architecture.  
 
 
The system architecture of the autonomous UAV is shown in 
Figure 1.  The autonomous controller receives the state of the 
system from the acceleration sensor and then evaluates a set of 
constraints in order to decide whether to proceed with the next 
step of the control sequence or to abort. If the constraints are 
satisfied, the controller receives the next predicted control 
command from the LSTM neural network, using the current 
control sequence as input, and applies the control command to 
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environments that no analytical optimal control model exists. 
The control architecture is therefore formally defined in terms  
of: 
 
--A control sequence {un} , n=0,1,… and  u Є U, the domain of 
control commands. 
--A control prediction function L : {un} →ûn+1 that predicts the 
next step ûn+1 in  a control sequence {un}. 
--A logical (Boolean) expression Λ that implements system 
constraints (safety, physical performance limitations, etc.). 
 
The control algorithm shown below as pseudo-code, begins a 
take-off sequence by selecting at random an initial thrust 
(power level) and proceeds with building a control sequence 
(thrust adjustments) based on the thrust levels predicted by the 
LSTM network for the current take-off sequence. The take-off 
sequence continues until the vehicle has taken off, or a 
constraint condition is no longer satisfied (i.e. the vehicle has 
crashed, a time-out has occurred, etc.). 
 
Set initial control parameter u0 to a value 
from the permitted power level range 
Let {u0} be the initial control sequence  
n ← 0 
While eval(Λ)==true: 
{ 
 ûn+1  ←  L({un}) 
 {un+1} ← {un} + ûn+1    
 n ← n + 1 
} 

3 Implementation and experiments 
 
3.1 Physical Architecture 

3.1.1 Hardware Architecture 
A physical prototype has been constructed in order to validate 
the feasibility of the LSTM supported autonomous control 
model described in the previous section. More specifically, a 
Raspberry Pi 3B single board computer with a HAT (Hardware 
on Top) Motorshield  DC Motor controller, has been used as 
the platform for implementing the autonomous controller. 
Table 1 shows the specification of the Raspberry Pi 3B single 
board computer. A micro quadcopter was connected to the 
motor controller. An acceleration sensor has been attached to 
the quadcopter and connected to the single board computer via 
I2C interface. Both the LSTM neural network and the 
autonomous controller software  run on the single board 
computer.  Therefore, the system is totally autonomous 
regarding its sensing and computing (predicting, controlling) 
functions. 
 
Table 1.  Technical specifications of the single board computer 
SoC Broadcom BCM2837 
CPU   4× ARM Cortex-A53, 1.2GHz 
GPU  Broadcom VideoCore IV 
RAM  1GB LPDDR2 (900 MHz) 

3.1.2 Software Architecture 
The Raspberry PI Single Board computer runs the Raspbian 
GNU/Linux 10 (‘buster’) Linux version as well as Python 
3.7.3.  To implement the LSTM neural network we utilised 
Google TensorFlow 2.2 machine learning library and the 
KERAS high level ML Python library from which we imported 
the KERAS Sequential, LSTM and Dense modules. 

 
 
3.2 Programming the autonomous controller 
 
In this physical prototype, the autonomous controller learns 
how to make the UAV take off (‘lift-off’) with assistance from 
the SLTM neural network. More specifically, the control goal 
is to lift the UAV off the ground within a certain amount of 
time. The lift off condition is verified through the readings of 
the acceleration sensor, i.e.  when the sensor records a +- 0.2g 
vertical acceleration, The +-0.2g tolerance is due to the need to 
accommodate for sensor errors on the z axis (vertical 
acceleration).  
In general, autonomous vehicles need to be controlled within 
an envelope of physical constraints that are determined both by 
the design parameters of the UAV and by their operating 
status. For instance, the autonomous UAV will need to take off 
using only the necessary power to minimise use of its fuel 
/battery reserves. 
Although a take off control sequence can be programmed into 
the controller, in practice each take off session may require 
adjustment to the control parameters due to environmental and 
capacity characteristics  (e.g. battery level, winds affecting the 
vessel, the operating status of the motors, propellers etc.). Thus 
a precise control sequence cannot be modelled and has to be 
learned through trial and error. 
We begin by programming the controller with  a simple control 
strategy (such as from an initial power setting increase throttle 
gradually by 5% until lift off is achieved), and execute it over a 
number of successful and failed control sequences. Then we 
train the LSTM network using the successful control 
sequences, aiming to improve over the performance of the 
simple control strategy.   
We set therefore an envelope of operating constraints regarding 
the lift off parameters as follows: 

• Lift off must be completed in the shortest possible 
time 

• At each step of lift-off power  between 60 and 100% 
of the motors maximum power must be applied. 

• Lift-off must be accomplished within 3 seconds or 
otherwise aborted. 

We executed 353 lift-off sequences out of which 229 were 
successful and 74 unsuccessful (i.e. because they failed  one of  
the above constraints). 
We split the successful lift-off sequences into 10 datasets of 
lengths 2,4,6,8,10,12,14,16,18, and 20.  The reason for doing 
so, is that we want to predict the correct motor power to apply 
at any given control step given the entire previous control 
sequence.  The assumption is that the entire control sequence 
conveys more information about the state of vehicle and 
environment compared to that of the previous control action 
only.  This is also the reason why an LSTM rather than a feed 
forward neural network was used. 
Each of the 10 datasets was used to train a separate model in 
the LSTM neural network. Thus, a dataset of length n is used to 
train the neural network to predict the nth command in a 
control sequence. Each model was trained for 200 epochs. 
Total time to train all models was ~835 seconds 
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Fig. 2. Autonomous UAV prototype 
 
The architecture of the LSTM neural network developed is 
shown in Figure 3. 
 

 
Fig. 3. Architecture of the LSTM neural network. 

 
Table 2 shows examples of training data. The sequences of 
numbers indicate the power applied to the motors at each 
control step until lift off was obtained. 

3.3.2 Neural network validation 
After training of the neural network was completed, the system 
was tested with the execution of a number of lift off  
sequences, Each lift-off sequence begins with a random control 
command (i.e. throttle level), from the permitted range that was 
set to 60%-100% of total motor power.  We compared the 
performance of the neural network assisted control sequences 
to that of the training datasets (which was created without 
assistance from the LSTM neural network),  to decide whether 
the neural network assisted autonomous control improves the 

performance of the system in a number of metrics, as discussed 
in section 3.4. 

3.3 LSTM configuration and training 
3.3.1 Setting the Hyperparameters 
According to the bibliography [10], the learning rate followed 
by the network size of the LSTM are its most crucial 
hyperparameters. Table 3 shows the key hyperparameters used 
in the training of the neural network. 
 
 Table 3 LSTM training parameters 
LSTM units: 50 
Input sequence length:  2,4,6,8,10,12,14,16,18,20 
Epochs:                      200 
Activation type:        Rectified Linear Unit (ReLU) 
Batch size: 50 
Loss function: Mean Squared Error (MSE) 
Optimizer:  Adam 
 
 
 
Table 2 examples of training data. 
Control 
sequence 
length 

Control sequence (% of motor full power) 

6 96.0, 97.79388, 97.79388, 96.82182, 96.82182, 98.4                                                                                                                                                                                                                
5 62.0, 61.426575, 61.426575, 62.692154, 62.692154 
1 100.00 

 
Table 2 shows sample successful (lift achieved) control 
sequences used as training data. For instance, in the first row of 
the table, lift off was achieved after 6 steps, while in the last 
row it was achieved after one step. Although it is intuitive to 
expect that lift off is easier to achieve on full throttle (100 % of 
motor power), as explained previously due to system and 
environment conditions this may not always possible, i.e. a full 
throttle control sequence will not always achieve lift off. 
 

3.4  Analysis of the experiment results 

3.4.1 Performance of the LSTM assisted UAV controller 
Regarding the performance of the LSTM neural network, with 
the set of hyperparameters described in section 3.3.1, total 
training time (carried out entirely on the single board 
computer) for the 10 LSTM models was approximately 835 
seconds. This indicates that while not prohibitively expensive, 
training must be carefully scheduled in an operating 
autonomous UAV so that it does not compete for resources 
with other critical mission tasks. 
 
Table 4. Performance comparison. 
UAV with LSTM #Successful lift-offs: 156 (67.8% of total) 

#Unsuccessful lift-offs: 74 (32.2% of total) 
Average length of control sequence: 9.8 
 

UAV without LSTM #Successful lift-offs: 229 (64.8% of total) 
#Unsuccessful lift-offs: 124 (35.2% of total) 
Average length of control sequence: 9.05 
 

  

Input layer 
length 2

Hidden layer (50 
LSTM units

Output layer 
(1 neuron)

Input layer 
length 4

…

Input layer 
length 20

Hidden layer (50 
LSTM units

Output layer 
(1 neuron)

Hidden layer (50 
LSTM units

Output layer 
(1 neuron)

… …
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Fig. 4 UAV lift-off  power usage. 
 
An autonomous UAV will typically have limited energy 
resources (battery fuel,…) which it will need to manage 
efficiently. Figure 4 shows the comparative throttle/power 
usage (which equates to energy consumption) for the 
autonomous and ‘standard’(without use of neural network) 
control methods.  The values on the y axis show total energy 
consumption for the different control sequences. For instance, 
at 70% start throttle, the LSTM based controller uses 
approximately 3 times less energy for lift-off compared to the 
non-LSTM control. 
From the diagram of Figure 4, therefore, it can be seen that 
with the exception of full throttle start, the neural network 
assisted sequences are more optimal regarding energy 
efficiency.  
 

4. Conclusion 
 
4.1 Related Work 
 

Autonomous vehicles, whether land, air or sea based represents 
currently an intensive research area. Without reliance on active 
guidance by humans, autonomous vehicles depend on 
intelligent control algorithms. Due to the difficulty in 
navigating in unknown dynamic environments, many 
autonomous vehicle control algorithms employ neural network 
techniques for safe navigation, i.e. routing, collision avoidance 
and so on.  For instance, the approach described in [11] 
predicts future trajectories of surrounding vehicles to ensure 
safe and reasonable interaction between intelligent vehicles and 
other types of vehicles. The approach utilises a long short-term 
memory (LSTM) neural network driven by driving knowledge.  
Similarly, in [12] the authors present a first step towards 
consistent trajectory prediction with the use of a  LSTM neural 
network, that  is capable of accurately predicting future 
longitudinal and lateral trajectories for vehicles on highway. 

 
4.2 Main research contributions of this paper 
 

The main research contributions of this paper are as follows: 
• It contributes to the ongoing research in autonomous 

(aerial) vehicles. 
• It proposes a novel way of autonomous/onboard 

learning of autonomous UAVs without reliance on 
external infrastructure such as Cloud systems. 
training is carried out on the single board computer 
rather than offloaded to a faster machine. 

• It validates the proposed idea with a physical 
prototype (not a simulated one) of an autonomous 
UAV with onboard self-learning capabilities. 

• It provides initial evidence that LSTM neural 
networks can be used for intelligent/self-learning 
flight controllers of autonomous UAVs. 

 
4.3 Future research 
 
Autonomous controllers can relieve humans from time 
consuming mundane tasks, thus increasing efficiency, with 
enhanced reliability (since they monitor the health of the 
system and possibly self-heal), and self-adaptive performance 
[13], while protecting the system from  internal faults, and with 
consistent performance in accomplishing complex tasks. 
Autonomous UAVs for instance can survey large and 
inhospitable areas and by using onboard sensors, can detect 
dangerous incidents such as pollution, fires and so on. All these 
without any guidance from human operators [14]. 
Although autonomous systems are already used for specific 
missions such as space exploration, we argue that for their 
usage to be expanded, their capabilities need to be 
implemented in lower cost configurations, using off the shelf 
components, in order to reduce costs. Additionally, 
autonomous, software-based capabilities must be architected as 
frameworks of micro-services ensuring interoperability 
between the autonomous UAV subsystems [15] 
In future research, we plan to train the autonomous UAV 
prototype to learn more advanced maneuvers such as, hovering 
over a specific ground point and so on.  This will require more 
complex control routines as the rotors of the UAV will need to 
be controlled individually. 
More complex control sequences, however are likely to require 
larger neural networks containing more input and output 
parameters (‘features’). The performance of the onboard neural 
network must therefore be optimised [16] We will investigate, 
therefore,  efficient training methods regarding the size of 
training data, the architecture of the LSTM network, batch 
sizes and other hyperparameters. In particular, to improve the 
model's accuracy, all model hyperparameters should be tuned 
carefully. We will also experiment with different batch sizes of 
training data which although do not affect the accuracy of the 
prediction can impact the training performance.  It is important 
that the autonomous vehicle carefully balances the allocation of 
its computing resources between training and performance of 
other mission tasks. Neural network training could therefore be 
carried out periodically, and at times when there is spare 
computing capacity in the autonomous UAV. 
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