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Abstract

Networks are pervasive in computer science and in real world applications. It is often useful to leverage distinctive node
features to regroup such data in clusters, by making use of a single representative node per cluster. Such contracted graphs
can help identify features of the original networks that were not visible before. As an example, we can identify contiguous
nodes having the same discrete property in a social network. Contracting a graph allows a more scalable analysis of the
interactions and structure of the network nodes. This paper delves into the problem of contracting possibly large colored
networks into smaller and more easily manageable representatives. It also describes a simple but effective algorithm to
perform this task. Extended performance plots are given for a range of graphs and results are detailed and discussed with
the aim of providing useful use cases and application scenarios for the approach.

Keywords: Colored Networks, Graph Contraction, Greedy Algorithm, Graph Analysis

1. Introduction
Networks are pervasive in computer science and in real world
applications [1]. Collecting, navigating, and extracting insights
from such data and from the underlying graph structure is
often challenging [2]. A widespread technique is to organize
data in clusters by means of some characteristics and extract a
representative element from each cluster [3]. The graph made
of these representative objects is usually much smaller than the
original one while it preserves many useful characteristics.

A common way to describe clusters is to provide a categorical
classification of the vertices by means of some coloring function,
i.e. a mapping of the vertices into some fixed representation.
Coloring functions can be generated as the outcome of clustering
techniques like, e.g., the renown k-means. Oftentimes, however,
this kind of information is natural with the graph – like the
language spoken by users in a Social Network – or can be injected
as expert-knowledge – as the additional information a geologist
can provide on a specific terrain map. Indeed, also continuous
variables, like e.g. air pressure in weather forecasting maps, can
be sketched as discrete if sampled in fixed ranges.

Networks can be quite large in nature, thus having an efficient
way to contract them provides a useful approach to ease analysis
and detection of issues. In this sense, stakeholders can be
identified as the analysts that need to extract information, e.g. for
urban planning, where city maps are contracted on neighborhoods
sharing the same thematic area. Other stakeholders are those ones
analyzing networks representing Unspent Transaction Output
or account-based cryptocurrencies that might search, e.g., for
accumulation nodes or highly connected small clusters of vertices.

In the above scenarios, the vertices sharing the same
categorical information can be merged via (vertex-) contraction,
i.e. a novel vertex is generated in place of the previous ones,
preserving the adjacency of the substituted vertices. Application
of contraction generates novel graphs that share a number of
properties with the original graph (e.g. connectivity), but whose
size is usually much smaller (in both vertices and edges).

Graph contraction problems are an interesting set of problems
on their own being a class of NP-Hard problems, e.g. determining
whether one can obtain a tree by contracting at most k edges from
a given connected graph to obtain a tree (i.e. Tree Contraction) is
a possible example [4].
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1.1. Paper Contribution

In this paper, we discuss and apply the algorithm for graph color
contraction first presented in [5]. The algorithm is applied in
different scenarios and results are shown and discussed. The
algorithm is serial albeit designed to be naturally parallelizable,
taking care of the most important concepts of parallel computing
system design ([6] offers a good review on parallel graph
algorithms). For this reason, instead of leveraging global visit
algorithms that are known to be hard to parallelize, the algorithm
leverages local properties of the vertices. In particular, the
underlying data structure is optimized, yielding a computational
cost that, on the average case, is proportional to the number of
edges of the original graph (just like in a normal visit) while
avoiding global assumptions on the vertices (that usually force
parallel versions to use barriers).

This paper improves and extends over previously published
paper [5] in that it:

• updates and extends the related work section;
• better introduces the contraction problem and the algorithmic

solution by providing novel examples and a more in-depth
mathematical formalization;

• offers a more detailed description of the graph contraction
algorithm by means of a structured representation of the
process and a greedy local definition of the problem;

• extends experimental data range including larger graphs (up
to 50000 nodes) offering a richer and more comprehensive
assessment of the proposed algorithm;

• applies the algorithm to a Social Network graph and studies
the outcome.

The rest of this paper is organized as follows: Section 2.
provides some information on related work. A brief introduction
to graph theory technicalities is given in Section 3., while
Section 4. provides a clearer description of the graph contraction
algorithm introduced in [5]. Section 5. shows and discusses
novel results obtained applying our algorithm to benchmark
Erdös-Rényi graphs (Section 5.1.) and to a real-world graph of
Facebook pages (Section 5.2.). Finally, Section 6. summarizes
the contributions and discusses future developments.

2. Related Work
Graph contraction is useful in many graph-related problems
since it tackles the problem of reducing input data into a more
manageable size. Solutions to many well-known graph problems
have been formulated by means of procedural reduction of
the original graph; it is the case, e.g., of finding the shortest
path [7, 8], of computing chromatic polynomials [9], evaluating
DP coloring [10] or evaluating the number of spanning trees [11]
of a simple graph.

Parallel computing, where data must be mapped to processing
units via some not a priori known logic, is an interesting use case
for graph contraction as well. Ponnusamy et al. [12] introduced an
iterative parallel graph contraction algorithm to pairwise contract
vertices, hence reducing the problem size before mapping data.
Meyerhenke et al. apply a similar idea in [13], extending it in a
multi-leveled way: namely, the graph is iteratively reduced while
applying label propagation to obtain graphs of manageable size.
An interesting review on these topics can be found in [14].

In both colored and colorless versions, contraction provides
many insights about graph connectivity-related features (see
e.g. [15] for a fast connectivity algorithm based on graph
contraction). Studying graphs and color clusters connectivity is
useful in a wide variety of applications [16], including when
the graphs underlie beneath more complex processes, e.g. the
connectivity of the basis of Markov process reveals important
information about its Ergodicity (see e.g. [17] for an Ergodic
colored graph-based Markov process).

Despite its usefulness in a wide variety of applications, to the
best of our knowledge, there is not a rich research effort on color-
based graph contraction. Nevertheless, some research work can
be found with applications in distinct areas.

D’Autilia and Spada [18] used color-based graph contraction
to retrieve the relationship between pedestrian, vehicular and
hybrid areas in city maps to compare different mobility plans;
in this context, the authors enforced colors on street junction-
based graphs leveraging on Space Syntax approach [19] where
a city is analyzed by means of its different areas. Onofri and
Corbetta [20] described a procedural classification method of
cascaded localizers derived by color contraction over museums
graph representations where colors are injected by expert
knowledge as architectural and conceptual constraints. Crypto-
currency offers some interesting use cases as well – transactions
and users graphs, whose analysis can be complex [21, 22] can
benefit from a feature-preserving size reduction of the original
network. Finally, as previously mentioned, other applications
include complex networks such as Social Network and web
graphs, with some novel result shown and discussed below.

Nevertheless, to the best of our knowledge, an efficient parallel
algorithm for colored graph contraction is not available at present.
Some early work by Miller and Reif [23] and by Philips [24],
is limited to –colorless– graphs. More recent work on label
propagation by Meyerhenke et al. [25] aims at building color
clusters instead of contracting them. This motivates our work,
whose final goal is to provide a contraction algorithm effectively
capable of leveraging parallel computing.

3. Some Definitions
In the following, we will use Greek letters for mappings,
Gothic letters for procedures, typewriter font for algorithm-related
variables, capital Latin letters for sets, and lower-case Latin letters
for objects. The same sets of letters will be used to identify
the same sets of objects throughout the paper, e.g. u, v, w are
always adopted to identify vertices. We adopt big-O and big-Ω
function class notation for denoting asymptotic bounds, namely
f(x) ∈ O(g(x)) [resp. Ω(g(x))] if exists c ∈ R such that
f(x) < c · g(x) [resp. f(x) > c · g(x)], for all x > x0, for
some x0 <∞.

We recall from basics of graph theory the definition of a
(simple, undirected) graph G = (V,E) as a set of vertices V
equipped with a set of edges E insisting on V , i.e. E ⊆ V × V ,
where edges are not oriented, i.e. (u, v) ∈ E ⇐⇒ (v, u) ∈ E.
Two vertices u, v ∈ V are adjacent – denoted by u ∼G v – if
there exists an edge e ∈ E between them. The neighbourhood
N(v) of a vertex v ∈ V is defined as the set of vertices adjacent
to v, i.e. NG(v) = {u ∈ V | u ∼G v}. A (simple) path
Γu,v between two vertices u, v is a sequence of distinct vertices
w0, w1, . . . w`, where w0 = u, w` = v and, for 0 ≤ i < `,
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Fig. 1. Example Contraction of the graph G (on the left) to the graph G′ (on the right). The map β is represented via dashed lines. Hence,
the elements of V ′ (i.e. the codomain of β) are identified by nodes with self loops, where the novel indices are also reported.

we have (wi, wi+1) ∈ E. Two nodes are connected if a path
can be constructed between them while a graph is connected if
each couple of nodes is connected. In the following, we drop the
subscripts when they can be inferred from the context.

Vertices or/and edges of a graph can be, in general, equipped
with any sort of data. In the rest of the paper we restrict these
kinds of data to categorical information – data sampled from a
numerable finite set – over vertices, often called as (vertex) colors.
More formally, given a set of colorsC ( N, |C| <∞, a (vertex-)
coloring is a map γ : V → C that associates to every vertex a
color. We also denote with Nγ(v) the set of nodes adjacent to v
that shares the same color with it, i.e. Nγ(v) = {w ∈ N(v) |
γ(w) = γ(v)}.

Given two adjacent vertices u ∼ v, the contraction of u
and v is a procedure m(u, v) ≡ m(v, u) that deletes u and
v from V and creates a novel blended vertex w such that
N(w) = N(u)∪N(v)1. A γ-contraction – more formally a color
contraction of G on the color set C provided by the assignment
γ – is a procedure that applies the contraction m to each couple
of vertices u ∼ v such that γ(u) = γ(v), building a novel vertex
w = m(u, v) such that γ(u) = γ(w) = γ(v). Do note that
the graph-wise γ-contraction is well-defined even if the vertices
contraction is defined vertex-pairwise since vertices contraction
is commutative, namely m(u,m(v, w)) = m(m(u, v), w); in
this sense, the procedure m is a variadic function, i.e. it can
be applied to any number of arguments as m(u0, . . . , uk) =
m(. . . (m(u0, u1) . . . ), uk).

4. The Graph Contraction Algorithm Explained
In the following, we review the color-contraction algorithm
presented in [5]; the algorithm computes the contracted graph

1 More in general, we can distinguish the contraction of u in v from the
contraction of v in u, depending on how additional data are generated
for w. However, this topic is out of the scope of this paper since we only
consider contractions where vertex colors (our unique kind of categorical
data) are preserved rather than modified. Namely, we only adopt merging
procedures m where m(u, v) = w = m(v, u), and γ(w) is defined as
γ(u) = γ(v).

G′ = (V ′, E′), where n′ = |V ′| andm′ = |E′|, having as input
a graph G = (V,E), where n = |V | and m = |E|, and a color
mapping γ : V → C, where |C| = c. From a technical point of
view, the graph data structure is stored as follows:

V the vertex list is stored as an array V of vertex type; each
vertex is characterized by its index within the array itself,
sampled in [0, . . . , n − 1] (we will use v ∈ V to identify
mutually the vertex and its index).

Nv the degree of each vertex is stored as a look-up table in a
n-length array Nv.

E the edge list is stored as adjacency matrix E, i.e. a n-length
array of arrays of indices (of vertex); one Nv[v]-length
array per each vertex v ∈ V .

C the colors are stored as a look-up table in a n-length array C.

The algorithm builds upon the variadic form of m, capturing
and contracting the local color clusters, i.e. sets of the formS ⊂ V
such that for each couple u, v ∈ S, there exists a single-color path
Γu,v , namely γ(w) = γ(u) for all w ∈ Γu,v . It is important to
notice that the definition of a color cluster is in some sense weak,
in fact, it could happen that if S = S1∪S2 is a color cluster, then
S1 and S2 are identified as two different color clusters instead
(see Figure 3). The loose definition of color cluster we provide is
however mandatory in order to guarantee the local property that
the algorithm makes use of.

In order to work locally, it is in fact mandatory to define a vertex
total ordering; to keep the on-machine representation compact,
we use the one enforced by the vertex indexing in [0, . . . , n− 1].
Algorithmically, local color clusters are identified by building a
mapping β : V → V from each vertex u to the endpoint of the
max-decreasing color path rooted in u, i.e. the path that, at each
step, chooses the minimum amongst the same-color neighbors;
hence, we can build such path by performing a greedy search
of local minima. More formally, β(u) = v if Γu,v = (w0 =
u,w1, . . . , w` = v) is the path built according to the property

wi+1 = min
(
Nγ(wi)

)
, ∀i > 0 (1)

with stopping conditions being eitherNγ(wi) = ∅ orwi+1 > wi.
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Graph color contraction procedure
contractionMapping evaluation
becomes pre-evaluation
becomes greedy local initialisation

forall (v ∈ V )

becomes[v]← min
(
{v} ∪Nγ(v)

)
becomes update to end of Γ,

for (i = 0; i < n; i++)
becomes[i]← becomes[becomes[i]]

cSize evaluation
forall (v ∈ V )
cSize[becomes[v]]++

revBecomes evaluation
revBecomes pre-evaluation

let I be a n-length zero-initialised array storing
the first available position in revBecomes[v]

forall (v ∈ V )
w ← becomes[v]
revBecomes[w][I[w]++]← v

revBecomes compacting
i← 0
foreach (v ∈ V )
revBecomes[i++]← revBecomes[v]

becomes compacting
forall (v′ ∈ V ′)

for (i = 0; i < cSize[v′]; i++)
becomes[revBecomes[v′][i]] = v′

contractionMapping application
Edges contraction

Edges destination update
forall (v ∈ V )

for (i = 0; i < Nv[v]; i++)
E[v][i]← becomes[E[v][i]]

Colour cluster edge merge
let a be a n′-length bit-array repr. edges endpoints
for (v′ ∈ V ′)

reinitialise a to false
for (i = 0; i < cSize[v′]; i++)
w ← E[revBecomes[v′][i]]
for (j = 0; j < Nv[w]; j++)
a[E[w][j]]← true

E[v′]← convert a in adjacency list
Vertices contraction

Re-build V according revBecomes

Fig. 2. Description of the contraction algorithm as a function tree;
each leaf summarizes a different phase by means of a simplified
pseudocode.

From the implementation point of view, the mapping β is
stored as an array-based look-up table becomes, ready to guide
the application of the contraction methodologies. In particular
the codomain of β represents V ′ itself, so, since in a general
case n′ � n, it is important to compact V ′ ⊂ V on the set
[0, . . . , n′ − 1]. The inverse mapping β−1 is an important tool
as well since it speeds-up the following contraction phase2. The

2 It is in particular useful in a parallel environment to schedule the vertex
assignment to the different computing units.

1 2 5 4 3 0

01

Contraction

0 1

0

Contraction

0

Greedy initialisation of becomes look-up table
β mapping obtained through “update to the end of Γ” phase

Fig. 3. Example contraction that requires two iterations of the
algorithm since two non-maximal color clusters are identified
during the first “contractionMapping evaluation” phase.

mappingβ−1 is stored as a look-up table revBecomes similarly
to becomes. However injective mapping β is not surjective,
hencerevBecomesmust be stored as an′-length array of arrays;
the dimension of these arrays can be a-priori evaluated in linear
time from the sole becomes by constructing a look-up table
cSize.

The set of becomes, revBecomes, and cSize are
semantically grouped together in a contractionMapping
object, the main building block of the algorithm. Building
it correctly is in fact the hard part of the work since, once
its structure has been defined, it can be trivially used to
perform m(revBecomes[v′]), actually providing the entire set
of vertices and edges to be contracted in a single contraction step.

Figure 1 depicts the contraction of a sample graph while
Figure 2 summarizes the procedure in the form of a function tree.

The computational time of the algorithm is upper bounded
by O(n′2 + m) as discussed in [5], however, as we pointed
out above, the greedy approach does not guarantee that the
color clusters detected are the optimal ones (see Figure 3 for an
example). Two possible solutions (possibly used in an adaptive
way) are (i) execute the complete algorithm more than once
until a convergence is reached or (ii) repeat the “becomes
pre-evaluation” phase multiple times, actually initializing it as

becomes[v]← min
(
becomes[w]

∣∣∣ w ∈ {v ∪ Eγ [v]}
)
. (2)

However (i) is upper bounded by log(n) iteration applied on a
graph that is progressively smaller – since the set of contractible
vertices is at least halved after each iteration – while (ii) can take up
to log(n) steps applied to the same sized-graph – it is the case, e.g.,
of a line graph. For these reasons, pathological graphs (like graphs
that asymptotically do not reduce n even when the (i) is applied)
may yield unsatisfactory execution times up toO(n2 logn). It is
the case, e.g., of a graph where n/2 vertices converge in a single
one in log(n) iteration, while the other nodes create a star graph
around it. Nevertheless, particular structures like those are rare
and can be spotted a priori by simple graph measures so that
different approaches can be employed. In random graphs, for
example, it is not unusual that the algorithm takes up to log(n)
iteration to stop, however, the sizes involved always sink fast,

4

Lombardi et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 17 (2022) 91-98



i
i

“output” — 2022/9/15 — 7:26 — page 5 — #5 i
i

i
i

i
i
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Fig. 4. Averages of contractions results over c-colored GER(n, p) wit c ∈ [1, 1500] and n ∈ [1500, 50000] (x- and y-axis). Left to right, plots
report the average results of (a) contracted vertices ratio n′/n, (b) time of execution, and (c) number of iterations of the algorithm. Top to
bottom the edge probability p is set to p−, p∗ and p+ respectively (do note that z-axis scales are different).

making the dimensions of n and m decrease by an order of two
or more magnitudes since the first iteration, actually making the
computational time of the upcoming phases negligible.

5. Discussion
The description of the algorithm in Figure 2 is quite high-level to
support implementations using any language of choice.

The results presented in this section are gathered from our
C implementation running over an AMD Ryzen 5 5600X 3.7
GHz 6/12 with 32GB DDR-4 3600 RAM. C language is one of
the fastest languages available that also guarantees fine-grained
memory management – a relevant mark of our algorithm: the
space complexity is in fact optimal, allowing contraction in-place
over the original graph with an O(n) overhead – namely the
negligible space of the n′-length bit array a and 3n pointers and
n integers (occupied by the contractionMapping).

5.1. Validating and Extending Previous Results

The novel campaign allowed us to validate the past results reported
in [5] and check whether we had captured or not the relevant
phenomena and behavior of the proposed algorithm.

In fact, leveraging more capable hardware, we managed to
enlarge the graph size. The novel experimental campaign here
presented considers a maximum graph size of n = 5 · 104 nodes
andm ∼ 1.3 ·108 edges, studied with colors ranging from c = 1
(benchmark) up to c = 15003.

Similarly to the previous campaign, we employed graphs
GER(n, p) generated by the Erdös-Rényi (E-R) model [26]. The
E-R model is a well-known procedure to generate random graphs
by providing as input the number of vertices n and the probability
p that u ∼ v holds for each couple of vertices u, v ∈ V .

The behavior of E-R graphs (for n→∞) at the varying of p
is a well studied topic [27] and, in particular, two sharp thresholds
are relevant for the graph structure: p1 = 1/n and p2 = log(n)/n.
In fact it holds that

3 The graph with the largestm is the one generated with n = 50000 and
c = 1500, where the probability for an edge to be present (see later) is
p = p+ = 0.1052. This yields, on average,m = p·n2/2 = 131496250.
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• if p < p1, then GER(n, p) have no connected components of
size larger than O(log(n)) with high probability

• if p = p1, then the largest component of GER(n, p) has size
O(n

2/3) with high probability
• if p > p1, then GER(n, p) has, with high probability, a

(unique) giant component of size Ω(n).
• if p < p2, thenGER(n, p) contains isolated vertices with high

probability.
• if p > p2, then GER(n, p) is disconnected with negligible

probability.

It is worthwhile to point out that values p ∈ [p1, p2] are the
most significant for what concerns our analysis since p ≥ p1
provide graphs that contracts on a small number of nodes n′ (i.e.
n′ � n) while p ≤ p2 generates graph with a non-trivial number
of connected components (n′ > 1)

For what concerns colors, vertex colorings are randomly
assigned too, where each vertex is given a color uniformly at
random from the color set. However, if each vertex has probability
1/c to be of a given color, then only n/c vertices are expected to
share the same color, hence we properly re-scaled the thresholds
on this value, obtaining the two new thresholds

p− =
c

n
and p+ =

log(n)− log(c)

n
· c (3)

respectively in place of p1 and p2. This is a natural way to
extend the E-R model to colors: the expectation of the result of
GER(n, p−) with an assignment of c uniformly random colors is
in fact to have c single-color sub-graphs of the formGER(n/c, p1)
randomly connected between them (analogous relation holds for
p+ and p2).

Averaged results in terms of (a) inverse ratio of contraction
n′/n, (b) computational execution time, and (c) number of
iterations before convergence are reported in Figure 4 for n ∈
[1500, 50000], c ∈ [1, 1500] and p ∈ {p−, p+, p∗ = p−+p+

2
}.

Do note that c > n makes little sense for the analysis since
the expected number of vertices per color would be less than
one (also p+ would be negative, hence generating disconnected
vertices only). This is the reason why we kept c and n running
over two quasi-disjoint consecutive ranges, being n = 1500 = c
the only intersection (yielding, as expected, 0 iterations on p+).

The thresholds in the E-R model are sharp when n → ∞,
hence it makes sense that the most interesting conditions are when
n/c � 1; when n/c ∼ 1, in fact, the graph hardly contracts,
actually causing little or no iterations. When n grows, contraction
is much more effective, actually leading to much fewer color
clusters (as can be seen in Figure 4(a)); this behavior is less
significant in the case p = p− since we expect to have a big
number of small connected components, compared to p = p+,
where we expect to have only a few of them – actually n′ ∼ c.
Following this behavior, Figure 4(b) shows that the more the graph
is connected (according to the choice of p), the less it takes to
contract (despite m being larger). Such a conclusion seems to be
counter-intuitive, however, it totally makes sense since the less the
graph is connected, (i) the higher it will ben′, causing each further
iteration to be more complex and (ii) the higher the chances the
local minima are not the global ones (Figure 3), hence requiring
more iterations to correctly contract, as can be seen in Figure 4(c).
In fact, having a larger number of iterations over larger amounts of
vertices renders the algorithm more computationally expensive.

5.2. A real-world use-case: Facebook

We have applied our algorithm to a real-world graph from the
SNAP data-sets [28]: the Facebook web-pages network GFB =
(VFB, EFB) collected in 2017 by [29].
VFB represents 22470 Facebook official pages organized in 4

categories (i.e. colors), namely: (i) politicians, (ii) governmental
organizations, (iii) television shows and (iv) companies. VFB

nodes are linked via 170823 undirected edges EFB representing
mutual likes between the pages. It is worth noticing that the
numbers n, m, and c are in line with the E-R graphs we have
used as benchmarks. In fact, considering an E-R graph with
n = 22470 and c = 4, the expected number of edges ranges
between m− = n2/2 · p− = n · c/2 = 44540 and m+ =
n2/2 · p+ = m− · (ln(n)− ln(c)) = 387996.

The contraction converges in four iterations (three effective
plus one to confirm the convergence), and the running time is
approximately 61ms on the test machine. The original graph and
the three contraction iterations are reported in Figure 5 (a)–(d),
where the graph is rendered using Wolfram Mathematica [30].

The intense computational effort lies in the first contraction
step that takes ∼ 95% of the total time, actually contracting
vertices with ratio ∼ 5 : 1 and edges with ratio ∼ 1 : 3.5.
Conversely, the second step is the one contracting more, with
a ratio of ∼ 1 : 10 and ∼ 1 : 35 for vertices and edges
respectively; despite this fact, it takes significantly less time than
the first step given that the size of the graph has already been
reduced. The third and last contraction step contracts the last few
local minima identified during the previous contraction, actually
reducing vertices and edges with a negligible ratio of ∼ 1 : 1.3
and ∼ 1 : 1.8 respectively.

By observing the contracted graph (Figure 5(d)) we can
identify one cluster per color but “Politician” pages having two
of them. “Company” pages first and “Television Show” pages
second, represent the main glue among the central clusters,
while “Politician” and “Governmental” pages are either part
of the central clusters or nearly-isolated vertices. Furthermore,
the “Politician” pages appear to be the only connection to
many isolated “Governmental” pages; a similar behavior can be
identified for a big number of nearly-isolated “Company” pages
that are connected to the “Television show” cluster only.

Overall, the above results show how useful network
contraction is in trying to evince meaningful characteristics and
behavior from large datasets. A field expert studying a possibly
very large network can benefit from the compact representation of
the structure under observation offered by the contracted graph.

6. Conclusions
In this paper we provided relevant details of an effective generic
graph contraction algorithm limited to colored graphs, presenting
an extended performance measurement campaign and providing
real-world applications of its implementation, which is presently
serial. Results are detailed and discussed, providing useful use-
cases and heterogeneous application scenarios.

We believe such results show the usefulness and feasibility of
colored graph contraction in visualizing and detecting issues and
features related to large colored networks that are pervasive in
today’s world.

Future work will provide and evaluate a parallel implementation
of the methodology, leveraging the formal definition of the
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Fig. 5. (a) The original page-page Facebook graph GFB with self loops elided; n = 22470,m = 170823. (b) The first contraction iteration
took 59ms, yielding n = 4441,m = 48178. (c) The second contraction iteration took 1ms, yielding n = 437,m = 1380. (d) The third and last
iteration took less than 1ms, yielding n = 334,m = 782.

problem here presented. Further practical scenarios and more
extended performance campaigns over benchmark networks will
also help assessing pros and cons of the proposed approach.
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