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Abstract

The integrated impact of computing techniques and resources with big-data processing transforms human lifestyles by
providing quality services ranging from healthcare to smart homes and effective interactions. However, many healthcare
systems fail to consider patient emergencies and cannot provide a customized resource service. Cognitive computing is
a requisite technology to create these intelligent systems based on artificial intelligence algorithms. This paper presents
technologies for personalized healthcare services through cognitive computing. This paper investigates cognitive computing
developments from discovering knowledge, cognitive science, and big-data analytics at the onset. Then, the system
architecture for a cognitive computing system is given. Furthermore, this paper presents the technologies for cognitive
computing healthcare improvement opportunities and their challenges. Finally, this paper discusses the representative
intelligent systems of cognitive computing, including medical, robotic, and cognitive-communication systems.
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1. Introduction
Cisco estimates that 500 billion machines will connect to the
internet by 2030. Every device comprises sensors to gather data,
interact with the environment, and communicate via IoT, the
network connecting the devices. Internet technologies are rapidly
advancing [1], and the new information communication technolo-
gies (ICTs) are converging with various application fields adding
new features to them continuously. These are the driving force
of the successive industrial revolutions through utilizing intelli-
gent machines, building connectivity between them, and enabling
them to collaborate with humans effectively [2].

Innovative integration of sensor machines with IoTs through
automation can yield systems that enhance human-machine
collaboration experiences.

Economic growth and climate changes have raised the morbi-
dity of chronic diseases in human society, so human health is under
threat [3]. The conventional healthcare systems are categorized
into three layers, i.e., the accumulation layer, the communica-
tion layer, and the analytics layer [4]. In the accumulation layer,
body area sensors gather the sensing data and transmit it to the

base station via intelligent ends or smartphones[5] [6]. Then, the
base station transmits it to the analytics layer (such as a cloud
computing data center ) via the internet, where the data is kept
and analyzed in the cloud computing data center using machine
learning algorithms. Eventually, the cognitive computing system
gets the users’ health status and makes the appropriate clinical
treatment actions [7]. Even though the healthcare system gives
benefits to patients, the following problems arise:

• Because of the multi-modal nature of the medical data, the
Conventional data mining and machine learning methods fail to
accurately uncover the hidden patterns in the data[7]. Therefore,
intelligent methods will help in extensive disease discovery for
the different varieties of data.

• Body sensors transmit user health data to the cloud platforms
for processing, thus increasing the communication latency and
failing to give timely medical analysis and services during
emergency periods [8] [9].

• The rigidity of network resource deployment can result in a
waste of resources [4].

Over the past few years, cognitive computing is receiving
much recognition in academia and industry with the pace of
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development in computer hardware and software technologies,
artificial intelligence (AI), and big data. Cognitive computing is
an interdisciplinary research field that applies techniques from
"psychology, signal processing, biology, mathematics, physics,
information theory and statistics" in attempting to develop "mach-
ines with the abilities of reasoning similar to the human brains"
[10]. Cognitive computing applications are emerging in the indu-
stry. For instance, the Waston System by IBM [11] reasons and
processes natural language by learning from documents. Conven-
tional computational intelligence techniques, which include
(robotic technology, emotional communication, and medical
cognition) utilize traditional intelligent data processing, analysis
and visualization, deep learning, pattern recognition, and gene-
ric algorithms for developing smart applications in healthcare [4]
[12]. Solving challenging problems in healthcare requires under-
standing situations or key patterns rather than simply processing,
interpreting, and classifying. Consequently, systems models that
can process data through understanding and solving problems like
the human brain need to be developed. This requires building arti-
ficial intelligence (AI) and computational intelligence models to
process the big data generated from physical-cyberspace systems
on matters of human healthcare. Medical Big data analytics [13]
entails mining the hidden patterns from the data and visualizing
resultant information using analytical methods to gain insights
from the results. Medical big data processing is a challenging
task in the form of presentation, storage, timely information retri-
eval, and cost efficiency in terms of access to healthcare provision.
Effective decision-making in healthcare has massive potential for
reducing the cost of care, improving the quality of care servi-
ces, and minimizing error. Current cognitive computing systems
in healthcare [13] are yet to reach human-like intelligence. This
work presents trends in developments of cognitive computing.
It gives further insights into developing intelligent systems that
will co-fuse humans and machines’ capabilities for richer human
experiences in the healthcare sector.

2. The Development of Cognitive Computing
In psychology, behaviorism [14] is a character trait assumed by
subjects based on cultural beliefs and practices. The trends of
behaviorism have been on a gradual decline since the mid of 20th
century. The fast development in information theory, linguistics,
and data science and the adoption and usage of emerging compu-
ter technologies has resulted in magnificent and mind-boggling
cognitive revolutions. Cognitive Science [10] is an emerging
interdisciplinary field that studies the transmission and handling
of information in humans’ brains. Psychologists and cognitive
scientists investigate human mental abilities by observing vari-
ous features, which include: emotion and reasoning, attention,
memory, perception, and language usage [15]. Chen et al. [10]
groups the cognitive process into two phases: i) discovery of the
physical phenomenon through perceptive sense organs such as
nose, eyes, skin, and ears as means of input information from
external environments. ii.) These inputs communicate to the brain
via nerves for action, analysis, storage, and learning. The proces-
sing of results is relayed to other body parts for stimuli controlled
by the nervous system. Hence a complete loop is established
for sensing the environment to the action taking, also referred
to as decision-making. Thus, a newborn baby recognizes the

world through constant communication with the external envi-
ronment from which information is acquired and processed in a
complete-loop manner. Meanwhile, the baby progressively esta-
blishes her or his cognitive system through these communications
and feedback from the environment.

The human cognitive system is very sophisticated, requiring
methods and tools from different disciplines to undertake in-depth
multi-dimensional [16] studies to understand it well. This implies
that cognitive science cuts across different subjects such as AI,
neuroscience, psychology, linguistics, and anthropology. Up to
date most research [10] [16] in cognitive computing show that
it has different capabilities which are interdisciplinary in nature.
Table 1 summarizes the capabilities of Cognitive Computing.

Fig. 1 depicts the developments in cognitive computing.
Cognitive computing and big-data analytics are divergent tech-
nologies acquired from data science. Big-Data emphasizes pro-
cessing the data characterized by "4V" features: variety, volume,
velocity, and value. [22]. Whereas the data processed in cogni-
tive computing might not automatically be big-data. Similar to
the human brain, limited memory does not affect information
cognition. The human brain is very efficient in image proces-
sing. Therefore, cognitive computing algorithms utilize cognitive
science theories, providing machines with capabilities to attain
some degree of human-like intelligence [23]. Human-like cogni-
tive computing aspires to facilitate machines in understanding
and recognizing the world from an objective human thinking per-
spective. Understanding the needs of humans necessitates strong
machine cognition through sensor computing [24]. Hence the col-
lective intelligence abilities of machines require improvements for
better decision-making. Embedding cognitive computing into the
Internet of Things (IoT) smart apps can aid humans with impor-
tant suggestions in decision making [25]. Further, the integration
of ICTs with cognitive sensors provides powerful networks [26].

3. Cognitive Computing System Architecture
Fig. 2 shows an architecture of the cognitive computing system.
With the technological, and infrastructural support such as the
internet of things (IoT), 5G networks, advances in machine lear-
ning, activities entailing human-machine interaction, computer
vision, and voice recognition systems will be deployable on a large
scale. Intelligent applications can be health supervision, smart far-
ming, intelligent cities, and cognitive healthcare. Each of these
applications will require unique system architectures. However,
machine learning frameworks can apply universally to various
cognitive computing architectures.

3.1. Internet of things and cognitive computing

From Fig. 2, cognitive computing depends on the information
gathered. The communication field focuses on transmission of
information using various networks e.g. 5G, while the computing
domain focuses on utilizing information. In cognitive computing
applications, data is supplied or generated via interactions from
environment. The internet of things(IoT) [27] gathers variety and
timely rich information of world objects creates a huge network
via the internet. It achieves interconnection between many sen-
sing devices, thus making co-fusion among the data and physical
world [28]. Currently, [29] data fusion techniques apply to IoT in
enabling digital platforms to monitor the patient’s movements and
the status during rehabilitation activities using remote supervision
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Table 1. Capabilities of Cognitive Computing

Feature Description (t) (t)

Interaction [17] Using the sensors, cognitive computing can gather information from its surrounding environment and respond just
like humans can hear, see, and talk

Learning [18] Based on the information gathered from the surrounding environment, cognitive computing systems update their states
continuously and thus respond to the environment accordingly

Reasoning [19] [11] The cognitive computing systems have the capability to make inferences based on the data gathered and the built-in
AI intelligence

Understanding [20] [21] Cognitive systems can be utilize to understand the human behavior, and illnesses

Fig. 1. The developments of cognitive computing

by doctors. The IoT first gets information about objects monitored
via perception technologies such as wireless sensors, RFID, and
satellite positioning WiFi. It then transmits and shares the infor-
mation efficiently to network devices. Eventually, IoT analyzes
and processes data utilizing intelligent computing techniques such
as data mining, machine learning, and cloud computing to ach-
ieve intelligent decision-making and control through the fusion
of information with physical systems. The IoT acquires perce-
ption and sharing of information. The extensive usage of IoT will
generate big data, giving crucial information sources for cognitive
computing.

3.2. Machine learning technologies for cognitive computing

Several frameworks and libraries [30] provide artificial intel-
ligence and advanced machine learning capabilities to imple-
ment deep learning. The following are popular deep learning
frameworks and libraries in literature.

3.2.1. TensorFlow

Tensorflow [31] is an advanced machine learning system that
works in heterogeneous environments and on large scales. Ten-
sorflow provides dataflow graphs that apply to computation
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Fig. 2. Cognitive System Architecture

operations and shared states. The nodes of dataflows map to diffe-
rent machines across clusters, including GPUs, multicore CPUs,
and Tensor processing units. This framework gives application
developers the flexibility to experiment with training algorithms.
TensorFlow is released under an open source license in 2015. The
API of TensorFlow includes Python and C++. TensorFlow sup-
ports image, speech, handwriting recognition, natural language
processing, and forecasting.

3.2.2. Caffe

Caffe [32] is a popular deep learning framework for the compu-
ter vision community. In 2014, It won an ImageNet Challenge.
The Caffe framework offers deep learning toolkits for model trai-
ning and deployment. [33] attains state-of-the-art remote sensing
scene classification results with the Caffe implementation frame-
work. Caffe is C++ based and can be compiled on heterogeneous
devices. Caffe supports Matlab, C++, and Python programming
interfaces. The Caffe framework has a vast user community that
contributes to the "Model Zoo" deep net repository." GoogleNet
and AlexNet are two standard user-made networks available to
the public.

3.2.3. Deeplearning4J

The Deeplearning4J [? ] framework has built-in GPU support, an
essential feature for the training process, and supports Hadoop’s
distributed YARN application framework. Deeplearning4J has a
rich set of deep network architecture support: Recurrent Neu-
ral Networks (RNN), RBM, Long Short-Term Memory (LTSM)
network, DBN, Convolutional Neural Networks (CNN), and

RNTN. Deeplearning4J further provides support for a vectoriza-
tion library known as Canova, and it is Java implemented which
is faster than Python. This framework provides natural language
processing, image recognition, and fraud detection capabilities.

3.2.4. Keras

Keras [30] library provides bindings to deep learning framew-
orks such as Tensorflow, Deeplearning4J, Theano, Torch, etc.
It enables experimentation with Python on CPUs and GPUs.
Keras follows critical principles in its implementation, inclu-
ding modularity, extensibility, and friendliness. Further, Keras
is open-source and has rich documentation.

4. Smart devices in Healthcare: Taxonomies and
Ontologies

The fundamental taxonomies in healthcare systems encompass
data organization (history, reminders, and alerts), data sharing,
data mining, and decision support. Innovative device features
can be enhanced by integrating digital patient health records into
intelligent devices. Four core areas of a healthcare system are
essential in enabling successful clinical decision support appli-
cations through cognitive computing. These areas are: Structured
clinical information (encompassing standards and structured pati-
ent data) Exchange of cross-platform information by devices Data
mining that interprets data into a meaningful information Deci-
sion support to help patients/clinicians make informed decisions
effectively and efficiently.
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Fig. 3. The Five key focus areas for effective and efficient smart-device apps in healthcare

4.1. Structured information for healthcare applications

Digital technologies in healthcare, including e-prescribing, ele-
ctronic medical records(EMRs), imaging, and the increased use
of intelligent devices to monitor health that generates big data,
potentially benefit researchers and medical practitioners when the
data is structured and standardized.

Clinical apps use structured and standardized data to enable
patients and clinicians to make informed healthcare decisions
through the provision of evidence. Three processes are core to
attain these benefits; EMRs value unlocking, innovative forms
that enable direct control of patients, and pervasive computing of
networked systems that facilitate efficient patient data access.

4.2. Digitalisation of clinical decision support

In the fourth industrial revolution era, digital technologies are
ubiquitous across institutions. Wearable devices, smartphones,
and tablets enable the collection of digital datasets, data mining,
and knowledge production. For instance, a smartphone care app
[34] replicates the paper-based healing of ulcer [35].

Future clinical decision support apps will utilize the existing
feature capabilities [36] of hardware and software of the ubiqui-
tous devices to integrate them with electronic patient healthcare
records.

4.3. Data mining and analytics

The low cost of smart devices, their high processing speeds,
and their capabilities for real-time metadata analytic [37] pro-
vide potential in the mHealth application adoption. Data mining
techniques can be applied to give insights to clinicians. Physi-
cians tablet-owning or computer-owning indicate that the tablet
computer is a useful educational utility and endorse integration of
the devices into clinical practice and medical education/decision-
making [38].

5. Application Environments
In the scope of emerging intelligent systems concerning humans’
cognitive abilities, this research outlines a list of human capabili-
ties proposed by Adams et al.[39]. The human cognitive capacities
include interactions, skills-building, reactions, memory, and com-
putations. Unlike Adams [39] perspective, this work presents
practical applications of intelligent systems from the literal works.

5.1. Medical Cognitive Systems

With environmental changes and economic developments in soci-
ety, there is a threat to human health due to increased chronic
diseases. Medical cognitive systems can apply in diagnosis aid
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for decision making with different forms of data for suitable acti-
ons. Correct data [7] play a vital diagnosis role in medical systems.
Misunderstanding or ignoring important medical information of
a patient can lead to serious long-term multiple damages or even
loss of life. The fusion of natural language processing, AI, and
machine learning technologies can facilitate cognitive compu-
ting to establish a health disorder’s frequency and relationship
to the data. Multiple data points require comprehensive analysis
to aid medical professionals in learning till an optimal solution
is reached. Therefore, cooperation between humans and machi-
nes is essential in cognitive systems to ensure organizations get
enhanced value from data in solving complex problems [11] [40].

5.2. Robotics

Robot technology greatly influences the human lifestyle. Joint
efforts from multidisciplinary scientific fields [41] [42] on tech-
nology innovations endeavors to "develop human-like robots"
based on cognitive architectures. The current relationship betw-
een robots and humans is not symbiotic, but rather reliance [10],
which results in replacing humans with robots or using robots by
humans. Developments in the social scenes suggest a generation
of robotic systems that will emulate humans in the future based on
different aspects such as natural language processing, computer
vision, etc. Therefore, a partnership relationship between humans
and robots coexisting and complementing each other is visible.
Next-generation of robots will incorporate the co-fusion feature
into robotic technology function designs.

5.3. Cognitive Communicating Systems

The seamless integration of the cyber and physical world is a
reality with current technological devices and networks. With
network developments [8], smart homes systems [43] fuse with
human emotion cognition. The intelligent system [43] fuses
user and house environment to generate cognitive services for
viewpoints and adjustments on house users’ emotions. The intel-
ligent system perceives the user’s emotions and regulates the
environment appropriately.

6. Conclusions
This paper presents a cognitive computing architecture in the con-
text of smart healthcare. The proposed architecture comprises
four aspects: discovery of knowledge, the activity environment,
infrastructures, and machine learning frameworks; all these work
together simultaneously to make up an intelligent system. Addi-
tionally, this paper presents the popular emerging intelligent
systems from three perspectives: medical cognitive systems,
robotics, and cognitive-communication systems.
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