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Abstract 

The recent floods have shown that the classic monitoring systems for watercourses are no longer adapted because other 

phenomena such as the insufficient capacity and/or obstruction of drainage networks, the modification of cultivation 

practices and rotations, the increase in the size of plots linked to the reparcelling, the urbanization of floodable areas, etc. 

The combination of all these causes, plus the modification of the water regime, implies an increase in the risk of flooding 

and an adapted monitoring that is no longer limited to watercourses in order to give early warning of the risk of flooding 

by runoff. The Internet of Things (IoT) and the availability of microcontrollers and sensors with low data rates and long 

ranges, as well as low-power wide area networks (LPWANs), allow for much more advanced monitoring systems.  
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1. Introduction 

Flooding is the most common natural hazard affecting many 
parts of the world; nearly half of the world's natural hazards are 

not limited to overtopping of riverbanks inundating neighboring 

areas [1,2] but floods can also be caused by surface runoff or 

other local-scale runoff problems. Indeed, in temperate regions, 

more local phenomena such as mudslides at the bottom of 
agricultural plots, drainage backups due to insufficient capacity, 

obstruction or lack of maintenance, which can also be damaging 

to property and people, are never monitored. In semi-arid 

regions, flash floods pose a significant threat to human life and 

cause considerable damage. The cost of damage is estimated at 
more than 500 billion in Europe between 1980 and 2015 [3]. 

They therefore deserve our full attention and particularly close 

monitoring. 

The causes of flooding are usually a combination of various 

environmental and man-made factors. Environmental factors are 
things we cannot control, such as the amount and intensity of 

rainfall, frozen or waterlogged soils, snowmelt, watershed 

topography and soil types, and slope exposure. Anthropogenic 

factors include all actions that impact runoff such as cropping 

practices and rotations, significant changes in land use, lack of 

maintenance of stormwater retention structures and/or the sewer 

system, infilling of agricultural land, deforestation, and 
urbanization. In addition to surface runoff flooding, some areas 

may also be subject to landslides. The monitoring of this type of 

risk is subject to a specific monitoring described in the previous 

article [4]. Two common approaches are used to monitor 

flooding. The first one is based on computer vision and image 
processing techniques, while the second one is based on wireless 

sensor networks (WSNs) and computer models such as artificial 

neural networks (ANNs) [2]. 

Today, most IoT WSN-based flood monitoring systems are 

limited to measuring water height at bridges or along riverbanks; 
they measure flows in monsoon drains in residential areas [1]. 

With the increasing complexity of watersheds due to human 

activities, climate change, social and economic aspects, 

traditional watershed management tools have become obsolete. 

Smart management provides a solution to facilitate complex 
watershed management by providing an integrated view of all 

aspects [5].  
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Hydrological modeling is particularly important for estimating 

and forecasting flood flows in rivers and streams, as well as the 

volume of runoff at various critical points in the watershed. To 

be effective, modeling must be performed using accurate data 
acquired at short time intervals and distributed in space. The 

Internet of Things allows the massive acquisition of 

meteorological data (temperature, relative humidity, 

precipitation), on soil moisture, water level, flow rates, flow 

velocities that allow the validation and improvement of 
predictive models. 

In this paper, we present a comprehensive monitoring system 

integrating both overflowing streams and surface runoff. In 

Section 2, we summarize contributions from the literature to 

select the elements needed to build our monitoring system. In 
Section 3, we describe the conceptualization of our architecture, 

and we continue with its implementation and evaluation in 

Section 4. Finally, we conclude, and outline our future work in 

Section 5. 

2. Related Work 

This section is composed of three parts: The first part  
summarizes major contributions from the literature while the 

second part focuses on architectural components and 

communication protocols. Building a flood monitoring system 

for runoff and overflow requires selecting sensors, transmitting 

the data, storing the data, and then analyzing the data and 
alerting authorities and stakeholders if necessary. In the third 

part, we present the necessary elements for the development of 

an overflow and runoff flood monitoring system. 

2.1. Previous works 

In our previous work, we worked on a landslide early warning 
system and evolved our monitoring system successively in 

[4,6,7]. The basis of our wireless sensor network was described 

in [6], the gateway in [7], and the landslide early warning system 

in [4] with the integration of fog-level federated learning. In this 

work, we extend our work to flood monitoring. For example, 

excessive runoff during periods of intense rainfall, which can 

otherwise lead to flooding, is also a common trigger for 

landslides. In addition, we developed an outlying A2IoT 

architecture in [8,9] and implemented in [10,11]. The fog 
gateway was developed and tested in [12]. 

2.2. Variables to monitor 

 

The most monitored variable in the literature is the water level 

in the riverbed or under bridges. Arshad et al discussed the 
sensors to be implemented to estimate the water level to monitor 

flooding. The pressure transducer can measure the water level 

with an accuracy of 1 mm but requires calibration and is very 

sensitive to any vertical displacement of the installation point 

and may require air pressure control to correct the output of the 
pressure transducer. The ultrasonic rangefinder is a popular 

sensor that calculates the time between transition and reception 

of signals reflected from the water to determine the water level 

[2]. Flash floods are particularly destructive and forecasting 

them is crucial. Khan et al. developed a new approach based on 
correlating flash flood prediction with the increase in soil 

moisture and carbon dioxide with a K30 transducer at the 

seashore during wave rise. While a multilayer perceptron (MLP) 

reduces the number of false alarms [13]. Da Silva Júnior et al 

described IOTFlood, a modular and scalable low-cost platform 
to monitor floods in real time and send automatic messages [14]. 

Abdelal et al developed a hydrological monitoring platform 

called HydroMon3, which links different types of sensors. They 

proved that conventional hydrological data acquisition is not 

representative enough of the event and that high temporal 
resolution data obtained from connected sensors give a better 

representation of these events [15]. Table 1 provides a summary 

of sensors and actuators used in the literature. 

2.3. Communication protocols 

 
The main protocols implemented in LPWA applications are 

LoRaWAN, SigFox, LTEM and NB-IoT [17]. LoRaWan is 

organized in a star topology, where multiple end devices  
transmit data to a gateway in a single hop. Cotrim et al examined 

Table 1. Sensors & Actuators implemented in flood monitoring / warning systems 

Model Manufacture Measured Precision Interface Voltage Conso. Ref. 

LM35 Texas Instruments Temp. ±0.5°C Analog 4-30V 114μA [1] 

BME280 Bosch Sensortec Temp., Hum., Pres. ±1◦C/±1%/±1ha I
2
C / SPI 1.2-3.6V 3.6μA [1] 

BMP180 Bosch Sensortec Pressure 0.03hPa I
2
C / SPI 1.8-3.6V 5μA [1] 

LA16M-40 Eicos Water Level - Digital 5V 0.5A [14] 

FDC1004 Texas Instrument Water Level - I
2
C 3-3.6V 750μA [1] 

HC-SR04 Adafruit  Water Level ±0.6cm Digital 5V 15mA [1, 14] 

MB7066 MaxBotix Water Level ±1cm Analog 3-5V 100mA [1] 

SEN113104 Seeed Studio Water Level - Analog 5V 20mA [1] 

JSN-SR04T-2.0 Miscellaneous Water Level ±1cm Digital 3.3-5.5V 30mA [15] 

YF-S201 Miscellaneous Flow ±10% Digital 5-24V 15mA [1] 

DHT11 Adafruit  Temp., Hum. ±2°C /±5% Digital 3-5V 2.5mA [1] 

DS3231 Maxim Integrated RTC - I
2
C 2.3-5.5V 300μA [15] 

SIM800L Miscellaneous GSM module N/A TTL 3.5-4.2V 2A [15] 

Neo6m u-blox GPS 2.5 m UART 2.7-3.6V 100mA [14] 

K30 Winsen Electronics CO2 rate ±30ppm±3% Ana. /Dig 5.5-14V 40mA [13] 

YL-83 Vaisala Rain - Analog 3.3-5V 100mA [14] 
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multi-hop communication using the LoRaWAN protocol and 

showed that they can extend battery life by decreasing 
transmission power. They classify the strategies into 6 

approaches: (1) Device-relay; (2) Relay-gateway; (3) 

combination of the previous two approaches; (4) Device-router; 

(5) Router-gateway; (6) combination of the previous two 

approaches; (7) hybrid [18]. While Lestari et al presented the 
results of implementing LoRa in a mesh network topology used 

to transmit river water quality data from multiple sensors over a 

long distance [19]. If LoRaWan is not available, we can use NB-

IoT (3GPP), but this is not free as it is deployed by telephone 

companies. 

2.4. Rainfall spatialization 

 

Ly et al compared the performance of deterministic and 
geostatistical methods to calculate spatial interpolation of 

rainfall data. The deterministic methods tested were multi-

station averaging, Thiessen polygon (THI) also called nearest 

neighbor (NN), Inverse Distance Weighting (IDW) and its 

variants including elevation: Inverse Distance and Elevation 
Weighting (IDEW), Polynomial Interpolation (PI), Spline 

Interpolation (SI), Moving Window Regression (MWR). In 

addition, three geostatistical kriging interpolation methods were 

evaluated: Simple Kriging (SK), Ordinary Kriging (ORK), 

Universal Kriging (UNK). Multivariate geostatistical methods 
in combination with elevation with elevation data. They 

concluded that for daily precipitation interpolation, 

geostatistical and IDW methods have comparable accuracy 

while for annual and monthly precipitation interpolation, 
geostatistical and IDW methods give the best accuracy. Finally, 

they report that radar data used as a secondary variable in 

geostatistical methods improves the accuracy of hourly 

precipitation interpolation [19]. 

2.5. Hydrological modeling 
 

The Soil Conservation Service Curve Number (SCS-CN) is a 

simple, well-recognized method widely used by hydrologists, 

engineers, and watershed managers to estimate the direct runoff 

from a storm rainfall event [20]. The general form of the SCS-
CN equation is given below. 

 

𝑄 = 
(𝑃−𝐼𝑎)2

(𝑃−𝐼𝑎)+𝑆
                                                                           (1) 

 
Where P is rainfall expressed in mm, Q is runoff expressed in 

mm and Ia is the initial rainfall interception. 

With the assumption of Ia = 0.2S, equation (1) becomes: 

 

𝑄 = 
(𝑃−0.2𝑆)2

𝑃+0.8𝑆
                                                                          (2) 

 

Q, the runoff expressed in mm is calculated with equation (2), 
when P > 0.2S and otherwise Q = 0. 

 

𝑆 =
25400

𝐶𝑁
− 254                                                                     (3) 

 
Where S is a maximum potential retention after the onset of 

runoff expressed in mm and the curve number (CN) is a 

descriptive parameter of the runoff potential of the watershed 

reflecting soil and cover conditions. The SCS defines 3 

antecedent moisture conditions: 1-dry (wilting point) in other 
words the lowest value the curve number can take under dry 

conditions, 2-average moisture, 3-moisture (field capacity). The 

number of curves in situation II is calculated for a slope of 5% 

but these values must be adjusted for the actual value of the 

slope expressed in %. Equation (2) is used to calculate the values 

of CN2α. 
 

𝐶𝑁2𝛼 =
1

3
(𝐶𝑁3 − 𝐶𝑁2)(1 − 2𝑒−13.86𝛼) + 𝐶𝑁2                 (4) 

 
Where CN2α is the fitted value of CN2 and α is the soil slope in 

m/m. The curve numbers for the 1-dry and 3-wet conditions are 

calculated with the equations. 

 

𝐶𝑁1𝛼 = 𝐶𝑁2𝛼 −
20(100−𝐶𝑁2𝛼)

100−𝐶𝑁2𝛼+𝑒𝑥𝑝[2.533−0.0636(100−𝐶𝑁2𝛼)]
       (5) 

 

𝐶𝑁3𝛼 = 𝐶𝑁2𝛼. 𝑒𝑥𝑝[0.00673(100 − 𝐶𝑁2𝛼)]                      (6) 

 

Where CN1α is the curve number of moisture condition I, CN2α 

is the curve number of moisture condition II (average condition: 

12-28 mm in the dormant season and 35-53 mm in the growing 

season), and CN3α is the curve number of moisture condition III 
(near saturation: >28 mm in the dormant season and >53 mm in 

the growing season). 

3. Our architectural proposition 

In this section, we formulate our architectural proposal 

combining the smart watershed and smart home scales to 

achieve a monitoring system capable of monitoring stream 
overflow flooding and/or runoff for territorial authorities on a 

large scale and on a local scale for residents. 

3.1. Conceptualization 

 
Each watershed is different in its morphology as well as in the 

distribution of human and economic issues. This is why the 

detection nodes must be able to integrate different sensors 
depending on what needs to be monitored (water height, 

pressure in the pipes, flow rates, volume of water runoff, water 

flow speed, etc.).  It is also easy to understand that for the same 

quantity, the sensors must be adapted according to the scale at 

which the quantity must be measured. The nodes will therefore 
have to support "plug and play", to be able to detect the type of 

sensor and their model without having to modify the source 

code. The sensor system must be optimized to be deployed in 

remote locations, be reliable, withstand harsh conditions, enable 

long-range communication, and accommodate different types of 
sensors [21]. In addition, they must be lightweight, small in size, 

inexpensive, low power, and powerful [22]. 

Monitoring the amount of rainfall, its intensity and temporal 

distribution is an important factor in the occurrence of floods. 

Temperature also plays an important role in soil permeability. 
Indeed, a frozen soil will not be able to infiltrate the rain and 

will allow a complete runoff of the precipitations. While a 

prolonged period of drought will have an impact on the 

infiltration capacity of the soil and will lead to a more important 

runoff. Similarly, rapid snowmelt results in a significant amount 
of runoff. Soil moisture at different depths has a direct impact 

on its ability to infiltrate precipitation and runoff. It is easy to 

understand that the water saturation rate of the soil has a direct 

impact on its infiltration capacity. 

Low-power wide area networks (LPWANs) have become 
popular with the Internet of Things, such as LoRaWAN, SigFox, 

Ingenu, NB-IoT, which operate on unlicensed ISM frequencies  

and allow building a large wireless communication network at 

low cost [23]. Among them, LoRaWan allows to be deployed in 

a mesh network topology and supports multi-hop 
communication [17]. 
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The processing architecture must be salvageable to be scalable 

to many nodes and allow for real-time data processing as well 
as provide the ability to post-process time series of data to 

estimate trends in their evolution. The data management plan 

must provide for permanent storage of raw data and processed 

data for research purposes. 

3.2. Implementation 

 
Our proposed monitoring system consists of a weather station to 

monitor precipitation and environmental parameters, sensor 
nodes to acquire data such as water height, flow rate, pressure, 

an architecture to store and process the data. 

The common element of the weather station and sensing nodes 

is Pycom microcontrollers (GPy, LoPy 4, and FiPy) based on 

Espressif's ESP32 Soc to which chips have been added to enable 
the implementation of several communication protocols.  Table 

2 shows a comparison of the communication protocols 

supported by the three selected PyCom microcontroller models. 

All three microcontrollers support Bluetooth Low Energy and 

conventional, as well as Wi-Fi.   GPy will be preferred when 
only NB-IoT is available while LoPy4 will be implemented 

when LoRaWan or SigFox is available.  Finally, FiPy is the most 

successful with support for NB-IoT, LoRaWan and SigFox 

allowing for example to use LoRaWan and NB-IoT as a backup 

when both networks are available.  We chose Pycom 
microcontrollers is powered by 2 processors with 4MB of RAM, 

8MB of external flash, floating point hardware acceleration. The 

main processor is fully free to run the user application while an 

additional ULP processor that can monitor the 22 or 24 GPIOs, 
ADC channels and control most of the internal peripherals in 

deep sleep mode consuming only 25μA. It is equipped with Wi-

Fi, BLE, RTC, 2 UART, 2 SPI, I2C, I2S, micro-SD card. In 

addition, it supports SHA, MD5, DES, AES encryption 

algorithms. In addition, it supports over-the-air (OTA) 
programming, which allows you to update the software 

remotely. 

 
Table 2. Comparison of protocols between GiPy, LoPy4, and FiPy 

Protocol   GPy LoPy4 Fipy 

Wi-Fi                         yes        yes         yes 

Bluetooth                    yes       yes           yes 

LTE M1/NB1                   yes         no         yes 
LoRaWan                      no            yes          yes 

SigFox                      no          yes          yes 

 

We chose the LoRaWan protocol, which is widely implemented 

in various use cases and has demonstrated its robustness in harsh 
environments [6, 24] because spread spectrum data transmission 

allows data to be sent under the noise level. Nevertheless, in 

harsh conditions, devices will require more energy to transmit 

and decrease the lifetime.  Dense networks of devices can 

degrade the performance of the overall network (longer delay 
and low reliability) [16]. We deployed our object stack to build 

our private and secure end-to-end network and use the object 

network as a backup network. 

 

The Weather station which aims to measure the volumes and 
intensities of precipitation but also the air and soil temperature, 

soil moisture. We used the Bosch Sensortec BME280, an air 

temperature and humidity sensor and a barometric sensor with 

respective accuracies of ±1°C / ±1% / ±1ha. While a SparkFun 

SEN-08942 Weather Measurement Kit containing a rain gauge, 
a wind vane and an anemometer that measure respectively the 

amount of rain, wind direction and wind speed. Soil moisture at 

10cm and 25cm depth and soil temperature are respectively 

measured with the Irrometer 200SS and the Irrometer 200ST 

mounted with two 74HC4051 multiplexers as shown in Fig. 3 in 

the documentation proposed by Irrometer. 

 
 

Fig. 1. Schema of the Weather Station 

 

The sensor node can adopt different configurations depending 
on the target to be monitored.   To measure the water level, we 

chose the ultrasonic distance sensor MB7389 HRXL-

MaxSonar-WRMLT which is a sensor designed for outdoor use 

and meets the IP67 standard. It can be read in three modes: 

analog voltage, serial, pulse width. We use it in Pulse Width 
mode with the PyCom microcontroller. The monitoring of the 

flow in the sewers is realized with the Beluga Flow-Tronic for 

nominal diameters from 150 to 2500 mm connected in Modbus. 

 

 
 

Fig. 2. Schema of the Sensing Node 

 

Processing and storage architecture.  Our architecture is built 

around a Lambda architecture (Fig. 3) using Apache Kafka, 
Apache Beam, Apache Samza, Hadoop and two databases: 

Apache Druid as the time series database and PostgreSQL with 

PostGIS as the geodatabase. The Lambda architecture is well 

suited for data processing when batch and stream processing are 

two different processes[25]. The Lambda architecture is 
inherently composed of 3 layers: (1) A velocity layer that 

processes real-time data produced by weather stations and 

sensing nodes; (2) A batch layer based on Apache Hadoop and 

the map reduce paradigm to produce maps from the data stored 

in Apache Druid; (3) The service layer allows querying the 
databases. 
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The data is transmitted to the Lambda architecture using the 

MQTT publish-subscribe protocol to an MQTT server (1) which 

transmits the data to Apache Kafka (2). The latter temporarily 

stores the data before it is processed by a model developed with 

Apache Beam (3) and executed on Apache Samza (4).  The 
results of the processing are stored in a new Apache Kafka topic 

(5) while a Kafka indexing service (6) ingests the data stored in 

the Kafka topics and inserts it into Apace Druid (7). Nkamla 

Penka et al have shown that the combination Apache Kafka, 

Apache Samza, and Apache Druid is particularly well optimized 
to process IoT data [26]. The real-time data stored in Apache 

Druid is post-processed in a batch process with Apache Hadoop 

(8) where the precipitation data is interpolated to create a 

precipitation map using Ordinary Cokriging (OCK) which 

considers the elevation of the weather stations. Anomaly 
detection is performed by cross-validation consisting of 

eliminating a station and calculating the interpolation and then 

comparing with the measured value.  The results of the 

spatialization are stored in PostgreSQL/PostGIS (9). A QGIS 

server is used to allow visualization of the maps made from the 
data stored in the PostgreSQL database (10). The report 

integrates the map from the QGIS server, and the time series 

data to provide the calculated runoff rate and volume at different 

points in the watershed with the SCS method (11). 

4. Experimentation 

To experiment our architectural proposal, we installed a weather 
station, a sensing node to measure the river level using an 

electromagnetic distance meter at the level of an opening and 

another sensing node to measure the water level sensor in the 

cellar of a house adjoining the river. The weather station, 

outdoor sensing node, indoor sensing node are respectively 
located at following coordinates expressed in latitude and 

longitude: (50.317055, 4.4382366), (50.3168558, 4.4385589), 

and (50.3170988, 4.4385435).  

 

The system was tested during the floods of July 13 and 14, 2020 
in the municipality of Ham-sur-Heure/Nalinnes, Walloon 

Region, Belgium. The measurements were carried out on the 

brook of the Mill at the level of the Lavalle street and of a joint 

house whose garage is located in the cellar below the Lavalle 

street. When the brook overflows, the water comes from the 
street and floods the cellar through the garage entrance. 

 

The Fig. 4 presents measures each 15 minutes of water level 

achieved in the cellar during the flooding event. On the figure 

we can see the submersion of the cellar, the stagnant water level 

followed by the emptying by pumping.  

 

 
Fig. 4. Measure of water level in the cellar 

 
The Fig. 5 presents measures of water level achieved at the 

bridge over the river. In this figure, we can see the base level of 

the creek increasing rapidly due to the inflow from the fields to 

reach the maximum admissible level in the sluice causing the 

overflow and the flooding of the cellar and then the period of 
recession. 

 

 
Fig. 5. Water Height measured over the bridge 

 

At this stage, the operation has been demonstrated on a very 
small scale and further experiments on a larger scale are still 

needed to improve the system and validate it. 

 
Fig. 3. O verview of the global architecture 
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5. Conclusion and perspective 

This research work is motivated by the observation that floods 

are generally monitored at the level of rivers, dams and wadis 
and rarely at the level of drainage networks and river tributaries, 

or at the level of watershed areas producing significant  

quantities of surface runoff. As the analysis of the literature has 

shown, two approaches coexist for the monitoring of floods 

through the use of sensors, or the analysis of images acquired by 
camera or drones. Our work has so far been limited to the 

exploration of the implementation of sensors. The use of images 

and their processing at the level of the cloud architecture is 

planned at a later stage. 

Monitoring and alert systems are currently not designed to be 
used by citizens. However, the latter living in flood-prone areas 

generally have empirical benchmarks in terms of water level and 

/or runoff which allow them to assess the imminent risk of 

flooding for their property. We believe that allowing 

stakeholders to have access to official data and to be able to add 
data from their own sensors can, if these are standardized, allow 

a very local analysis of the flood risk. The possibility of 

deploying large-scale sensor networks is no longer to be 

demonstrated because they are widely used, particularly in smart 

cities and in smart farming. LoRaWan and NB-IoT or 5G 
communication protocols make it possible to cover large 

territorial areas. 

In this work, we propose a weather station and sensing node in 

which sensors can be changed and detected automatically. Once 

the sensor(s) are detected, the configuration is sent to the cloud, 
or a script is automatically generated to retrieve the data. The 

code is then deployed via OTA. 

The limitations of our work are the current limitation of nodes 

to LoRaWan / SigFox and NB-IoT protocols. 5G and Ingenu are 

currently not supported by sensor nodes and weather stations. 
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