
 Journal of Ubiquitous Systems & Pervasive Networks

Volume 3, No. 1 (2011) pp. 00-00

* Corresponding author. Tel.: +971543781405

 E-mail: 201990006@uaeu.ac.ae

© 2011 International Association for Sharing Knowledge and Sustainability.

DOI: 10.5383/JUSPN.03.01.000
1

A Novel Micro-services Cluster Based Framework for Autonomous Vehicles

Henry Alexander Ignatiousa, Hesham-El-Sayeda, Manzoor Khana, Shawqi Kharbasha and Sumbal Malika

aCollege of Information Technology, United Arab Emirates University, Al Ain, UAE

Abstract

Modern technologies like digital spaces, intelligent transportation, and digital operations are faced with technical challenges related to data

capturing, data processing, data storage, data security, communication, etc. Ensuring security and reliable message propagation among

autonomous vehicles is a major challenging task. Establishing appropriate environment for developing vehicular-based solutions by the vehicle

manufactures increases their estimated cost and time. Hence, to minimize this problem, this proposal aims to introduce Service Oriented

Architecture (SOA) principles, to access trust based solutions as simple cloud based services by the clients. We propose a framework to integrate

three mandatory vehicular applications namely trust estimation, secured message dissemination, and routing as cloud-based microservices. We

also propose an innovative CipherText Policy Attribute Based Encryption (CP-ABE) algorithm to ensure confidentiality of data by an access

control system in highly dynamic and automated network. The services are deployed as Docker images using advanced concepts of Dockers and

Containers. Dockers coordinate the orchestration of multiple tasks related to the proposed microservices and help to implement the services in

cross-platform environments. These services can be implemented in both autonomous and manual vehicular systems. The service providers can

charge the clients based on the usage of the services. A detailed experimental analysis is accomplished to evaluate the performance of the proposed

micro services in cross platform environments; further, an extensive simulation is performed to assess the individual performance of the proposed

vehicular applications.

Keywords: Vehicular Networks, Trust Management, Cloud Computing, Dockers &Containers.

1. Introduction

Road safety, congestion control and security metrics are the

three important factors to be considered, while regulating the traffic

system. Traditional traffic controlled systems are slowly replaced

by state-of-the-art vehicular technologies like vehicular networks,

intelligent roadside units, Artificial Intelligence based decision

mechanisms for critical maneuvers, etc. The concept of connected

vehicles is known and is being implemented by automobile makers

allowing the vehicles to exchange messages. Hence, ensuring

trustworthiness among the vehicles within the specified range,

during message interchange to maintain integrity, is an important

task. Moreover, data transmission between the vehicles directly

affects the security in vehicular environment. The quality of safety

or non-safety applications in vehicular network, largely depend on

the trustworthiness of the data. Trust plays a vital role in security

and quality of vehicular network [1]. Automated vehicle systems,

fully autonomous vehicles, and alternative transportation services

(ride sharing, car sharing, etc.) are now constantly in the news. A

range of Tier-1 providers, automobile makers, equipment

manufacturers, startups and academic organizations are leading

various technological efforts to develop the systems necessary to

make transportation more responsive, accessible and ultimately

safer for all consumers across various communication generations

[2]. In future, the autonomous vehicles will gradually replace the

manual driven vehicles and fundamentally change all road traffic

conditions. The main objective of autonomous driving is ensuring

safety and security of the people in public roads. Human drivers due

to many external factors cause most of the road accidents. Whether

introducing full-fledged autonomous driving reduces accidents and

ensures safety and security among the people in public roads is still

a debating topic between the manufactures and the researchers.

Moreover, the usage of autonomous driving is restricted in many

countries due to various legal issues [3].

 There are many challenges associated with launching a

complete autonomous vehicle. The major challenges include the

understanding of the instant and dynamic behavior of road

conditions, traffic conditions, accident liability, radar inferences,

establishing trust between the vehicles, dissemination of reliable

information among the vehicles and weather conditions. The

foremost problem for the manufacturers and researchers is how to

make the autonomous vehicle behaves like humans in dynamic

decision-making. The autonomous vehicles are collection of

intelligent sensors, actuators, sophisticated algorithms and powerful

processors to excite the software and physically controls the

vehicles. Recent statistics suggests that twenty-five countries are

already prepared to implement autonomous driving. According to

official reports, the UAE is expected to finalize autonomous vehicle

standards and regulations in 2020, and accordingly autonomous

vehicles may enter the UAE market within one year afterwards by

2021 [4].

However, there are many existing challenges associated in

launching autonomous vehicles, the key and the mandatory

challenge to be addressed is ensuring safety and security among the

AVs during their travel. Hence, establishing trust between the AVs

and ensuring reliable message dissemination between the AVs are

Henry Alexander Ignatious et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

2

mandatory tasks. Hence, more innovative studies and contributions

are needed to develop versatile solutions to monitor and control the

overall activities of autonomous driving. The data acquired from the

sensors plays a vital role for controlling various activities of

autonomous driving. Today’s autonomous vehicles manufactures

and the community, which lends autonomous driving for rental

basis, do not spend their time and money to scale their solutions

further. Instead, they extend the new services from third party web

services, which are deployed in cloud environments. Hence, in

today’s scenarios, many micro services are developed for various

applications representing multiple domains. The concepts of micro

services reduce various complexities related to large applications

and helps several organizations to minimize their cost and time to

develop and maintain complex applications [5].

 However, there are many existing challenges associated in

launching autonomous vehicles, the key and the mandatory

challenge to be addressed is ensuring safety and security among the

AVs during their travel. Hence, establishing trust between the AVs

and ensuring reliable message dissemination between the AVs are

mandatory tasks. Hence, more innovative studies and contributions

are needed to develop versatile solutions to monitor and control the

overall activities of autonomous driving. The data acquired from the

sensors plays a vital role for controlling various activities of

autonomous driving. Today’s autonomous vehicles manufactures

and the community, which lends autonomous driving for rental

basis, do not spend their time and money to scale their solutions

further. Instead, they extend the new services from third party web

services, which are deployed in cloud environments. Hence, in

today’s scenarios, many micro services are developed for various

applications representing multiple domains. The concepts of micro

services reduce various complexities related to large applications

and helps several organizations to minimize their cost and time to

develop and maintain complex applications [5].

 This paper proposes a new framework, which integrates three

main modules namely a trust estimation module, a security module

and a routing module.. Trust evaluation services estimates the trust

between the vehicles and reliable messages in encrypted form are

propagated between the trusted vehicles. Further the trust

evaluation services integrates an innovative cluster algorithm to

group the vehicles and an innovative CipherText Policy Attribute

Based Encryption (CP-ABE) algorithm to ensure confidentiality of

data by an aces control system in highly dynamic and automated

network. The routing service reroutes the AVs if they face any

unexpected roadside events like accidents (or) congestions. The

users are charged based on the usage of the services. The study is

planning to provide the above-mentioned applications as services to

the autonomous vehicle manufacturers and autonomous vehicle

hiring community, to minimize their time and cost effectively.

Subsequently the service providers will be benefitted by charging

the autonomous vehicle manufacturers and other hiring community

for sharing their services. An innovative methodology has to be

selected to convert the proposed services as platform independent

applications. Hence, this study selected the Docker concepts to

deploy the proposed services. The Docker concepts provides many

advanced features, which facilitates the developers to deploy their

applications as services in public registries. The Dockers also helps

to convert the services as platform independent applications. There

is no need to integrate a virtual operating system along with the

service, to execute them in cross platforms. This strategy minimizes

the development of individual services to serve different operating

systems, thus reducing the time and cost of the service developers.

 Applications are developed for the suggested services and

apparently, the services are deployed as a Docker images. The

clients can extend the Docker image as a cloud-based web service

and integrate them in their existing applications. So far, very few

studies and contributions have been proposed to implement of

micro services in autonomous driving to effectively maintain and

monitor them.

 The paper is organized in the following hierarchy. Section,

two briefs the background of this study, Section three, discusses the

existing literature on various areas related to vehicular networks

like trust management, security issues and routing followed by a

brief review about designing and implementing the microservices..

Section four, discusses the overall functionality of the proposed

framework, along with the steps involved in deploying and

executing Docker images. Section five briefs illustrates various

experimental and comparative analyses, Section six describes the

future enhancements and Section seven concludes the paper with a

short summary of this study.

2. Background

 For the current and envisioned application scenarios, cloud

based solutions are in more demand due to many advantages such

as cost saving, scalability, platform independency, high speed, easy

integration more virtualization, reliability, security and so on. Cloud

platforms follows Service Oriented Architecture (SOA), where the

applications are shared among the users as demand based services.

It is an architectural style used to segment complex applications into

individual modular services, which are easy to maintain, tested,

loosely coupled, and independently deployable. The micro service

architecture enables the rapid, frequent and reliable delivery of

larger complex applications.

Each service performs a unique function. All services must

logically represent a repeatable business activity with a specific

outcome. They must be self-contained. Its operation must be

abstract to the users (its implementation part must be hidden to the

users). A service can be composed of other services. Micro services

are extensions of SOA based services. They almost extent the

characteristics of the web services. Most of the organizations and

other application developers integrate cloud-based microservices

due to the following advantages like high maintainable and testable,

loosely coupled, independently deployable, organized around

business capabilities and owned by a small team. The microservice

architecture enables massive, complex applications to be delivered

quickly, frequently, and reliably. It also allows a company's

technology stack to grow. Moreover, the microservices are

relatively small and the user can easily understand their behavior.

The application starts up faster, allowing developers to be more

efficient and release times to be reduced. Microservice architecture

supports fault isolation, where the effected service is isolated,

allowing other services to operate without interrupting the

performance of the overall system. All the microservices can

communicate between the users using the standard web based

protocols like http. Figure 1, illustrates the functionality of

microservices. Services are developed and deployed in public

registries present in the web servers. The users can access and

communicate with the services through standard APIs and web

based protocols like http.

Henry Alexander Ignatious et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

3

Fig. 1. Microservice Architecture

This study uses Google cloud based services to develop and

deploy the proposed applications as microservices. The following

subsections briefs the salient features of the Google cloud based

components, which are used to deploy the microservices.

2.1. Google Cloud

Google Cloud Platform (GCP), is an important service offered

by the Google platform just as other services like Gmail, Google

Search, and YouTube, which serves the end-users. Apart from the

management services, GCP provides modular based cloud services

like computing, data storage, data analytics and machine learning.

Currently Google lists over 90 cloud services under Google Cloud

Brand. Key services such as Cloud AI, API platforms services, and

IoT, are used to develop scalable Artificial Intelligence

applications, IoT based services and versatile application program

interfaces to communicate with multiple applications that executes

in multiplatform environments.

2.2. Dockers & Containers

Docker is a platform for developers and system admins to

develop, ship and execute the applications in different cross

platforms. Docker is a set of platforms as a service (PaaS) products

that uses OS-level virtualization to deliver software in packages

called containers. The main components of Dockers are Docker

Image, Docker Container, Docker Engine and Docker File.

Containers are applications which are used to package the

application images and help to execute them in cross-platform

environments [15][16][17]. Figure 2, illustrates the Docker

architecture. The major components of the Docker are (i) Docker

Engine, (ii) Docker Client (iii) Docker Registries and Docker

Objects.

 The Docker Engine is the heart of the Docker architecture.

It is installed in the host machine. It follows client/server

architecture and has three major components namely a server,

which is the Docker daemon used to create and manage Docker

images, a REST API, which coordinates the activities of the Docker

daemon and Command Line Interface (CLI), used by the client to

enter Docker commands. The next component namely the Docker

client, who interacts with the server to access the Docker images.

Followed by the Client component is the Docker registry, a location

in the server to store the Docker images. The Docker hub can be

either a public (or) private. The last component is the Docker

objects, which contains images, containers, volumes and networks.

Docker images are read only templates used to create Docker

containers. Docker containers are objects which stores the instances

of the applications along with their environmental information used

by the clients to execute in their local machines.. The persistent data

created by accessing the Dockers by the clients are organized and

stored in volumes, which are maintained by the servers. Finally, the

Network object contains drivers, which helps the client to interact

with the Docker objects. Network object consists of five important

drivers namely bridge, host, overlay, none and macvlan. Bridge is a

driver to container, which is used when multiple client containers

communicate with the host. Host removes the network isolation

between Docker containers and Docker host. Overlay driver enables

swarm services to communicate with each other. None driver is

used to disable all networking services. Finally, macvlan driver is

used to assign mac addresses to the containers to make them look

like physical devices.

Once when a client runs the Docker run command to access

the web services, initially a Docker build command is triggered,

which creates a Docker template, locates and pulls the specified

application image from the Docker hub. The images are further

packaged in the Docker container, which will be executed in the

client’s local machine.

3. Related Work

The basic concept of road vehicle automation refers to the

replacement of some or all of the human labor of driving by

electronic and/or mechanical devices. Origins of the automated

driving technology can be traced back to the early 20th century. At

that time, the technology was concentrated on autonomous speed,

break, lane control, and other basic cruise control aspects.

However, only during the last decade or so, incubating conditions

of the Digital and 4th Industrial Revolutions gave birth to rapid

technological advancements in the field; resulting in numerous

prototype Autonomous AVs being trailed on the roads. Many

research articles have been published in the academic literature

describing the technological advancement of AVs.

Fig.2. Docker Architecture

Recent studies done by El-Sayed et al [6], have proposed a

novel direct trust evaluation method to estimate trust between the

vehicles based on their behavior and message propagation rate

using Bayes theorem concepts. Similarly innovative studies done

by Gianmarco Baldini et al [7], have proposed a trust estimating

technique using Block Chain concepts. Vehicles are issued with a

valid Public Key Certificate (PKI) and further allowed to propagate

messages to other vehicles, if they satisfy some criteria stored in the

blocks. Siri Guleng et al [8], have proposed a direct trust estimating

technique using fuzzy logic to calculate trust between the trustee

nodes within transmission range of trustor nodes. Subsequently

they have also implemented reinforcement-learning techniques to

calculate indirect trust among the vehicles where direct trust is not

possible.

 Jannik Lotz et al [9], have conducted an exclusive survey to

analyze the feasibility and after effects of converting complex

software-based driver assistance system to micro service

architecture. The complex software-based driving assistance

system is segmented into individual micro services, addressing a

particular problem of driving assistance system. The authors have

Henry Alexander Ignatious et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

4

discussed a micro service architecture, which assists the

autonomous vehicles in lane following system. Similarly, Duo Lu

et al [10] have designed and developed a framework to distribute

various functionalities of IoT based solutions as micro services. A

micro service approach to build an IoT system can combine a

mutually enforcing way with patterns for micro services, API

gateways, distribution of services, uniform service discovery,

containers, and access control. The authors’ study gave a wide

scope and knowledge to understand the basic concepts,

implementation and deployment of micro services. The authors

have also have proposed a service-oriented framework which

integrates the platooning functionalities as micro services. The

micro service utilizes other software modules of the proposed

framework for their effective functioning. The authors tested the

framework with low cost robots. Their hope is that the platooning

as a service approach can help in the construction of more efficient,

interoperable, and secure autonomous vehicles in the future. The

author’s contribution further guided and helped to design, develop

and deploy the micro services.

 Muhammad Alam et al [11] have proposed a modular and

scalable architecture based on lightweight virtualization. The

provided modularity, combined with the orchestration supplied by

Docker, simplifies management, enables distributed deployments

and creates a highly dynamic system. Similarly, Qian Qu et al [12],

have investigated multiple micro service deployment policies on

edge computing platform. The micro services are developed as

Docker containers, and comprehensive experimental results

demonstrate the performance and interference of micro services

running on benchmark scenarios. Studies done by Aravinthan

Gopalasingham et al [13] presented the virtualization of a

prototyped software, which defined radio access network (RAN)

architecture by using VMs and Docker containers. In addition, it

provides an analytical model for the generalized software defined

RAN architecture with the practice of VM based and Docker

container-based implementations. An innovative research done by

Jose Ramirez et al [14], explored these issues by looking at a

reference architecture for services and developed a practical

framework for service management in vehicular networks. A

functional system looking at migration of a Network Memory

Server using different migration techniques such as Docker, KVM,

LXD and Unikernels is explored and the presented results showed

that the authors’ proposed approach can be used to support new

applications and services in a highly mobile environment.

 To secure user identities, the schemes in [26] suggested using

Public Key Infrastructure (PKI). To reduce the communication

overhead of message transmission on VANET, Prema suggested

homomorphic encryption [27]. for VANET, Gao and Xin suggested

a new location privacy scheme [28]. The authors recommend using

a group of key encryptors to establish an encrypted area when the

vehicle/vehicles need to change their pseudonyms. Duan et al using

a Software-Defined Network (SDN) powered vehicle [29] proposed

the adaptive vehicles cluster. SDN distributes the data, and the

vehicle enters the cluster adaptively based on the data traffic. To

solve the scalability, connectivity, and flexibility problems in the

VANET method, Truong et al proposed a hybrid (of Fog and SDN)

scheme [30]. [31] Suggested a VANET-based algorithm for

constructing the optimal service function chain cluster (SFC).

 In current scenarios, applications developed must be generic

that can be implemented in any cross platform environment. Since

most of the vehicular solutions are developed and implemented

using different tools, executing in multiple platforms, our

developed services must be compatible with all vehicular

applications developed under various conditions. Further, the

services must be easily accessible, secured, scalable and deployed

effortlessly, to enhance the client’s requirement. Dockers and

containers satisfy all the above-mentioned requirements.

Containers are used to package the developed services and Dockers,

utilizes the client’s operating system kernel, to convert the services

compatible with any cross platform. Moreover, Dockers and

Containers supports cloud-architect. Current service architectures

do not fully provide such features and hence a new service

management framework for vehicular networks has to be initiated.

To the best of our knowledge, most of the current studies mentioned

micro services are at a conceptual level. In this work, we take this

forward by highlighting an implementation with emphasis on

infotainment as a use case. This study uses an algorithmic approach,

which is detailed, in the ensuing sections.

4. Proposed framework and services

In this paper, we propose a framework to integrate three

modules, which are then transformed into microservices. The first

module estimates the trust between the vehicles and the second

module focuses on the security issues and the third module

emphases on routing activities. Later these applications are

converted into microservices with the help of Dockers. The

application images are deployed in cloud based Docker registries.

Containers are used to deploy, package and ship the micro service

to be executed in cross-platform environments. Based on the user

requirement single or multiple image instances representing

different application are packaged using the Containers and

subsequently executed in the client’s machine. The

Docker/Container services use the client’s OS kernel to convert the

application image to execute in cross platform environments. The

autonomous vehicle manufacturers and solution developers can

extend the Docker images as simple web services in their existing

(or) developing applications, which minimizes their cost and time

in developing complex applications.

 Figure 3, illustrates the overall flow of the proposed architect.

The first step is developing the three modules and integrating them

in the proposed framework. The second step is to convert the

modules as Docker images and deploy them in a public Docker hubs

(or) registries located in cloud-based servers. The third step is

accessing the services by the Trust Management Services present in

the RSUs. The fourth step is recording of roadside events in the

RSUs by a trusted vehicle. The fifth step is estimation of trust for

other neighboring vehicles by the proposed Trust Management

Service TMS. The sixth step is dissemination of encrypted message

along with a secret key to the trusted vehicle, which in turn

propagates the encrypted message along with the secret key to other

trusted vehicles in the cluster [19].

Fig 3. Overall flow of the proposed framework

Henry Alexander Ignatious et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

5

4.1. Proposed clustering algorithm

 The study proposes an entity based indirect trust evaluation

scheme to estimate the trust of the vehicles. The TMS evaluates

the trust of every individual vehicle within the RSU range using

the suggested trust evaluation method. The reputation score is

calculated using the following Eq 1.

𝑻𝒓𝒖𝒔𝒕𝒗𝒂𝒍= (𝑻𝒓𝒖𝒔𝒕𝒗𝒂𝒍 × (1−𝜶) + 𝑳𝑹 × ∝) (1)

Where (𝐿𝑅) is the last feedback rating and (𝛼) represents a

weight assigned to Eq.1., which normally represents values

between the range [0, 1]. For trust estimation, the constant factor

(𝛼) is assigned with a value of (0.2). If any vehicle in the RSU

range is a new entry and which does not have previous feedback

value, the TMS collects valid information related to the new

vehicle such as the register number and forwards the information

to RTA. The RTA in turn validates the register number of the new

vehicle and sends useful information like the owners name, the

registration date, accident rate etc. related to the vehicle, to the

TMS for further processing. For the new vehicles, the proposed

TMS assigns an initial trust value of (0.5) value and subsequently

the trust values are updated based on the vehicles behaviors. TMS

assigns a value of (1) to the factor (𝑳𝑹) in equation (1), for good

behavior of vehicles, and a negative value say (-1) for bad

behavior of vehicles. .Based on the trust scores and distance

metrics a cluster is formed by the TMS using the suggested

clustering algorithm depicted in Table 1. The TMS selects a

vehicle with the maximum trust score as the cluster head.

Encrypted messages along with the secret key (SK), key are first

disseminated by the TMS to the cluster head, which in turn

propagates to other vehicles within the cluster. Figure 4, illustrates

the overall flow of the proposed framework [20].

 Fig. 4. Flow of the proposed framework

4.2. Proposed clustering algorithm

Table 1 below summarizes the proposed clustering algorithm, where the

sequential steps are detailed.

Table 1: Proposed Clustering Algorithm

Step 1: TMS evaluates the trust score of all the vehicles within the

RSU range.

Step 2: TMS selects the vehicle with the maximum trust score as the

cluster head.

Step 3: TMS measures the Euclidean distance between the cluster

head and its neighboring vehicles.

Step 4: If the distance is within an optimal value (5 mts), then the

vehicle joins the cluster head.

Step 5: The procedure is repeated until all the vehicles within the

RSU range are scanned.

Step 6: Remove any vehicle from the cluster, which violates the

above-mentioned condition.

4.3. Message dissemination service

 The focus of this study is ensuring secured and reliable

message exchange between the vehicular entities and trusted

vehicles. Hence, to solve this issue, this study has proposed an

innovative encryption algorithm, which inherits some of the ideas

from the famous CP-ABE encryption/decryption algorithm. The

algorithm generates a secret key along with the encrypted Cipher

text and propagates them to the trusted vehicle in the cluster. The

trusted vehicle using the secret key decrypts the message using the

sale algorithm. Secret key is generated using the following

equation.

𝑆𝐾 = 𝑟𝑎𝑛𝑑(𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟) × 𝐿𝑒𝑛𝑔𝑡ℎ (𝑀)∝ (2)

Where (𝑀) denotes the message and (∝), signifies the weight of

the message. All messages related to roadside events are assigned

with a weight value of (2) and for other messages like

advertisements, infotainment services etc., the weights are assigned

with a value of (1). The encryption and decryption activities are

performed by the suggested encryption/decryption algorithm

following the below mentioned steps.

Step 1: Encryption (SK, M, A) - CT

Step 2: Decryption (CT, SK) – M

Where (SK) represents the secret key, (M) the original message, (A)

denotes access control and (CT) is the CipherText

Table 2, illustrates the overall functioning of the suggested

encryption/decryption algorithm. The encryption algorithm takes

three input parameters namely secret key, message and access

control. For trusted vehicles, the access control value is set to one,

which highlights the vehicles have full privilege to access the secret

key and decrypt the message. Other non-trusted vehicles are

assigned with a value of zero, the vehicles can access the message,

but they are not allowed to decrypt the message. Initially the

decryption algorithm checks the access control value of the

vehicles. If the value is one, then it converts each character of the

message string with its ASCII value, and increments the value with

one [32][33].

Table 2: Proposed Encryption/Decryption Algorithm

Henry Alexander Ignatious et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

6

Encryption (SK,M,A)

Step 1: if (A=1)

Step 2: Read (M)

Step 3: While (𝑀[𝑖] <> 𝑁𝑈𝐿𝐿)

Step 4: CT[i] = ToAscii(M[i] +1)
(Length(M))

Length(M)Div 2

Step 5: 𝑖 = 𝑖 + 1

Step 6: Return (CT)

Decryption(CT, SK)

Step 1: Read(CT)

Step 2: 𝑊ℎ𝑖𝑙𝑒 (𝐶𝑇[𝑖] <> 𝑁𝑈𝐿𝐿)

Step 3: 𝑀[𝑖] =
𝑇𝑜𝐴𝑠𝑐𝑖𝑖(𝐶𝑇[𝑖]−1)(𝐿𝑒𝑛𝑔𝑡ℎ(𝐶𝑇))

𝐿𝑒𝑛𝑔𝑡ℎ(𝐶𝑇)𝐷𝑖𝑣 2

Step 4: 𝑖 = 1 + 1

Step 5: Return(M)

The value obtained is multiplied with the power of the message

length. The results obtained are further divided by the (Div 2)

operation performed over the message length. The encrypted

message along with the secret key is forwarded to the trusted

vehicles and the TMS prompts the vehicles to resend the secret key

to the TMS. This step is performed to authenticate the trusted

vehicles. The TMS crosschecks the secret ley received from the

trusted vehicle and once the vehicle is authenticated, the TMS

allows the vehicle to access the decryption algorithm from the TMS

to know the actual message.

 In decryption process, the only modification done is

decrementing the ASCII value of individual characters in the Cipher

text (CT) by a value of one. Remaining processes are same as the

encryption algorithm to get the original message. Figure 5,

illustrates the various stages involved in the proposed encryption

and decryption algorithm.

4.4. Proposed routing service

 Further, the study has also suggested a heuristic based routing

service, which uses the concepts of Tabu search to effectively route

the vehicles to their desired destination [21].

4.4.1. Functioning of proposed Routing service

 Initially the Tabu search initiates with the starting city,

intermediate cities and ending city along with the best routing

solution. The maximization functioning is estimated using Eq.3.

Average cost associated with the adjacent nodes of a randomly

selected node are calculated. The adjacent node whose

maximization function value is less than or equal to its original cost

is selected as the next node for further processing by the current

node. Subsequently the values in the Tabu list are updated and the

value of the old best solution is updated with the new best solution.

If the value of the maximization function calculated for the adjacent

nodes of a random node is greater than (or) not approximately equal

to the previous best solution, the nodes information is removed from

the Tabu list and the procedure is repeated for the other nodes until

the termination condition is reached. The nodes selected by the

Tabu search along with their associated cost is the optimal path for

that particular trip [21-22].

Fig. 5. Encryption/Decryption Process

Maximizing Function

𝑀𝑎𝑥𝐹𝑢𝑛𝑐𝑇𝑆 = ∑
𝐶𝑜𝑠𝑡(𝑖)

𝑛
𝑛
𝑖=1 (3)

Where 𝑪𝒐𝒔𝒕(𝒊), is the cost is associated with the adjacent node of

a randomly selected node and (𝑛) represents the total number of

adjacent nodes of a selected node in a graph. If Eq.3, has it value

less that (or) approximately equal to the cost of the adjacent nodes,

that particular node is selected as the next node for further

processing. The above statements are represented in Equation (4).

Figure 6 illustrates the functional flow of the suggested routing

algorithm [22 -23].

𝑀𝑎𝑥𝐹𝑢𝑛𝑐 ≤ 𝐶𝑜𝑠𝑡(𝑖) (4)

4.5. Steps to deploy the services

 The following section explains the steps involved in deploying and

executing Docker images

Step 1: Create the new project in Google Cloud platform.

Step 2: Create the environment files required for the Docker image

Step 3: Develop the services.

Step 4: Build and deploy the services in local Google Container Register

(gcr)

Step 5: Create a REST API

Step 6: Pull and push the images via REST API

Step 7: Execute the service in any platform.

4.5.1 Build and deploy images

Run the Docker image

 The Docker is executed in clients’ container using the

Docker run command [18]. Where --rm -p 8000:8000 is the

port through which the application is communicating,

gcr.io/stately-math-273218/my-python-app_test refers the

google cloud register, project id and the image instance

respectively.

Command - gcloud builds submit --tag

gcr.io/stately-math-273218/my-python-

Command - docker run --rm -p 8000:8000 gcr.io/stately-

math-273218/my-python-app_test

Henry Alexander Ignatious et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

7

Fig. 6. Flow of implementation of Tabu search in solving routing

problem in vehicular networks.

5. Experimental Results

 Two types of evaluation are done to evaluate the proposed

services in the framework. Applications are developed using Python

language and deployed as Docker images in a dedicated web server.

The services are accessed from different client machines using

different operating systems and web browsers. This evaluation

measures the efficiency of the microservices. In order to evaluate

the performance of the suggested trust estimation and security

modules, a simulation environment is established using

OMNET++, Sumo and Veins tools. We used OMNET++, to

implement our proposed TM framework. The SUMO, traffic

simulator is used to create traffic flows, and the Veins system is

used to model the vehicular climate. To ensure scalability, different

traffic flow rates were used. For an urban road network

representation, the Al Ain city map is chosen. A SUMO NetEdit

map for the selected region is illustrated in Figure 7. We divide the

road network into equal squared areas and position an RSU in the

center of each area to model the proposed trust model, as shown in

the figure. Each RSU calculates the traffic condition of the road

links it supervises and disseminates it to vehicle agents within its

coverage at the end of a predefined time interval.

Fig 7. Al-Ain City Map

Table 3. Environment setup for accessing cloud services

Hardware

Processor Intel R Core (TM) i7-7600

RAM 8.00 GB

CPU Clock Speed 2.80 GHz

Software and Simulation set up

Operating System Windows 10 64 bit

Cloud Environment Google Cloud

Application Development Python, OMNET++

Networking monitoring tool PRTG Network monitor.

Web Server Apache (2.4.46)

The traffic condition information is then used by vehicle

agents to monitor the dissemination of reliable information in a

multi-hop fashion through V2V communication. We use the IEEE

802.11p implementation available in Veins for the physical and

MAC layers.

Table 3, illustrates the various hardware, software and

simulation requirements needed to implement the services in cloud

environment. Various metrics like packet delivery ratio, accessing

time, time taken to build Docker images and CPU utilization time

are used to evaluate the cross platform performance of the services.

In addition, the services are tested individually for their

performances. PRTG networking monitoring tool is used to monitor

various networking activities of services.

Table 4. Environment setup for simulation

Physical

layer

Frequency band 5.9 GHz

Bandwidth 10 MHz

Service Info Processor CPU

(GHz)

RAM

(GB

Operating

System

Browser Response

Time (s)

Time taken

to build

Docker

images (s)

Bandwidth

occupied

(GHz)

Packet loss

ratio (%)

CPU

utilization

time (s)

Trust
Evaluation

Intel R
Core i7

-7600

2.80

8.00

Windows Chrome 0.23 0.35 1.12 2 0.22

Linux Firefox 0.24 0.37 1.26 2 0.24

Ubuntu Midori 0.24 0.39 1.34 3 0.26

Routing Intel R

Core TM
i5 6200

2.30

4.00

Windows Chrome 0.25 0.40 1.42 2 0.28

Linux Firefox 0.26 0.41 1.45 3 0.32

Ubuntu Midori 0.25 0.42 1.52 3 0.36

Message

dissemination

Intel R

Core i5-
4200U

2.6

4.00

Windows Chrome 0.26 0.50 1.61 2 0.32

Linux Firefox 0.28 0.53 1.67 3 0.36

Ubuntu Midori 0.32 0.55 1.72 2 0.41

An Estimated Edge Location

Henry Alexander Ignatious et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

8

Radio range 360 meter

MAC layer

MAC bit rate 6 Mbps

Mac delay 20 millisecond

Data frequency 5 Hz

Networking

and

application

Urban area Al Ain city

Area of interest 6500 x 4000 meter

Maximum speed 100

Message size 100 byte

Number of messages 10

Simulation time 900 s

Number of runs 5

Confidence level 95%

Scenario 1
 % of Malicious

vehicles

{10, 15, 20, 25, 30,

35, 40}

Scenario 2 Traffic flow rates
{2000, 4000, 6000,

8000} Vehicle/hr.

Similarly, Table 4, illustrates the parameter details of simulation

environment to evaluate the performance of the proposed TMS.

5.1. Overall performance of the suggested services

 The first section illustrates and explains various performance

analysis of the suggested services. Table 5 illustrates the overall

performance of the suggested trust evaluation service. From the

figures, the suggested trust evaluation service performs well in

Chrome browser, implemented in Windows operating system.

Table 6, illustrates the efficiency of the trust model in detecting the

malicious nodes in the vehicular environment by gradually

increasing the number of malicious nodes in the simulation, and

Table 7 depicts the overall performance of the suggested routing

service in simulated environments. From the results, it is evident

that the proposed services perform better in cross platform

platforms and simulated environments.

Table 6. Performance of suggested Trust evaluation service

No of

nodes

No of

malicious

nodes

No of nodes

detected

Time taken

to detect (s)

Accuracy

(%)

10 5 5 0.124 100

20 7 7 0.143 100

30 14 14 0.163 100

40 22 19 0.227 86.36

50 32 30 0.242 93.75

60 44 40 0.265 90.90

70 56 52 0.327 92.85

80 62 59 0.356 95.16

90 72 68 0.443 94.44

100 80 75 0.521 93.75

Table 7. Performance of suggested routing service

No of

Nodes

Optimal Cost of

Tabu Search

No of iterations

taken by Tabu

search

10 312 10

20 350 15

30 411 22

40 467 34

50 510 41

60 578 53

70 684 62

80 768 74

90 831 82

100 945 91

5.2. Comparison with other referred studies

In the second experimental analysis, the performance of

proposed trust estimation service and routing services are compared

with other related referred studies. In the first comparison, the

execution time of the referred [25] and the proposed routing

algorithms to calculate the optimal cost to find the best route is

analyzed. Figure 8, illustrates the results which depicts the better

performance of the suggested routing mechanism over the referred

routing model. The proposed routing algorithm consumes less

number of resources thus minimizing the CPU utilization time over

the proposed study. In the second comparison, the proposed trust

evaluating service is compared with the performance of other

reputed trust models, which operates in a similar fashion of the

proposed trust model. The run time storage consumed by the

models are analyzed. Since the proposed model uses simple

concepts to evaluate the trust, it consumes less run time storage over

other trust evaluation models. From the results portrayed in Figure

(9), it is evident, that the proposed trust model performs better over

the referred trust models.

6. Future Enhancements

 The study can be further extended by implementing various

applications like autonomous billing services, parking services and

platooning services as micro services. The experiments are

conducted using a dedicated server connected to multiple clients. In

future, the services has to be deployed in distributed cloud servers

from which the clients working in different platforms are allowed

to access and integrate the suggested services in their applications.

The services must be accesses from a public Docker hub hosted in

cloud servers.

Table 5. Overall performance of the proposed microservices

in cross platform environments

Fig. 8. Execution time comparison between the proposed and

referred study [25]

Henry Alexander Ignatious et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

9

Figure 9: Performance of the proposed trust service with referred

study [24]

7. Conclusion

This study has proposed a versatile framework to assimilate

three mandatory micro services like trust evaluation, reliable

message dissemination among vehicular entities and routing

services for autonomous vehicles. Further, the study has proposed

a versatile CipherText based encryption/decryption algorithm to

ensure authenticated and safe message dissemination among the

vehicular entities. The main objective of this study is to facilitate

the autonomous car manufacturers and autonomous solution

developers to use these services in their existing vehicular solutions,

minimizing their development time and cost effectively. Further,

these services are planned to be implemented and executed in cross

platform environments. To achieve this, advanced features of

Docker and Containers are used to design, build and deploy the

services as Docker images, whose instances can be integrated in the

containers deployed in the client’s local machine. Google Cloud

platform is used to implement the features of Dockers to build

images. The images created can be executed in the same local

machine where they are deployed or subsequently implemented in

different cross-platform environments and accessed via different

browsers. Experimental results prove that the time taken to deploy

and access the proposed services are comparatively low in different

system environments. Many evaluations and comparisons are done

with other referred studies to prove the efficiency and accuracy of

the proposed services. Future enhancements related to the study is

also highlighted in this paper.

Acknowledgement
This paper was supported by Emirates Center for Mobility

Research of the United Arab Emirates University (grant 31R271).

References

[1] Altche, F., Qian, X., & De La Fortelle, A. (2017). An algorithm

for supervised driving of cooperative semi-autonomous vehicles.

IEEE Transactions on Intelligent Transportation Systems, 18,

3527–3539.

[2] Anderson, J. M., Nidhi, K., Stanley, K. D., Sorensen, P.,

Samaras, C., & Oluwatola, O. A. (2014). Autonomous vehicle

technology. Santa Monica, CA: Rand Corp.

[3] Arbolino, R., Carlucci, F., Cira, A., Ioppolo, G., & Yigitcanlar,

T. (2017). Efficiency of the EU regulation on greenhouse gas

emissions in Italy. Ecological Indicators, 81, 115–123.

[4] Arnaout, G., & Arnaout, J. P. (2014). Exploring the effects of

cooperative adaptive cruise control on highway traffic flow using

microscopic traffic simulation. Transportation Planning and

Technology, 37, 186–199.

[5] Bagloee, S. A., Tavana, M., Asadi, M., & Oliver, T. (2016).

Autonomous vehicles. Journal of Modern Transportation, 24,

284–303.

[6] El Sayed, H., Zeadally, S., & Puthal, D. (2020). Design and

evaluation of a novel hierarchical trust assessment approach for

vehicular networks. Vehicular Communications, 24, 100227.

[7] Baldini G, Fröhlich P, Gelenbe E, Hernandez-Ramos JL, Nowak

M, Nowak S, Papadopoulos S, Drosou A, Tzovaras D. IoT

Network Risk Assessment and Mitigation: The SerIoT

Approach.

[8] Guleng S, Wu C, Chen X, Wang X, Yoshinaga T, Ji Y.

Decentralized trust evaluation in vehicular Internet of Things.

IEEE Access. 2019 Jan 17; 7:15980-8.

[9] Lotz J, Vogelsang A, Benderius O, Berger C. Microservice

Architectures for Advanced Driver Assistance Systems: A Case-

Study. In2019 IEEE International Conference on Software

Architecture Companion (ICSA-C) 2019 Mar 25 (pp. 45-52).

IEEE.

[10] Lu D, Huang D, Walenstein A, Medhi D. A secure microservice

framework for iot. In2017 IEEE Symposium on Service-

Oriented System Engineering (SOSE) 2017 Apr 6 (pp. 9-18).

IEEE.

[11] Alam M, Rufino J, Ferreira J, Ahmed SH, Shah N, Chen Y.

Orchestration of microservices for iot using docker and edge

computing. IEEE Communications Magazine. 2018 Sep

17;56(9):118-23.

[12] Qu Q, Xu R, Nikouei SY, Chen Y. An Experimental Study on

Microservices based Edge Computing Platforms. arXiv preprint

arXiv:2004.02372. 2020 Apr 6.

[13] Gopalasingham A, Herculea DG, Chen CS, Roullet L.

Virtualization of radio access network by Virtual Machine and

Docker: Practice and performance analysis. In2017 IFIP/IEEE

Symposium on Integrated Network and Service Management

(IM) 2017 May 8 (pp. 680-685). IEEE.

[14] Ramírez López M, Spillner J. Towards quantifiable boundaries

 for elastic horizontal scaling of microservices. In6th

 International Workshop on Clouds and (eScience) Applications

 Management (CloudAM 2017), Austin TX, USA, 5-8

 December 2017, ACM.

[15] D. Namiot and M. Sneps-Sneppe, “On iot programming,”

International Journal of Open Information Technologies, vol. 2,

no. 10, 2014. [5] C. Anderson, “Docker [Software

engineering],” IEEE Software, vol. 32, no. 3, pp. 102–c3, 2015.

[16] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An

 Updated Performance Comparison of Virtual Machines and

 Linux Containers,” Technology, vol. 25482, pp. 171–172, 2014.

[17] D. Liu and L. Zhao, “The research and implementation of cloud

computing platform based on docker,” 2014 11th International

Computer Conference on Wavelet Actiev Media Technology

and Information Processing (ICCWAMTIP), pp. 475–478, 2014

[18] B. I. Ismail, E. Mostajeran Goortani, M. B. Ab Karim, W. Ming

Tat, S. Setapa, J. Y. Luke, and O. Hong Hoe, “Evaluation of

Docker as Edge computing platform,” In: 2015 IEEE

Conference on Open Systems (ICOS), pp. 130–135, 2015.

[19] Soleymani SA, Abdullah AH, Hassan WH, Anisi MH, Goudarzi

S, Baee MA, Mandala S. Trust management in vehicular ad hoc

network: a systematic review. EURASIP Journal on Wireless

Communications and Networking. 2017 May 23; 2017(1):146.

[20] Chaker Abdelaziz Kerrache et al, ”RITA: Risk-aware Trust-

based Architecture for collaborative muti-hop vehicular

communications”, Security and Communications, Volume 9, pp

4428-4442, 2016

[21] Purba AP, Siswanto N, Rusdiansyah A. Routing and scheduling

employee transportation using tabu search. InAIP Conference

Henry Alexander Ignatious et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

10

Proceedings 2020 Apr 13 (Vol. 2217, No. 1, p. 030143). AIP

Publishing LLC.

[22] O. Senouci, Z. Aliouat, S. Harous, “A Review of Routing

Protocols in Internet of Vehicles and their Challenges”, Sensor

Review, Emerald Publishing, Vol. 39, No. 1, pp. 58-70, 2019.

[23] Ghosh, T., and Mitra, S. (2012, November). Congestion control

by dynamic sharing of bandwidth among vehicles in VANET.

In Intelligent Systems Design and Applications (ISDA), 2012

12th International Conference on (pp. 291-296). IEEE.

[24] Kravari K, Bassiliades N. StoRM: A social agent-based trust

model for the internet of things adopting microservice

architecture. Simulation Modelling Practice and Theory. 2019

Jul 1;94:286-302.

[25] Jia H, Li Y, Dong B, Ya H. An improved tabu search approach

to vehicle routing problem. Procedia-Social and Behavioural

Sciences. 2013 Nov 6; 96:1208-17.

[26] Förster D, Kargl F, Löhr H. PUCA: A pseudonym scheme with

user-controlled anonymity for vehicular ad-hoc networks

(VANET). In2014 IEEE Vehicular Networking Conference

(VNC) 2014 Dec 3 (pp. 25-32). IEEE.

[27] Prema NK. Efficient secure aggregation in VANETs using fully

homomorphic encryptions (FHE). Mobile Networks and

Applications. 2019 Apr;24(2):434-42.

[28] Deng X, Xin X, Gao T. A location privacy protection scheme

based on random encryption period for VSNs. Journal of

Ambient Intelligence and Humanized Computing. 2020 Mar;

11(3):1351-9.

[29] Duan X, Liu Y, Wang X. SDN enabled 5G-VANET: Adaptive

vehicle clustering and beamformed transmission for aggregated

traffic. IEEE Communications Magazine. 2017 Jul

14;55(7):120-7.

[30] Truong NB, Lee GM, Ghamri-Doudane Y. Software defined

networking-based vehicular adhoc network with fog

computing. In2015 IFIP/IEEE International Symposium on

Integrated Network Management (IM) 2015 May 11 (pp. 1202-

1207). IEEE.

[31] Han Y, Tao X, Zhang X, Jia S. A clustered vnf-chaining scheme

with delay guarantees in nfv-based vanets. In2018 IEEE

International Conference on Communications Workshops (ICC

Workshops) 2018 May 20 (pp. 1-6). IEEE.

[32] Djellali C, Adda M. An Enhanced Deep Learning Model to

Network Attack Detection, by using Parameter Tuning, Hidden

Markov Model and Neural Network. International Journal of

Ubiquitous Systems and Pervasive Networks (JUSPN).

2021;15(01):35-41.

[33] Feltus C. AI'S Contribution to Ubiquitous Systems and

Pervasive Networks Security-Reinforcement Learning vs

Recurrent Networks. International Journal of Ubiquitous

Systems and Pervasive Networks (JUSPN). 2021;15(02):1-9.

	1. Introduction
	2. Background
	3. Related Work
	4. Proposed framework and services
	5. Experimental Results
	6. Future Enhancements
	7. Conclusion

