

Journal of Ubiquitous Systems & Pervasive Networks

Volume 3, No. 1 (2011) pp. 00-00

A Filtering Method for Fast Convex Hull Construction

Fatimah A. Alshehri*, Reham Alshamrani*

Computer Science Department, King Saud University, Riyadh, Saudi Arabia

Abstract
Computing the convex hull of a set of points is a fundamental issue in many fields, including geometric computing,

computer graphics, and computer vision. This problem is computationally challenging, especially when the number of

points is past the millions. In this paper, we propose a fast filtering technique that reduces the computational cost for

computing a convex hull for a large set of points. The proposed method preprocesses the input set and filters all points

inside a four-vertex polygon. The experimental results showed the proposed filtering approach achieved a speedup of up

to 77 and 12 times faster than the standard Graham scan and Jarvis march algorithms, respectively.

Keywords: Convex hull, filtering, priority queue.

1. Introduction

The convex hull of a set of points (S) is defined as the smallest

convex polygon that contains all of the points in S [1].

Computing convex hulls is a fundamental issue with a wide

range of applications in computer sciences, mathematics, statics

and economics. Some of the applications in which the convex

hull is used include image processing, pattern recognition,

medical simulations, geometric modeling, geographical

information systems (GIS), pathfinding, and computer

visualization [2]. It is also applied in video games, simulations of

many bodies physically interacting, engineering design, and

recently, in autonomous driving, where computations must be

strictly fast and in real time [3].

Many classic algorithms have been introduced for computing

convex hulls, including the Graham scan (1972) [4], Jarvis’s

march (1973) [5], the divide-and-conquer algorithm (1977) [6],

Andrew’s monotone chain (Andrew 1979) [7], the

incremental approach (1984) [8], and QuickHull (1996) [9].

However, one aspect can further improve the performance of

these algorithms: adding a preprocessing stage to reduce

computation time and memory space. Fig. 1. Shows example of

convex hull.

One of the most widely used algorithms for finding convex

hulls is the Graham scan algorithm, which calculates the convex

hull of a set of points in O (n log n). The algorithm uses a stack

to store points. It starts by sorting the given set of points on the

x-axis. After that, it checks the orientation at each point

with the two most recently selected points. The required hull

results from joining the points stored in the stack [2].

Although convex hulls have been found using Graham’s

method, there is still an aspect that can be improved. When

computing a convex hull, a Graham scan uses the whole set of

input points, both inside and outside; thus, lead to the problem

that the algorithm works quite slowly. To overcome the

drawbacks of the Graham scan algorithm and to further

improve the performance of convex hull algorithms, we propose

a filtering technique that discards the interior points that forming

extra overhead, subsequently to enhance the Graham scan

algorithm.

The suggested solution presented in this research is to

preprocess the Graham scan algorithm [5] by adding filtering

techniques to enhance the convex hull computing. The important

stage that is added to Graham’s algorithm is discarding points

from the approximate convex hull and inserting them into

priority queues. The proposed algorithm was designed for serial

computing, so it does not need any graphics processing unit

(GPU) resources. However, the challenge is to find an efficient

way to discard these points for faster computation. This was

implemented by employing a preprocessing method to efficiently

filter unnecessary points, which resulted in a smaller input set

S′⊆ S. This reduction directly reduced the computation time, and

experimental results of the proposed algorithm outperformed

well-known convex hull algorithms: Jarvis march and Graham

scan.

The remainder of the paper is organized as follows. Section

2 provides an overview of the prior work on convex hull

algorithms. Section 3 describes the proposed algorithm step by

step. Section 4 compares the proposed algorithm to other well-

* Corresponding author. Tel.: +966536327743
E-mail: Reham.Alshamrani@gmail.com
© 2011 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.03.01.000

1

mailto:Reham.Alshamrani@gmail.com

Fatimah Alshehri, Reham Alshamrani / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

2

known convex hull algorithms. Section 5 concludes the paper

and sheds some light on possible future research directions.

Fig. 1. Example of convex and non-convex polygon [10]

2. Literature Review

In recent years, important efforts have been made to improve

the performance of algorithms to compute the convex hull,

mostly through two approaches: (1) by proposing a parallel

variant of a known algorithm and (2) by filtering the points of S

as a preprocessing stage. Additionally, some works focus

specifically on the 2D or 3D case.

2.1. Parallel Computing

For the case of parallel solutions, there has been a growing

interest in using the GPU for computational geometry in recent

years; several GPU-based algorithms have been proposed for the

2D and 3D convex hull as well. A speed up to 14 times faster

over a standard CPU-based convex hull solution was achieved in

[10], which proposed a GPU-based algorithm for the 2D convex

hull. The authors used a GPU-based algorithm for interior-point

filtering, while they used CPU-based exact convex hull

computation. The remaining points were processed at O (n/p log

n) time complexity.

A sorting-based preprocessing approach that reached a

similar high speedup was proposed in [11], which runs in a linear

time O(n). The algorithm was an alternative CUDA- based

algorithm for the convex hull called CudaCHPre2D, using GPU-

accelerated implementation on single and dual GPUs. The

author achieved speedups of approximately 6 ∼ 9 times on

average and 9 ∼ 14 times faster in the best cases in single GPUs,

when the data size reaches 20M. The GPU- accelerated

implementation developed on dual GPUs was 1.18

∼ 1.35 times faster than on a single GPU. For point sets, they

used randomly distributed points in square, circle, and 3D mesh

models.

Other works have focused on the 3D version of the convex

hull, achieving important speedups thanks to the parallel

performance of GPUs. In [12], the authors presented a CPU-

GPU hybrid convex hull computation algorithm that runs in

O(n). It is simple to implement and offered significant speedups

(up to 27 times faster and 46 times faster for static and

deforming point sets, respectively). They ran it on (10 M to 30

M) points randomly distributed within a spherical 3D space; the

data transfer time (I/O part) represents the overall running time.

The first algorithm for the 3D convex hull problem that is

fully accelerated on the GPU was proposed in [13]; while

producing exact results, the experiment on different test cases

showed that the implementation on CUDA is more than an order

of magnitude faster than the best sequential CPU

implementations. Also, it is 3 to 4 times faster than CGAL,

where n was in the range of 106 to 1013 points.

2.2. Filtering Technique

The second approach for improving convex hull computation

is to use a preprocessing technique that can help reduce the input

set S and transform the problem into a smaller one, without

affecting the output result. The method is based on two stages:

(1) discard points inside a quadrilateral and (2) compute the

convex on the remaining set of points.

A proposed algorithm that runs in O (m log m) in [14] is based

on the fact that only the points existing in the boundary of a

region are covered by a randomly distributed set of points. The

number of points varied from 1000 to 100,000, real-time

simulation results that preprocessing improved the overall

execution time.

Although Quickhull is the algorithm used for the Qhull

library, Qhull was implemented in [11], which was mentioned as

a parallel solution; the researchers also included a filtering stage.

This filtering stage was performed with the help of sorting

algorithms.

Algorithms that used these approaches achieved high

speedup performance in [15]; they enhanced the known Graham

algorithm by adding the Quickhull algorithm in the first stage to

discard interior points. The number of points was quite small

(5000-25,000 points). Furthermore, they proved that their

proposed method outperforms the two algorithms (Graham and

Quickhull).

A similar approach was presented in [16]. Whereas the

algorithm reduced the number of interior points, experimental

results showed that for a normal distribution of points in two-

dimensional space, the filtering approach is up to 10 times

faster than the Qhull library. The number of points varied in the

range [104...109] in a normal distribution. Their algorithm runs

in O (n log n). However, the reduction method executes in time

within O(n).

The authors in [17] presented a method that reached linear

time, with a computational time within O(n). Also, in terms of

time performance, the authors reported a speedup of at least a

factor of two when using Chan’s algorithm.

On the other hand, a sorting-based algorithm to compute the

convex hull of a set of points in R2 was presented in [18],

referred to as the TOURCH algorithm. The algorithm

outperforms the fastest algorithm Quickhull, 1.17 times faster.

The TORCH algorithm has O (n log n) time complexity. The

authors implemented it with 3 multisets varied from one million

to 128 million points.

However, the previous works that discussed above didn't

reach reasonable speedup that enhancing traditional algorithms.

While the proposed filtering method outperforms the original

Graham scan and reach a speed up of 77 times without using of

GPUs or any parallelization techniques.

Fatimah Alshehri, Reham Alshamrani / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

3

Table 1. Comparison of previous work

Paper Algorithm Execution time Results Time

Complexity

Dimension Point set

CudaHull [10] GPU-based for interior point

filtering, CPU-based exact

convex computation

14 times faster than

standard CPU-based

Convex Hull

O (n/p log n) 2D deforming point sets

CudaCHPre2D

[11]

GPU-accelerated

implemented on single and on

dual GPUs.

In single GPU:

9 × ∼ 14×

On dual GPUs: 1.18 ∼
1.35

O (n) 2D randomly distributed

points in a square, circle

and 3D mesh models

[12] CPU-GPU hybrid 46 times faster than single

CPU

(I/O part) 3D randomly distributed in 3D

space.
(10 M to 30 M)

gHull [13] GPU and Using CUDA

programming model.

implementation on CUDA

is faster than the best

sequential CPU
implementations

Not

mentioned

3D n in the range of 106 to

107

[14] divided the point set into four

rectangular regions

real-time simulation results

improve the overall

execution time

O (m log m) 2D randomly distributed set of

points (1000- 100000)

CudaCHPre2D

[11]

Preprocessing method to

discard interior points
More than 99% input

points are discarded

O (n) 2D randomly distributed

points in a square, circle

and 3D mesh models.

[15] Combining Graham with

Qiuck hull algorithm

proposed method

outperforms the two

algorithms

Not

mentioned

2D (5000-25000) points

[16] Preprocessing method using

priority queue
up to 10 times faster than

the qhull library

O (n log n) 2D n varies in the range (104-

109)

[17] Linear time preprocessing (no

sorting step)

speedup of at least a factor

of two than Chan’s

algorithm

O(n) 2D n size is hundred points

and up

TOURCH [18] Sorting based preprocessing 1.17×times faster than
Quickhull

O (n log n) 2D 1 M to 128 M For each 3
multisets

3. Overview of the algorithm

In this work, we present a variant of a filtering technique for

reducing the input set S. It is based on a fast filtering process that

occurs inside a four-sided polygon [16]. A priority queue is

employed to hold the remaining points in the four regions

outside the polygon. It also sorts points during the filtering stage,

which can then be used to produce an ordered extraction of

points when executing a convex hull algorithm using the Graham

scan algorithm. The proposed algorithm differs in how the hulls

between the points are calculated. In general terms, the proposed

algorithm consists of the following steps, as presented in Fig. 2.

• Find extreme points.

• Filter and group the points into priority queues

• Construct the convex hull.

In the following sections, we described the relevant parts of the

algorithm in further detail.

Fig. 2. Flowchart of the proposed algorithm

Fatimah Alshehri, Reham Alshamrani / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

4

3.1. Find Extreme Points

In the first stage, a four-sided polygon from the input set is

built, which is then used to filter out the inside points and keep

the ones outside the polygon as candidates. For each coordinate,

in linear time, we identify the set of right-most, upper-most, left-

most, and lowest points, denoted as P = {XMIN, YMIN, XMAX, YMAX}.

None of the points inside the polygon formed by these points

belongs to the convex hull, as illustrated in Fig. 3.

3.2. Point Filtering Grouping into Priority Queues

The next stage of the algorithm is a complete pass on the

input S. For each point pi ∈ S, the algorithm checks if it is inside

the polygon or not. If the current point lies inside the polygon,

then this point is filtered by the algorithm. Importantly, in many

practical cases where the distribution function of the input set S

is similar to the normal or uniform distribution, most of the

points are inside of the filtering polygon and will be discarded

in linear time.

If the point lies outside P, then the algorithm will insert the

point into priority queues, which are implemented using

min/max heaps. The queue Q holds the points of the four regions

formed by P and the corner points, as illustrated in Fig. 3.

3.3. Construct the Convex Hull

The construction of the convex hull follows the Graham

method, with the hull construction exploiting this sorting

between the points. The algorithm extracts each point from Q.

To establish a counterclockwise order, we set Q to be a

maximum priority queue—based on the X coordinate—that

stores points from right (Xmax) to up (Ymax), as illustrated in

Fig. 4. The same procedure is repeated with the other three

regions.

For each point (pj) from queue Q, we determine at which side

of the line Plast, Pext it is, where Pext is the last extreme point

in the area handled by the queue and Plast is the last point added

to the current segment of the partial hull from the points stored

in the queue. Accordingly, if pj is outside of the line (i.e., on

the right side in a counterclockwise direction), then this point

is added to the potential convex hull CH [1 ... h]. This

verification utilizes the Graham algorithm test, which checks

whether triplets of consecutive vertices are in counterclockwise

order, simply by computing the slopes between points. Suppose

the three points (a, b), (c, d), and (e, f), given in that order.

Suppose that the first point is farthest to the left, so a < c and a

< f. Then, the three points are in counterclockwise order if and

only if the line (a, b) (c, d) is less than the slope of the line (a,b)

(e, f):

Counterclockwise ⇐⇒((d-b) / (c-a)) < ((f-b) / (e-a)) (1)

Fig. 3. Finding extreme points from the polygon

Fig. 4. Finding extreme points from the polygon

Because both denominators are positive, we can rewrite this

inequality as follows:

Counterclockwise ⇐⇒ (f − b) (c − a) > (d − b) (e − a) (2)

The resulting polygon of this stage is the convex hull CH [1

... h] of P, which is ordered in a counterclockwise direction,

starting at the rightmost point in P. The final output form is

illustrated in Fig. 4.

Algorithm 1 above describes the process to compute the

convex hull. Lines 2-9 describe the filtering stage, and lines 10-

14 are the convex hull computation over the reduced set of n′ ≤

n points. At line 2, the process findExtremes() finds, in linear

time, the four extreme points that define the filtering convex

polygon CH(E). The for loop at lines 4-9 iterates for all n points

to discard the ones inside CH(E) (the polygon), through the

conditional at line 5. The remaining points for the convex hull

are those outside CP(E), for which the priority queue is set to

insert the point into it. The final stage, at lines 10-14, constructs

the convex hull CH [1… h], with h ≤ n′, using the Graham

method, which computes the slopes between points in

counterclockwise order [19].

Fatimah Alshehri, Reham Alshamrani / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

5

Algorithm 1: To compute convex hull S [1….h] in 2D

Input: n points, in 2D, sorted in an array P [1…n]

Output: an array CH [1…h] with h points of the hull in counterclockwise order.

1. Procedure Algorithm(P,n)

2. E FIND EXTREME POINTS(P,n) ▷ find the 4 extreme points in O(n) time

3. Leftmost, Rightmost, Uppermost, Lowermost;

4. For j=1 to n do

5. If P[j] is outside the convex polygon

6. Store j in the priority queue Q ▷insert P[i] in Q in O (1) time

7. else

8. Discard point

9. end for

10. Construct convex hull

11. For i=1to n do

12. Construct Convex hull (CH) from Queue ▷ CH for points of Q in O (n’ log n’) time

13. end for

14. Return CH ▷ the convex hull CH [1...h], with n
′

≤ n

15. End procedure

3.4. Time complexity analysis

Recall that the algorithm is given a set P [1... n] and

outputs another set CH [1... h] ⊆ P. The first stage is finding the

four extreme points in O(n) time (linear time). In the filtering

stage, checking whether a point is inside a polygon is a task that

takes O(n) time. The process of filtering and grouping points into

the priority queue takes O(n) time. The final stage at which to

extract the convex hull is O (n log n) according to the Graham

algorithm. Taking into consideration the previous analysis, we

conclude that the proposed algorithm has O (n log n) running

time [20].

4. Results and discussion
In this paper, we measured the proposed algorithm’s

execution time to determine if filtering the input points before

computing the convex hull would enhance the original Graham

scan algorithm [5].

We implemented the proposed algorithm using the Java

programming language in NetBeans IDE 8.2. No parallel

programming was used in our implementation. All of the

experiments were conducted on an HP Pavilion with a 1.80 GHz

Intel® Core™ i7-8565U CPU and 8 GB RAM, running the

Windows 10 Home operating system, version 1903 (OS Build

18362.418). The resulting output is illustrated in Fig. 5, with a

random normal distribution point set.

For benchmarking, the proposed algorithm was compared to

two algorithms: Graham scan [5] and Jarvis march [6]. For the

input point set, we randomly generated points in a two-

dimensional domain in the range [100,000... 1000,000], as

shown in Table 1. Each point was defined as a pair of floating-

Fig. 5. The resulting convex hull

point numbers. The execution times were measured in

milliseconds.

According to Fig. 6, the proposed algorithm has a faster

execution time than the Graham scan and Jarvis march

algorithms. Additionally, as the number of points increased, the

execution time of the Graham scan algorithm also increased,

while the proposed algorithm presented better performance than

even the Jarvis march algorithm. The original Graham scan

algorithm halted at 300,000 points because it has large

computation overheads and thus could not handle a dense

number of points. However, the proposed algorithm showed a

significant enhancement and successfully processed up to one

million points in a short time. As shown in Table 2, the execution

time of the proposed algorithm was around 9 ms for 100,000

points, but the execution time gradually decreased as more points

were added.

Fatimah Alshehri, Reham Alshamrani / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

6

Fig. 5. Execution times of Jarvis march, Graham scan, and the proposed algorithm.

Although the analyzed time complexity of the proposed

algorithm is O (n log), which is the same as in the Graham

algorithm, the proposed algorithm showed enhanced

performance in real execution scenarios, outperforming both the

Graham scan and Jarvis march algorithms.

The results illustrate that the preprocessing approach

presented in this paper reduces the execution time of the Graham

scan by up to 77 times. Also, it is 12 times faster than the Jarvis

march algorithm. Thus, the preprocessing technique can be

applied to other algorithms, especially convex hull algorithms.

Table 2. Time performance (s) of Jarvis march and Graham scan

 algorithms versus the proposed algorithm.

Number of

points (n)

Jarvis march

(ms)

Graham scan

(ms)

Proposed

algorithm (ms)

100,000 17.4202 237.1718 9.7401

200,000 16.9774 396.4281 4.717

300,000 20.471 467.7013 2.8273

400,000 34.7065 - 2.8936

500,000 47.7725 - 4.6297

600,000 55.8307 - 3.7483

700,000 58.9525 - 3.7075

800,000 73.7883 - 4.7002

900,000 72.8367 - 4.8417

1,000,000 113.0887 - 4.4846

5. Conclusions
Enhancing the convex hull algorithm by reducing the interior

points for fast convex hull computing has been of interest to

computer scientists for decades. This work has presented a

preprocessing approach for the Graham scan algorithm to

compute a convex hull for a random set of points in two-
dimensional space.

The main contribution of this paper is enhancing the Graham

scan algorithm by adding filtering techniques for fast convex

hull computing.

The benefits of speed and memory saved through the

proposed method were better when a significant number of the

input points lay inside the convex hull. This scenario is a typical

case in many applications where points are presented as clusters

of points.

Experimental results based on normal distribution point sets

showed that the proposed algorithm outperforms the original

Graham scan in terms of execution time by up to 77 times. Thus,

the preprocessing technique presented here can be a useful

approach for many practical problems that require fast

computation of a convex hull. Moreover, the filtering technique

can be extended to higher dimensions. In future work, it would

be interesting to study how this method of performance can be

further improved through parallel computing, with modern

GPUs that offer parallel computation for highly parallelizable

problems, as well as to illuminate geometric computations.

References

[1] Jayaram, M., Fleyeh, H. (2016) "Convex Hulls in Image
Processing: A Scoping Review." American Journal of

Intelligent Systems 6 (2): 48-58.

[2] Mei, G. (2016). "CudaChain: an alternative algorithm for
finding 2D convex hulls on the GPU." SpringerPlus, 5(1).

[3] SOUTO, N. (2019). "Video Game Physics Tutorial - Part II:

Collision Detection for Solid Objects." [online]

DEVELOPERS.

[4] Graham, RL. "An efficient algorithm for determining the
convex hull of a finite planar set." Inform Process Lett 1972;

1(4).

Fatimah Alshehri, Reham Alshamrani / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 00-00

7

[5] Jarvis, RA. "On the identification of the convex hull of a
finite set of points in the plane." Inform Process Lett 1973;
2(1)

[6] Franco P. Preparata. S.J. Hong. "Convex Hulls of Finite Sets

of Points in Two and Three Dimensions," Commun. ACM,

vol. 20, no. 2, pp. 87–93, 1977.

[7] A.M. Andrew. "Another efficient algorithm for convex hulls
in two dimensions." Information Processing Letters,
Volume 9, Issue 5, 16 December 1979, Pages 216-219.

[8] Kallay, M. "The complexity of incremental convex hull
algorithms in Rd." Information Processing Letters, Volume

19, Issue 4, 12 November 1984, Page 197.

[9] Barber CB, Dobkin DP, Huhdanpaa H. "The quickhull
algorithm for convex hulls." ACM Transactions on

Mathematical Software (TOMS), Volume 22 Issue 4, Dec.
19

[10] Stein, A., Geva, E. and El-Sana, J. (2012). "CudaHull: Fast
parallel 3D convex hull on the GPU." Computers &

Graphics, 36(4), pp.265-271.

[11] Qin, J., Mei, G., Cuomo, S., Guo, S. and Li, Y. (2019).
"CudaCHPre2D: A straightforward preprocessing
approach for accelerating 2D convex hull computations on

the GPU." Concurrency and Computation: Practice and to
imExperience, p.e5229.

[12] Tang, M., Zhao, J., Tong, R. and Manocha, D. (2012).

"GPU accelerated convex hull computation." Computers &
Graphics, 36(5), pp.498-506. 96, Pages 469-483.

[13] Gao, M., Cao, T., Nanjappa, A., Tan, T. and Huang, Z.

(2013). "gHull.: A GPU algorithm for 3D convex hull."

ACM Transactions on Mathematical Software, 40(1), pp.1-

19.

[14] Das, Patita & Singh, Laiphrakpam & Kar, Nirmalya.
(2013). "A Pre-processing Algorithm for Faster Convex
Hull Computation." IET Conference Publications. 2013.
8.01-8.01. 10.1049/cp.2013.2348.

[15] M. Sharif, “A new approach to compute convex hull,”
Innov. Syst. Des. Eng., vol. 2, no. 3, pp. 186–192, 2011.

[16] Ferrada, H., Navarro, C. and Hitschfeld, N. (2019). "A
filtering technique for fast Convex Hull construction in

R2." Journal of Computational and Applied Mathematics,
364, p.112298.

[17] Cadenas, O. and Megson, G. (2019). "Preprocessing 2D

data for fast convex hull computations." PLOS ONE, 14(2),
p.e0212189.

[18] Gomes, A. (2016). "A Total Order Heuristic-Based Convex
Hull Algorithm for Points in the Plane." Computer-
Aided Design, 70, pp.153-160.

[19] D. Cañas, A. Orozco, and L. Villalba, “An Extension
Proposal of AntOR for Parallel Computing,” J. Ubiquitous
Syst. Pervasive Networks, vol. 3, no. 2, pp. 67–72, 2011,

doi: 10.5383/juspn.03.02.005.

[20] M. Mansour, A. Ghneimat, R. Alasem, F. Jarray, and A. U.-
Jordan, “Performance Analysis and Functionality
Comparison of First Hop Redundancy Protocols,” vol. 15,

no. 1, pp. 1–9, 2021, doi: 10.5383/JUSPN.15.01.007.

