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Abstract 
Computing the convex hull of a set of points is a fundamental issue in many fields, including geometric computing, 

computer graphics, and computer vision. This problem is computationally challenging, especially when the number of 

points is past the millions. In this paper, we propose a fast filtering technique that reduces the computational cost for 

computing a convex hull for a large set of points. The proposed method preprocesses the input set and filters all points 

inside a four-vertex polygon. The experimental results showed the proposed filtering approach achieved a speedup of up 

to 77 and 12 times faster than the standard Graham scan and Jarvis march algorithms, respectively. 
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1. Introduction 

 

The convex hull of a set of points (S) is defined as the smallest 

convex polygon that contains all of the points in S [1]. 

Computing convex hulls is a fundamental issue with a wide 

range of applications in computer sciences, mathematics, statics 

and economics. Some of the applications in which the convex 

hull is used include image processing, pattern recognition, 

medical simulations, geometric modeling, geographical 

information systems (GIS), pathfinding, and computer 

visualization [2]. It is also applied in video games, simulations of 

many bodies physically interacting, engineering design, and 

recently, in autonomous driving, where computations must be 

strictly fast and in real time [3]. 

Many classic algorithms have been introduced for computing 

convex hulls, including the Graham scan (1972) [4], Jarvis’s 

march (1973) [5], the divide-and-conquer algorithm (1977) [6], 

Andrew’s monotone chain (Andrew 1979) [7], the 

incremental approach (1984) [8], and QuickHull (1996) [9]. 

However, one aspect can further improve the performance of 

these algorithms: adding a preprocessing stage to reduce 

computation time and memory space. Fig. 1. Shows example of 

convex hull. 

One of the most widely used algorithms for finding convex 

hulls is the Graham scan algorithm, which calculates the convex 

hull of a set of points in O (n log n). The algorithm uses a stack 

to store points. It starts by sorting the given set of points on the 

x-axis. After that, it checks the orientation at each point 

 

 
with the two most recently selected points. The required hull 

results from joining the points stored in the stack [2]. 

Although convex hulls have been found using Graham’s 

method, there is still an aspect that can be improved. When 

computing a convex hull, a Graham scan uses the whole set of 

input points, both inside and outside; thus, lead to the problem 

that the algorithm works quite slowly. To overcome the 

drawbacks of the Graham scan algorithm and to further 

improve the performance of convex hull algorithms, we propose 

a filtering technique that discards the interior points that forming 

extra overhead, subsequently to enhance the Graham scan 

algorithm. 

The suggested solution presented in this research is to 

preprocess the Graham scan algorithm [5] by adding filtering 

techniques to enhance the convex hull computing. The important 

stage that is added to Graham’s algorithm is discarding points 

from the approximate convex hull and inserting them into 

priority queues. The proposed algorithm was designed for serial 

computing, so it does not need any graphics processing unit 

(GPU) resources. However, the challenge is to find an efficient 

way to discard these points for faster computation. This was 

implemented by employing a preprocessing method to efficiently 

filter unnecessary points, which resulted in a smaller input set 

S′⊆ S. This reduction directly reduced the computation time, and 

experimental results of the proposed algorithm outperformed 

well-known convex hull algorithms: Jarvis march and Graham 

scan. 

The remainder of the paper is organized as follows. Section 

2 provides an overview of the prior work on convex hull 

algorithms. Section 3 describes the proposed algorithm step by 

step. Section 4 compares the proposed algorithm to other well- 
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known convex hull algorithms. Section 5 concludes the paper 

and sheds some light on possible future research directions. 

 

Fig. 1. Example of convex and non-convex polygon [10] 

 

2. Literature Review 
 

In recent years, important efforts have been made to improve 

the performance of algorithms to compute the convex hull, 

mostly through two approaches: (1) by proposing a parallel 

variant of a known algorithm and (2) by filtering the points of S 

as a preprocessing stage. Additionally, some works focus 

specifically on the 2D or 3D case. 

 
2.1. Parallel Computing 

 
For the case of parallel solutions, there has been a growing 

interest in using the GPU for computational geometry in recent 

years; several GPU-based algorithms have been proposed for the 

2D and 3D convex hull as well. A speed up to 14 times faster 

over a standard CPU-based convex hull solution was achieved in 

[10], which proposed a GPU-based algorithm for the 2D convex 

hull. The authors used a GPU-based algorithm for interior-point 

filtering, while they used CPU-based exact convex hull 

computation. The remaining points were processed at O (n/p log 

n) time complexity. 

A sorting-based preprocessing approach that reached a 

similar high speedup was proposed in [11], which runs in a linear 

time O(n). The algorithm was an alternative CUDA- based 

algorithm for the convex hull called CudaCHPre2D, using GPU-

accelerated implementation on single and dual GPUs. The 

author achieved speedups of approximately 6 ∼ 9 times on 

average and 9 ∼ 14 times faster in the best cases in single GPUs, 

when the data size reaches 20M. The GPU- accelerated 

implementation developed on dual GPUs was 1.18 

∼ 1.35 times faster than on a single GPU. For point sets, they 

used randomly distributed points in square, circle, and 3D mesh 

models. 

Other works have focused on the 3D version of the convex 

hull, achieving important speedups thanks to the parallel 

performance of GPUs. In [12], the authors presented a CPU- 

GPU hybrid convex hull computation algorithm that runs in 

O(n). It is simple to implement and offered significant speedups 

(up to 27 times faster and 46 times faster for static and 

deforming point sets, respectively). They ran it on (10 M to 30 

M) points randomly distributed within a spherical 3D space; the 

data transfer time (I/O part) represents the overall running time. 

 
The first algorithm for the 3D convex hull problem that is 

fully accelerated on the GPU was proposed in [13]; while 

producing exact results, the experiment on different test cases 

showed that the implementation on CUDA is more than an order 

of magnitude faster than the best sequential CPU 

implementations. Also, it is 3 to 4 times faster than CGAL, 

where n was in the range of 106 to 1013 points. 

 
2.2. Filtering Technique 

 
The second approach for improving convex hull computation 

is to use a preprocessing technique that can help reduce the input 

set S and transform the problem into a smaller one, without 

affecting the output result. The method is based on two stages: 

(1) discard points inside a quadrilateral and (2) compute the 

convex on the remaining set of points. 

A proposed algorithm that runs in O (m log m) in [14] is based 

on the fact that only the points existing in the boundary of a 

region are covered by a randomly distributed set of points. The 

number of points varied from 1000 to 100,000, real-time 

simulation results that preprocessing improved the overall 

execution time. 

Although Quickhull is the algorithm used for the Qhull 

library, Qhull was implemented in [11], which was mentioned as 

a parallel solution; the researchers also included a filtering stage. 

This filtering stage was performed with the help of sorting 

algorithms. 

Algorithms that used these approaches achieved high 

speedup performance in [15]; they enhanced the known Graham 

algorithm by adding the Quickhull algorithm in the first stage to 

discard interior points. The number of points was quite small 

(5000-25,000 points). Furthermore, they proved that their 

proposed method outperforms the two algorithms (Graham and 

Quickhull). 

A similar approach was presented in [16]. Whereas the 

algorithm reduced the number of interior points, experimental 

results showed that for a normal distribution of points in two- 

dimensional space, the filtering   approach   is   up   to 10 times 

faster than the Qhull library. The number of points varied in the 

range [104...109] in a normal distribution. Their algorithm runs 

in O (n log n). However, the reduction method executes in time 

within O(n). 

The authors in [17] presented a method that reached linear 

time, with a computational time within O(n). Also, in terms of 

time performance, the authors reported a speedup of at least a 

factor of two when using Chan’s algorithm. 

On the other hand, a sorting-based algorithm to compute the 

convex hull of a set of points in R2 was presented in [18], 

referred to as the TOURCH algorithm. The algorithm 

outperforms the fastest algorithm Quickhull, 1.17 times faster. 

The TORCH algorithm has O (n log n) time complexity. The 

authors implemented it with 3 multisets varied from one million 

to 128 million points.  

However, the previous works that discussed above didn't 

reach reasonable speedup that enhancing traditional algorithms. 

While the proposed filtering method outperforms the original 

Graham scan and reach a speed up of 77 times without using of 

GPUs or any parallelization techniques. 
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Table 1. Comparison of previous work 

 

Paper Algorithm Execution time Results Time 

Complexity 

Dimension Point set 

CudaHull [10] GPU-based for interior point 

filtering, CPU-based exact 

convex computation 

14 times faster than 

standard CPU-based 

Convex Hull 

O (n/p log n) 2D deforming point sets 

CudaCHPre2D 

[11] 

GPU-accelerated 

implemented on single and on 

dual GPUs. 

In single GPU: 

9 × ∼ 14× 

On dual GPUs: 1.18 ∼ 
1.35 

O (n) 2D randomly distributed 

points in a square, circle 

and 3D mesh models 

[12] CPU-GPU hybrid 46 times faster than single 

CPU 

(I/O part) 3D randomly distributed in 3D 

space. 
(10 M to 30 M) 

gHull [13] GPU and Using CUDA 

programming model. 

implementation on CUDA 

is faster than the best 

sequential CPU 
implementations 

Not 

mentioned 

3D n in the range of 106 to 

107 

[14] divided the point set into four 

rectangular regions 

real-time simulation results 

improve the overall 

execution time 

O (m log m) 2D randomly distributed set of 

points (1000- 100000) 

CudaCHPre2D 

[11] 

Preprocessing method to 

discard interior points 
More than 99% input 

points are discarded 

O (n) 2D randomly distributed 

points in a square, circle 

and 3D mesh models. 

[15] Combining Graham with 

Qiuck hull algorithm 

proposed method 

outperforms the two 

algorithms 

Not 

mentioned 

2D (5000-25000) points 

[16] Preprocessing method using 

priority queue 
up to 10 times faster than 

the qhull library 

O (n log n) 2D n varies in the range (104- 

109) 

[17] Linear time preprocessing (no 

sorting step) 

speedup of at least a factor 

of two than Chan’s 

algorithm 

O(n) 2D n size is hundred points 

and up 

TOURCH [18] Sorting based preprocessing 1.17×times faster than 
Quickhull 

O (n log n) 2D 1 M to 128 M For each 3 
multisets 

 

 
3. Overview of the algorithm 

 

In this work, we present a variant of a filtering technique for 

reducing the input set S. It is based on a fast filtering process that 

occurs inside a four-sided polygon [16]. A priority queue is 

employed to hold the remaining points in the four regions 

outside the polygon. It also sorts points during the filtering stage, 

which can then be used to produce an ordered extraction of 

points when executing a convex hull algorithm using the Graham 

scan algorithm. The proposed algorithm differs in how the hulls 

between the points are calculated. In general terms, the proposed 

algorithm consists of the following steps, as presented in Fig. 2. 

 

• Find extreme points. 

• Filter and group the points into priority queues 

• Construct the convex hull. 

 
In the following sections, we described the relevant parts of the 

algorithm in further detail. 

 

 

 

 

 

Fig. 2. Flowchart of the proposed algorithm 
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3.1. Find Extreme Points 

 
In the first stage, a four-sided polygon from the input set is 

built, which is then used to filter out the inside points and keep 

the ones outside the polygon as candidates. For each coordinate, 

in linear time, we identify the set of right-most, upper-most, left-

most, and lowest points, denoted as P = {XMIN, YMIN, XMAX, YMAX}. 

None of the points inside the polygon formed by these points 

belongs to the convex hull, as illustrated in Fig. 3. 

 
3.2. Point Filtering Grouping into Priority Queues 

 
The next stage of the algorithm is a complete pass on the 

input S. For each point pi ∈ S, the algorithm checks if it is inside 

the polygon or not. If the current point lies inside the polygon, 

then this point is filtered by the algorithm. Importantly, in many 

practical cases where the distribution function of the input set S 

is similar to the normal or uniform distribution, most of the 

points are inside of the filtering polygon and will be discarded 

in linear time. 

If the point lies outside P, then the algorithm will insert the 

point into priority queues, which are implemented using 

min/max heaps. The queue Q holds the points of the four regions 

formed by P and the corner points, as illustrated in Fig. 3. 

 

3.3. Construct the Convex Hull 

 
The construction of the convex hull follows the Graham 

method, with the hull construction exploiting this sorting 

between the points. The algorithm extracts each point from Q. 

To establish a counterclockwise order, we set Q to be a 

maximum priority queue—based on the X coordinate—that 

stores points from right (Xmax) to up (Ymax), as illustrated in 

Fig. 4. The same procedure is repeated with the other three 

regions. 

For each point (pj) from queue Q, we determine at which side 

of the line Plast, Pext it is, where Pext is the last extreme point 

in the area handled by the queue and Plast is the last point added 

to the current segment of the partial hull from the points stored 

in the queue. Accordingly, if pj is outside of the line (i.e., on 

the right side in a counterclockwise direction), then this point 

is added to the potential convex hull CH [1 ... h]. This 

verification utilizes the Graham algorithm test, which checks 

whether triplets of consecutive vertices are in counterclockwise 

order, simply by computing the slopes between points. Suppose 

the three points (a, b), (c, d), and (e, f), given in that order. 

Suppose that the first point is farthest to the left, so a < c and a 

< f. Then, the three points are in counterclockwise order if and 

only if the line (a, b) (c, d) is less than the slope of the line (a,b) 

(e, f): 

 
 

Counterclockwise ⇐⇒((d-b) / (c-a)) < ((f-b) / (e-a)) (1) 

 

 

Fig. 3. Finding extreme points from the polygon 

 

 
Fig. 4. Finding extreme points from the polygon 

 
Because both denominators are positive, we can rewrite this 

inequality as follows: 

Counterclockwise ⇐⇒ (f − b) (c − a) > (d − b) (e − a) (2) 

The resulting polygon of this stage is the convex hull CH [1 

... h] of P, which is ordered in a counterclockwise direction, 

starting at the rightmost point in P. The final output form is 

illustrated in Fig. 4. 

Algorithm 1 above describes the process to compute the 

convex hull. Lines 2-9 describe the filtering stage, and lines 10- 

14 are the convex hull computation over the reduced set of n′ ≤ 

n points. At line 2, the process findExtremes() finds, in linear 

time, the four extreme points that define the filtering convex 

polygon CH(E). The for loop at lines 4-9 iterates for all n points 

to discard the ones inside CH(E) (the polygon), through the 

conditional at line 5. The remaining points for the convex hull 

are those outside CP(E), for which the priority queue is set to 

insert the point into it. The final stage, at lines 10-14, constructs 

the convex hull CH [1… h], with h ≤ n′, using the Graham 

method, which computes the slopes between points in 

counterclockwise order [19]. 
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Algorithm 1: To compute convex hull S [1….h] in 2D 

Input: n points, in 2D, sorted in an array P [1…n] 

Output: an array CH [1…h] with h points of the hull in counterclockwise order. 

 

1. Procedure Algorithm(P,n) 

2. E FIND EXTREME POINTS(P,n) ▷ find the 4 extreme points in O(n) time 

3. Leftmost, Rightmost, Uppermost, Lowermost; 

4. For j=1 to n do 

5. If P[j] is outside the convex polygon 

6. Store j in the priority queue Q ▷insert P[i] in Q in O (1) time 

7. else 

8. Discard point 

9. end for 

10. Construct convex hull 

11. For i=1to n do 

12. Construct Convex hull (CH) from Queue ▷ CH for points of Q in O (n’ log n’) time 

13. end for 

14. Return CH ▷ the convex hull CH [1...h], with n
′ 

≤ n 

15. End procedure 

 

 

 

 
3.4. Time complexity analysis 

 
Recall that the algorithm is given a set P [1... n] and 

outputs another set CH [1... h] ⊆ P. The first stage is finding the 

four extreme points in O(n) time (linear time). In the filtering 

stage, checking whether a point is inside a polygon is a task that 

takes O(n) time. The process of filtering and grouping points into 

the priority queue takes O(n) time. The final stage at which to 

extract the convex hull is O (n log n) according to the Graham 

algorithm. Taking into consideration the previous analysis, we 

conclude that the proposed algorithm has O (n log n) running 

time [20]. 
 

4. Results and discussion 
In this paper, we measured the proposed algorithm’s 

execution time to determine if filtering the input points before 

computing the convex hull would enhance the original Graham 

scan algorithm [5]. 

We implemented the proposed algorithm using the Java 

programming language in NetBeans IDE 8.2. No parallel 

programming was used in our implementation. All of the 

experiments were conducted on an HP Pavilion with a 1.80 GHz 

Intel® Core™ i7-8565U CPU and 8 GB RAM, running the 

Windows 10 Home operating system, version 1903 (OS Build 

18362.418). The resulting output is illustrated in Fig. 5, with a 

random normal distribution point set. 

For benchmarking, the proposed algorithm was compared to 

two algorithms: Graham scan [5] and Jarvis march [6]. For the 

input point set, we randomly generated points in a two- 

dimensional domain in the range [100,000... 1000,000], as 

shown in Table 1. Each point was defined as a pair of floating- 

Fig. 5. The resulting convex hull 

 

point numbers. The execution times were measured in 

milliseconds. 

According to Fig. 6, the proposed algorithm has a faster 

execution time than the Graham scan and Jarvis march 

algorithms. Additionally, as the number of points increased, the 

execution time of the Graham scan algorithm also increased, 

while the proposed algorithm presented better performance than 

even the Jarvis march algorithm. The original Graham scan 

algorithm halted at 300,000 points because it has large 

computation overheads and thus could not handle a dense 

number of points. However, the proposed algorithm showed a 

significant enhancement and successfully processed up to one 

million points in a short time. As shown in Table 2, the execution 

time of the proposed algorithm was around 9 ms for 100,000 

points, but the execution time gradually decreased as more points 

were added. 
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Fig. 5. Execution times of Jarvis march, Graham scan, and the proposed algorithm. 
 

Although the analyzed time complexity of the proposed 

algorithm is O (n log), which is the same as in the Graham 

algorithm, the proposed algorithm showed enhanced 

performance in real execution scenarios, outperforming both the 

Graham scan and Jarvis march algorithms. 

The results illustrate that the preprocessing approach 

presented in this paper reduces the execution time of the Graham 

scan by up to 77 times. Also, it is 12 times faster than the Jarvis 

march algorithm. Thus, the preprocessing technique can be 

applied to other algorithms, especially convex hull algorithms. 

 
Table 2. Time performance (s) of Jarvis march and Graham scan 

  algorithms versus the proposed algorithm.  

Number of 

points (n) 

Jarvis march 

(ms) 

Graham scan 

(ms) 

Proposed 

algorithm (ms) 

100,000 17.4202 237.1718 9.7401 

200,000 16.9774 396.4281 4.717 

300,000 20.471 467.7013 2.8273 

400,000 34.7065 - 2.8936 

500,000 47.7725 - 4.6297 

600,000 55.8307 - 3.7483 

700,000 58.9525 - 3.7075 

800,000 73.7883 - 4.7002 

900,000 72.8367 - 4.8417 

1,000,000 113.0887 - 4.4846 

 

 
 

5. Conclusions 
Enhancing the convex hull algorithm by reducing the interior 

points for fast convex hull computing has been of interest to 

computer scientists for decades. This work has presented a 

preprocessing approach for the Graham scan algorithm to 

compute a convex hull for a random set of points in two- 
dimensional space. 

The main contribution of this paper is enhancing the Graham 

scan algorithm by adding filtering techniques for fast convex 

hull computing. 

The benefits of speed and memory saved through the 

proposed method were better when a significant number of the 

input points lay inside the convex hull. This scenario is a typical 

case in many applications where points are presented as clusters 

of points. 

Experimental results based on normal distribution point sets 

showed that the proposed algorithm outperforms the original 

Graham scan in terms of execution time by up to 77 times. Thus, 

the preprocessing technique presented here can be a useful 

approach for many practical problems that require fast 

computation of a convex hull. Moreover, the filtering technique 

can be extended to higher dimensions. In future work, it would 

be interesting to study how this method of performance can be 

further improved through parallel computing, with modern 

GPUs that offer parallel computation for highly parallelizable 

problems, as well as to illuminate geometric computations. 
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