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Abstract 

Plans to mass evacuate visitors in an exhibition center in the case of emergency situations are critical for public safety 

and disaster management. Efficient crowd evacuation during mass gatherings has been an active research area during the 

past years. In this paper, we consider the challenging problem of finding in near real-time the most efficient and safest 

evacuation pathways in a multi-exit exhibition center while the fire hazard spreads. We first propose a system composed 

of sensor nodes to collect pertinent safety data associated with the changing environmental conditions. We then present a 

spontaneous dynamic evacuation system that considers the changing conditions in the risks associated with each hallway 

segment in terms of walking distance, heat, two major asphyxiant fire gases and crowd congestion. Our IoT-based 

system activates smart panels placed at major junctions of the hallways to visually guide evacuees towards the safest 

escape direction under the existing circumstances. The proposed algorithms aim to minimize the total evacuation time of 

all evacuees, while circumventing congested and perilous aisles, balancing traffic loads, and guaranteeing high 

scalability and reasonable computational efficiency. This work can pave the way towards the development of next-

generation smart exhibition centers, where crowd safety is among the top priorities.  
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1. Introduction 

Hundreds of international trade fairs and exhibition events are 

organized each year. Some of these events attract thousands of 

visitors daily and they typically last between 3 to 15 days. For 

instance, in the realm of IT expos, some renowned 

international fairs are organized each year, including [1]: 

- Gamescom interactive games and entertainment show 

(Cologne, Germany): 373,000 visitors in 2019. 

- IFA global trade show (Berlin, Germany): 244,055 visitors 

in 2018. 

- HANNOVER Messe (Hannover, Germany): 211,338 

visitors in 2019. 

- MWC Mobile World Congress (Barcelona, Spain): 

109,000 visitors in 2019. 

- CES international consumer electronics show (Las Vegas, 

USA): 100,783 visitors in 2019. 

- GITEX technology week show (Dubai, UAE): 100,000 

visitors in 2018. 

Despite the large space availed to visitors in most 

exhibition centers (with Hannover exhibition center being the 

largest convention center in the world with a 554,000 sqm 

surface area), the sheer number of attendees often result in 

transient congestion situations that need to be carefully 

managed, especially during crisis situations such as fire blazes, 

bomb threats, armed assaults, or terrorist attacks.  Aware of the 

importance to safeguard the safety of its visitors, major 

convention centers have adopted several measures to cope with 

emergency evacuations. These include the installation of 

emergency exits, fire hoses, extinguishers, alarm systems, and 

the development of emergency preparedness, response, 

evacuation, and assembly procedures. For the purpose of this 

study, we define emergency evacuation as the planning and the 

processes put in place to move people away from hazardous 

zones towards safety emergency exits in the shortest possible 

time. The goal is to ensure the safest and most efficient 

evacuation for all evacuees.  

Exhibition centers are not prone to fires as demonstrated 

for instance by the massive blaze at the SkyCity convention 

center in Auckland in October 2019. In addition, a false fire 

alarm from a smoke detector (such as the one witnessed at the 

Anaheim Convention Center in August 2019) can trigger panic 

among visitors and the activation of emergency evacuation 

procedures. As a result, effective emergency response 

mechanisms must be put in place to swiftly evacuate visitors in 

order to save lives and reduce potential injuries due to people 
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stumbling and trampling. However, while some visitors cannot 

even locate emergency exits, others find it difficult to identify 

the best escape route. For instance, an empirical study [2] 

revealed that nearly 80% of adult visitors do not recall the 

location of at least one emergency exit in a shopping mall in 

the city of Fiume Veneto, in Italy. We should also recognize 

that evacuation planning is a very intricate and multi-factor 

research problem that involves both features of individuals and 

environment [3].  The task to identify the closest and safest exit 

pathways gets even more complicated for visitors as the fire 

blaze and the released smokes can quickly propagate inside the 

exhibition center, obstructing visibility and leading to panic.  

Motivated by the aforementioned observations, we propose 

a smart dynamic evacuation model for multi-exit exhibition 

centers in the presence of spreading fire blaze. Our dynamic 

evacuation system provides visual indications to evacuees to 

guide them towards best available paths while trying to 

circumvent dangerous zones. This work is part of the Ariadne 

Smart Exhibition Center project that aims to pave the way 

towards a new breed of intelligent exhibition centers by 

leveraging the usage of mobile computing, wireless sensors, 

image processing, web services and artificial intelligence. The 

proposed solution can provide support for emergency response 

personnel to reduce the risks of crowd stampedes and 

casualties in emergency situations involving pedestrian 

aggregation activities within closed areas. Although our 

approach is presented in the context of an exhibition center, it 

can be applied to other settings, including shopping malls, 

subway platforms, large museums, and stadiums where the 

mass evacuation of visitors under emergency situations is of 

paramount importance.  

This research addresses two research questions. The first 

is how to estimate in real-time the degree of risk of an 

evacuation route. The second is how to determine the safest 

and most efficient escape routes.   

Our approach addresses many limitations associated with 

most earlier contributions notably (1) the reliance on static fire 

hazard models, (2) the usage of static evacuation models that 

do not adapt to dynamic fire spreading behavior, (3) the narrow 

choice of parameters to characterize the risk associated with a 

given hallway, and (4) the non-applicability of the approach to 

real-life scenarios.   

The remaining of this paper is organized as follows: In 

Section 2, we present a review of major related studies and 

highlight the contribution of this research. Section 3 presents 

the full details of our proposed approach. Finally, in section 4 

we provide a summary of the paper and some 

recommendations for future research. 

2. Related work and research contribution 

The problem of massive evacuation during emergency 

situations has attracted considerable attention among 

researchers and practitioners. The goal of an evacuation system 

is to minimize the risks of harm and deaths among the public 

during emergencies. There has been a considerable number of 

scattered models and solution methods to calculate the best 

suited escape route in the case of single as well as multiple 

emergency-exits. Most of these approaches operate on graph-

based models and they differ in many aspects, including: 

- The graph modeling approach as reflected by the choice of 

the vertices and edges. 

- The choice of the weights assigned to each vertex and the 

capability to handle dynamically changing routes.  

- The choice of the algorithm to find the most suitable 

evacuation route. 

- The general approach: optimization-oriented or computer 

simulation-oriented. 

- Implementation approach: spontaneous evacuation plan 

versus organized evacuation plan [4]. 

- The architecture of the proposed solution (centralized versus 

distributed). 

Li et al [4] classify evacuation plans into two categories: 

spontaneous evacuation plans and organized evacuation plans. 

Spontaneous evacuation plans are guided by the evacuation 

infrastructure such as fire emergency lighting and dispersal 

indicators. Organized evacuation plans, on the other hand, 

require personnel to control the flow of evacuees by dictating 

departure times, and routes to safe exits. This latter approach is 

however more difficult to implement.  

Filippoupolitis and Gelenbe [5] proposed a distributed 

system that computes the best evacuation routes, while a 

hazard is spreading inside a building. The weight of each edge 

is the product of two variables: the physical length of the edge 

and the intensity of the associated hazard along the edge. 

However, the hazard intensity values collected from the sensor 

nodes remain undefined and it is not clear how these were used 

in the simulation model.  

Shikhalev et al [6] proposed a decision support system to 

determine the safest route during an emergency. They 

formulated a multi-objective optimization model where the 

weight of each section in the route considers three criteria: 

obstruction (based on people density), timeliness (based on the 

fire hazard value) and length (based on the length of the 

section). The approach, however, is not suitable for 

implementation in real-life settings as (1) it aims to calculate 

the safest escape route for each person from his starting 

position to each safety area which is not practical, and (2) the 

solution is sensitive to various parameters including the value 

of the fire hazard on each section (which is not defined) and the 

weight coefficients associated with the cost of each edge.  

Atila et al [7] proposed a mobile dynamic fire evacuation 

system based on 3-D spatial modeling. The microscopic model 

calculates the personal route for each evacuee by considering 

his/her individual route and provides visual instructions on the 

smartphone to guide each evacuee towards the most 

appropriate exit. Based on earlier studies on smartphone 

usability and human psychological reactions during emergency 

evacuations (e.g. [8]), we argue that the usage of mobile apps 

for evacuation is not practical due to the additional cognitive 

load imposed on users while they struggle to escape.  

Some researchers adopted a graph theoretic network 

optimization approach by formulating the evacuation process 

as an optimization problem that aims to minimize the 

evacuation time of all evacuees under path capacity and fire 

smoke presence constraints (see for example [4]). Such models 

are however not suited for real-life deployments.  

There have been works focusing on the study of 

spontaneous evacuation models, including dynamic minimum-

cost flow network models [9], linear programming (LP) models 

[10] cellular-automata models [11], evolutionary algorithms 

[12], ant/bee colony optimization [13-14], fuzzy-logic 

approaches [15], game-theoretic frameworks [16-17] and 

Capacity Constrained Router Planner (CCRP) heuristic 

algorithms [18], among many others. Other researchers [e.g. 

[19]) opted for simulation-based approaches whereby 

evacuation route planning is based on simulating actual fire 

evacuation scenarios.  

Contemporary trends in crowd evaluation include the usage 

of mobile sensing [20], robot-guided evacuation schemes [21], 

and mobile crowdsourcing [22]. Each of these approaches has 

its own merits and drawbacks. For a review of the relative 

merits of these approaches, the reader is referred to the survey 
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papers of Zheng et al [23], Zhou et al [24], Kobes et al [25], 

Liu et al [26], Haghani [27] and Ibrahim et al [28], and 

Sharbini et al [29]. 

Our approach is based on a spontaneous evacuation plan 

that can adapt to changing conditions and operates at the 

macroscopic rather than microscopic (individual) level. Hence 

it does not require each evacuee to be equipped with a special 

device (such as a hand-held RFID reader as suggested in [7]) to 

acquire his location in real-time. Recall that microscopic 

models consider the evacuee’s individual characteristics and 

interaction in the evacuation process, while macroscopic 

models are often based on network flow models [4]. Contrary 

to most earlier approaches that aimed to minimize the overall 

escape time of all evacuees, our approach takes also into 

account the safety risks associated with fire heat, toxic gases, 

and congestion.  

Our contributions include the following: 

- A novel graph model whereby hallway sections are modeled 

as links and junctions are modeled as nodes.  

- A new approach for determining the escape plan. In our case, 

once a fire occurs, we measure the risk index of each hallway 

section at regular time intervals and direct evacuees at the 

junctions based on a constrained shortest path algorithm that 

aims to reduce the total risk along the evacuation pathway, as 

opposed to merely trying to minimize the total evacuation time, 

which could put evacuees at risk due to exposure to excessive 

heat or suffocation.  

- The adoption of a more realistic model in computing the cost 

associated with each hallway section, which includes not only 

the distance but also the time-dependent risk associated with 

high temperature, level of toxic gases, and congestion levels. 

For this purpose, we propose a quantitative risk assessment 

model to estimate the risk indices associated with the hallways. 

- Though our approach makes use of well-known shortest path 

algorithms, it introduces the usage of constrained based routing 

which prunes links that do not satisfy the minimum safety 

requirements prior to computing shortest paths.  

- A mechanism to dynamically adjust the evacuation routes 

according to the evolving status of the fire propagation and the 

dynamic nature of crowd density during the evacuation. By 

taking crowd density into account in the computation of the 

shortest path, our approach offers the capability to steer the 

crowd away from congested hallways. This approach can 

gradually contribute to some sort of load balancing across the 

escape routes, avoiding congestion and hence reducing the  

emergency evacuation time. As highlighted by Li et al [16], 

congestion-related evacuation modeling has a significant 

impact on evacuation planning and hence needs to be an 

integral element of an evacuation system. Recall that mass-

evacuation scenarios often lead to congested escape paths, 

which reduce the walking speed of the crowd, increases the 

probability of injuries and fatalities, and prolongs the overall 

evacuation time. In particular, bottleneck effect during 

emergency evacuations needs to be taken into account [30].  

- The reliance on visual direction indicators, displayed on smart 

digital panels located at the junctions of hallways to guide 

evacuees towards the safer exits. 

3. Proposed approach 

Our proposed approach uses Wireless Sensor Networks 

(WSNs) to identify crowd turbulence by detecting 

overcrowded areas at different epochs during the evacuation 

procedure. We first outline the design aspects of the proposed 

system, including its underlying assumptions and its graph 

modeling approach. 

3.1. General assumptions 

 
Our proposed approach is based on the following assumptions: 

- The detailed floor plan/layout of the exhibition center is 

known a priori. 

- There are several sensor nodes installed at specific locations 

along the hallways of the exhibition center. For better fault 

tolerance, we adopt dual base station architecture for the WSN 

in a star-of-stars topology. The sensor nodes communicate with 

the two base stations (BS), which forward the collected data to 

a network server.  

Each sensor node collects and sends real-time information to 

the base station which includes temperature, Carbon monoxide 

(CO), hydrogen cyanide (HCN) and crowd density levels. 

- There are several smart digital panels at the junctions of the 

exhibition center (in each direction) which provides emergency 

signage in the form of a dynamic visual indicators.  

- An application (Command-and-Control) server is put in place 

to communicate with the central server and to calculate the 

most suitable evacuation route to the most appropriate 

emergency exit.  

- The Command-and-Control server conveys the suggested 

evacuation direction to each junction via the corresponding 

smart digital panel. 

- All evacuees obey the exit directions proposed by the smart 

digital panels.  

Fig.1 illustrates a simplified diagram of the system 

architecture. 

 

 

Fig.1. Simplified diagram of the system 

3.2. Graph Modeling Approach  

We illustrate the problem formulation, the modeling and 

solution approaches with the sample example depicted in Fig.2. 

As may be seen, the layout shows various stands (greyed 

boxes) and four emergency exits. The red circles correspond to 

the crossings of escape routes (major junctions) where smart 

digital panels are located to indicate the evacuation direction. 

The above plan is modeled by the graph G (N, E) depicted in 

Fig. 3. 

 

 

 

 

 

 

 

 

 

 
Fig.2. Illustrating example for the floor plan  
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Fig.3. Graph modeling the plan shown in Fig.2 

 

The graph consists of a set of 20 vertices where vertices 1-

16 correspond to the crossings of escape routes (coinciding 

with the locations of the digital panels) and vertices 17-20 

correspond to the four emergency exits. These vertices will be 

thereafter referred to as regular nodes and exit nodes, 

respectively. The graph also consists of 28 edges, each 

corresponding to a potential leg (hallway) along feasible escape 

routes that evacuees can follow. For each edge connecting 

nodes i and j, we assign a time-dependent weight value Wt(i,j) 

which represents the cost of using link (i,j) at time t to escape 

towards one of the exits. 

In our case, Wt(i,j) is defined as a weighted average, according 

to the following expression: 

  (1) 

where the weight coefficients αi ∈[0,1] sum up to 1. These 

coefficients reflect the relative importance of the associated 

variable in the evacuation decision making process. They are 

estimated based on collected fire and rescue statistics as well as 

expert judgments, as further explained at the end of this 

subsection.  In Eq.1, L(i,j)∈[0,1] represents the relative length 

of hallway segment (i, j), defined as the ratio of the length of 

link (i,j) to the length of the longest link in the graph. The 

terms Pt
X(i,j)∈[0,1] correspond to the Risk Index RI ∈[0,1] 

associated with temperature (T), Carbon monoxide (CO), 

hydrogen cyanide (HCN), and people density (D), as further 

explained below. Obviously, in the presence of a fire hazard, 

the shortest physical length path does not necessarily imply the 

lowest risk, as a link (i,j) along the shortest path might be the 

subject of fire and/or smoke hazard and hence needs to be 

circumvented when computing the evacuation route. 
In our case, some sensors are installed along each hallway 

section (i,j). These sensors monitor various parameters that are 

used as proxy-indicators of the risk associated with selecting 

hallway segment (i,j) in the escape route. When a given 

hallway-segment has multiple sensors of the same type (such 

as temperature), the highest reported value is considered in the 

computation of the link weight as this corresponds to the worst-

case scenario. 

Our proposed system monitors the following 

environmental and congestion-related parameters:  

- Temperature: Each reported temperature value is converted 

into a risk index Pt
T(i,j) according to Table 1. The ranges are 

inspired from the empirical work of Willi et al [31]. 

 

 
Table 1. Temperature - risk index conversion  

Reported 
temperature T (oC) 

Risk classification Risk index PtT(i,j) 

T < 48 Low 0 
48 ≤T <50 Medium 0.5 
50 ≤ T < 150 High 0.7 
T ≥ 150 Very high 1 

 
- Toxic (Asphyxiant) fire gases which include Carbon 

monoxide (CO) and hydrogen cyanide (HCN). Together, CO 

and HCN – recognized in the fire industry as the “toxic twins” 

– create a deadly chemical asphyxiant that can put fire victims 

into cardiac trauma [32].  

Carbon monoxide poisoning is the most common type of 

fatal air poisoning during fire as carbon monoxide asphyxiation 

has been a leading cause of deaths for those overcome by 

smoke. The ranges for CO levels are based on the Acute 

Exposure Guideline Levels (AEGLs) for exposure times of 10 

minutes and 30 minutes [33]. For instance, exposure for 10 

minutes to a level of CO at or above 420 ppm can yield serious 

long-lasting effects or impaired ability to escape [33]. CO 

reported values are converted to risk index Pt
CO(i,j) according 

to Table 2. 

Table 2. CO level – risk index conversion  

Reported CO 

level (ppm) 

Risk 

classification 

Risk index 

Pt
CO(i,j) 

CO < 150 Low 0 

150 ≤CO <420 Medium 0.5 

420 ≤ CO < 600 High 0.7 

CO ≥ 600 Very high 1 

 
Hydrogen cyanide (HCN) is a colorless, rapidly acting, 

highly poisonous gas that is 35 times more toxic than CO [33]. 

The ranges for HCO levels depicted below are derived based 

on the studies reported in [34]. HCN reported values are 

converted to risk index Pt
HCN(i,j) according to Table 3. 

Table 3. HCN level – risk index mapping  

Reported HCN 

level (ppm) 

Risk 

classification 

Risk index 

Pt
HCN(i,j) 

HCN < 36 Low 0 

36 ≤HCN <108 Medium 0.5 

108 ≤ HCN < 135 High 0.7 

HCN ≥ 135 Very high 1 

 
- Congestion, as measured by human density, is a determinant 

factor of crowd dynamics and evacuee’s walking speed, and 

hence it has strong influence on the evacuation time [7]. The 

density, D, along a given hallway section is estimated as the 

number of people inside its circulation divided by the area. The 

number of people present in each hallway can be estimated 

using different methods: Bluetooth scanning methods [35-36], 

dynamic computer vision-based tracking [37], RFID 

technology [38], and Infrared (IR) transmitters and receivers 

[39]. We recommend the usage of IR transmitter and receiver 

pairs as it is reliable, and it provides a low-cost, yet accurate 

method to estimate the number of evacuees within a given 

hallway. The ranges for the density ranges depicted in Table 4 

were chosen based on the results reported in [28]. For instance, 

density of 6 persons/m2 corresponds to a critical crowd density 

for moving (i.e., evacuees will be able to move slowly by 

exerting pressures on each other) [28]. A density of 7.1 

persons/m2 corresponds to the maximum crowd density while 

standing.  

Human density values are converted to risk index Pt
D(i,j) 

according to Table 4.  

The weights αi in Eq.1 were determined based on reported 

fire and rescue statistics and expert judgements as follows: 

 In [40] it was highlighted that HCN is 33–35% more 

dangerous than CO. Hence, we perceive HCN risk 1.35 times 

as important as CO risk.  
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Table 4. Density – risk index mapping  

Reported density 

(person/m2) 

Risk 

classification 

Risk index 

Pt
D(i,j) 

D < 4 Low 0 

4 ≤D <5 Medium 0.5 

5 ≤ D < 7 High 0.7 

D ≥ 7 Very high 1 

 
Heat exposure from a fire can trigger skin burns, 

incapacitation, and death in many forms: heat stroke 

(hyperthermia), body surface burns, and respiratory tract burns 

[41]. Accordingly, we perceive CO risk 1.5 times as important 

as air temperature T risk.  

Congestion buildup due to high people density inhibits people 

movement and hence extends the evacuation time. Because of 

congestion, the shortest path (in terms of physical distance) is 

not necessarily the shortest evacuation path.  Hence, we 

perceive people density D risk as being twice as important as 

the relative physical length factor and 0.5 times as important as 

air temperature T risk.  

Based on the above, we derive the following values for the 

weight coefficients αi : 

 

α1=0.05;    α2=0.19;    α3=0.28;    α4=0.38;    α5=0.10 

3.3. Safest route algorithm  

 
A core component of our safest route algorithm is the 

constrained shortest path algorithm described below. Given a 

weighted graph G (N, E) of the type shown in Fig.3, the 

objective is to compute the shortest path between each regular 

node and the closest exit node. This is equivalent to adopting a 

heuristic approach to generate most effective/safest evacuation 

pathways in the shortest possible time. To reduce the 

complexity of the shortest path computation, we decided not to 

use Floyd-Warshall’s algorithm to find the shortest path for 

every regular source node and exit node, followed by selecting 

the shortest one.  Instead, we will transform the original graph 

G into a new graph G’(N’,E’) by adding a dummy vertex D 

which is connected to each exit node via a link of weight 0. 

Fig.4 illustrates the transformation corresponding to the 

original graph shown in Fig.3.  

 

 

Fig.4. Graph transformation 

With this transformation, the problem reduces to finding 

the shortest path between each regular node (1-16 in Fig.4) and 

the dummy vertex D. To solve this problem, we use vertex D 

as source node in Dijkstra’s shortest path (SP) algorithm and 

calculate the shortest distance from D as the source. Note that 

in our case there was no need to reverse the edges as they are 

bidirectional.  

Inspired by the concept of constrained based routing (CBR) 

in Multi-Protocol Label Switching (MPLS) Traffic Engineering 

(TE), we impose minimum safety constraints on each link. This 

constraint aims to discard any link that is associated with a risk 

index of value 1 (very high risk) in the reported T, CO, HCN or 

D levels. A link that does not meet the minimum safety 

constraint is ignored (pruned) prior to applying the shortest 

path algorithm. This ensures that the evacuation algorithm will 

avoid perilous hallway sections.  

There might be extreme cases where pruning can lead to a 

situation where the graph is no longer connected. In this case, 

when there is no route between a regular node and an exit 

node, our Constrained Shortest Path (CSP) algorithm will 

reinstate the pruned link and recomputes the shortest path 

regardless of the risk state. The constrained shortest path 

algorithm is described below: 

 

CSP Algorithm 

Input: Graph G’(N’, E’) with weights Wt(i,j) 

1: Pruning: Ignore links that do not meet safety constraints. Check 

connectivity  

2: Set vertex D as source vertex  

3: Apply Dijkstra’s algorithm 

4: Find shortest distance from vertex D as source vertex 

5: Output shortest path from each regular node to closest exit node  

 
The above CSP algorithm is a core element (step 3 below) of 

our evacuation algorithm: 

Evacuation algorithm 

Input: Graph G’(N’, E’) 

1: Collect sensor data from network server   

2: Compute edge cost  Wt(i,j) for each edge 

3: Apply CSP Algorithm  

4: If (new routes are found) then 

          Push new directions to smart panels 

   end if  

5: Wait for Δt seconds 

6:  Go to 1 

The time complexity of the proposed evacuation algorithm is 

influenced by two main factors: The collection of the sensor 

data and the execution of the CSP algorithm. The complexity 

of the latter is mainly driven by the execution of Dijkstra SP 

algorithm. When implemented with a min-priority queue, the 

time complexity of the SP algorithm comes down to Ɵ ((|N’| 

+|E’|).  log |N’|). It can also be implemented in Ɵ (|N’|2) using 

arrays.  

3.4. Evacuation route computation process 

 
When a fire hazard is detected, the central server sends 

commands to all sensor nodes to increase their reporting 

frequency above the running frequency of the dynamic 

evacuation algorithm. This ensures that each time the 

evacuation algorithm reruns, it receives up-to-date sensor data. 

The application server has a global view of the topology of the 

graph, such as the one illustrated in Fig.2. It gathers real-time 

information from the sensor nodes (via the central server), 

computes the edge weights Wt
X(i,j), executes the evacuation 

algorithm, described above, and communicates with the smart 

digital panels to activate the proper evacuation arrow 

directions. As our evacuation algorithm runs every Δt seconds, 

when congestion builds up along a given pathway (a link 
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between two nodes) as a result of the evacuation of many 

people along it, subsequent runs of the shortest path algorithm 

tend to circumvent this link as the weight associated with it 

increases. This indirectly contributes to balancing the flow of 

evacuees along the corridors, hence contributing to reducing 

the potential accidents that could occur when people stumble 

along overcrowded areas. In fact. A salient feature of our 

evacuation algorithm resides in its capability to assign multiple 

routes to groups of evacuators within the same pathway as new 

routes can be re-calculated after each iteration. This method 

has the potential to outperform single-route approaches in 

terms of safety at the expense of additional computational 

overhead.  

3.5. Validation  

 

To validate our proposed evacuation system, we opted for two 

simulation tools [42]:  

- The Fire Dynamic Simulator (FDS) which is a computational 

fluid dynamics (CFD) model of fire-driven fluid flow used to 

simulate the spreading of fire inside the exhibition center. 

- The Evac simulator which is the evacuation simulation 

module for Fire Dynamics Simulator (FDS), used to simulate 

the movement of people in evacuation situations.  

We also make use of Smokeview (SMV) which is a 

visualization program that is used to display the output of FDS. 

Additional information, including source code, can be found at 

the NIST FDS and Smokeview webpage [43].  

We are currently working on completing the simulation 

experiments and this ongoing work will be the subject of 

another research paper.  

4. Conclusion and future work  

In this contribution, we have proposed a dynamic crowd 

evacuation system for a multi-exit exhibition center. Our 

proposed system consists of several sensor nodes that collect 

real-time information about congestion levels, temperature, and 

toxic emissions along each leg of the escape routes. Based on 

this information, a centralized application server runs 

periodically a dynamic constrained shortest path algorithm to 

guide evacuees towards the safest exit, while minimizing the 

evacuation time. This guidance is dynamically conveyed to the 

evacuees via smart digital panels that are installed at major 

junctions.  

Among the limitations of the proposed solution is the 

reliance on a centralized server for the computation of the 

safest routes, which represents a single point of failure. Further, 

existing crowd evacuation simulation models are not easy to 

customize, and they do not fully address the microscopic 

aspects of individual behavior such as the cognitive process in 

human behavior when trying to escape from dangerous 

situations [44].  

The proposed approach is practical and offers a base 

framework for future research. Besides completing the 

simulation experiments, this work can be further explored in 

many directions: 

First, we can investigate ways to further refine the 

definition of the weights associated with each link as well as 

the instruments that will be used to collect the associated 

parameters. For instance, the usage of video image captures to 

estimate the number of evacuees or to assess the hazard 

associated with each segment in the evacuation route is a 

research direction that is worth pursuing.  

Future work can also look to add other fire risk factors such 

as smoke optical density (and particulate concentration) and 

visibility distance.  

Future research can investigate other important 

considerations in the evacuation planning, such as the width of 

the exit doors, and the presence of people with special needs. 

Extending the approach to handle more complex layouts 

including multi-floors scenarios can also be envisaged in 

future.  

Another research extension to the present work is related to 

experimenting with other simulation tools such as SAFEgress 

[45] for the purpose of comparison.  

Our approach is mainly based on a rule-based model and 

hence it would be interesting to consider fuzzy models to 

account for the inherent uncertainty that characterizes crowd 

evacuations. 

Finally, for better efficiency, scalability, and robustness, 

we can consider migrating the processing of the collected IoT 

data from the current centralized server architecture towards a 

distributed set of edge nodes [46].  
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