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Abstract

Dry and cold winter seasons result in very dry indoor conditions and have historically contributed to severe fires in the high
and dense representation of wooden homes in Norway. The fire in Lærdalsøyri, January 2014, is a devastating reminder
of town fires still posing a threat to a modern society. In order to reduce conflagration probability and consequences, it is
necessary to have an accurate estimate of the current and near future fire risk to take proper planning precautions. Cloud
computing services providing access to weather data in the form of measurements and forecasts, combined with recent
developments in fire risk modelling, may enable smart and fine-grained fire risk prediction services. The main contribution
of this study is implementation and experimental validation of a wooden home predictive fire risk indication model, as well
as outlining a wooden home fire risk concept. The wooden home fire risk model focuses on the first house catching fire
(indoors) in a potential conflagration event. Such a fire would be critical to intervene prior to the fire developing exterior
flames and embers post flashover, and thus high likelihood of fire spread. The implemented model exploits cloud-provided
weather measurements and forecasts, to predict the current- and near future fire risk at given geographical locations. It
computes the indoor wooden fuel moisture content of houses that may catch fire, using measured and forecasted outdoor
temperature and relative humidity, and estimates the time to flashover. The latter is found through an empirical relation
with the fuel moisture content, and can be used as an indication of the fire risk, beyond the modelled single house. The
model implementation was integrated into a micro-service based software system and experimentally validated at selected
geographical locations, relying on weather data provided by the RESTful API’s of the Norwegian Meteorological Institute.
The validation took place by applying the model to predefined cases, with an outcome known from observations or theory.
The first part is a general evaluation of the outputs, considering three historical fires. Then, seasonal changes and natural
climate variations were considered. Our evaluation demonstrates the ability to provide trustworthy and accurate fire risk
indications using a combination of recorded weather data and forecasts. Further, our cloud- and micro-service based
software system implementation is efficient with respect to data storage and computation time. Finally, the novel fire risk
concept is demonstrated for a selected city, based on model output. It successfully depicts the implications following
reduced indoor humidity by utilizing location specific fire risk contours.

Keywords: Smart city and cloud data services, Climate related fire risk, Mitigating urban fire risk

1. Introduction
In recent years, societies around the world have experienced large
wildland-urban interface (WUI) fires [1]. Hundreds have lost

their lives and thousands have been left homeless [1, 2]. Climate
changes have become increasingly prominent and there appears
to be consensus about future development, resulting in increased
wildfire seasons and frequency [2–9]. Much attention is paid to
these devastating fires. However, from the above 300,000 annual
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fatalities caused by fire, the majority occurs within enclosures,
such as a residence [10]. Except from the mitigating measures
implemented in the design and use phase, single-structure fire
risk appears nearly unconsidered. The present work addresses
the important under-examined topic of wooden home fire risk,
through implementation and experimental validation of a dynamic
predictive single-structure fire risk model. The model can be
applied beyond a single-structure, i.e., utilized as a risk indicator
for large fires and conflagrations by use of a modelled time
to flashover (TTF). Attention was brought to the topic in the
aftermath of the devastating winter fire blaze in Lærdalsøyri
(Norway), January 18 - 19, 2014 [11–13].

It is known that the winter in cold climate regions brings along
increased fire frequencies [13, 14]. In 1956, Pirsko and Fons
suggested ambient dew point during the winter as an explanation
for the increased fire frequency in buildings [15]. Post the Lærdal
fire, the cold climate fire risk was again identified by Log [13].
It prompted further research, and indoor relative humidity was
suggested as a fire risk indicator [16]. A cold climate structural
fire danger rating system was suggested [10] and a mathematical
model for predicting indoor relative humidity and wooden fuel
moisture content (FMC) was developed [17]. Furthermore, Log
et al. proposed a way forward for exploring and addressing novel
dynamic fire risk assessment and management tools [2].

The overall aim of the present study is to contribute towards
reduced conflagration fire risk through dynamic risk assessment
and an early warning system. A main contribution is to report
on implementation, validation, and further development of the
model of Log [17]. Secondly, it is investigated what publicly
available high-end weather data infrastructure and weather data
services can be used to harvest data for the modelling of
the indoor relative humidity. As part of this, a cloud-based
microservice software architecture that utilizes the weather data
representational state transfer (REST) application programming
interface (API) provided by the Norwegian Meteorological
Institute (MET) is developed [18, 19]. Additionally, the storage
and computational efficiency of the proposed software system
architecture and its implementation is evaluated.

Related research has been undertaken in the field of wildfire
detection and environmental monitoring by use of Wireless Sensor
Networks (WSN) and internet of things (IoT) devices. Some
recent work can be found in [20–24]. Although promising,
these systems suffer from economic limitations as well as
difficulties related to the required infrastructure, and deployment
and maintenance of equipment. For certain high-risk areas,
such as the WUI around big cities, it is a viable solution.
However, when monitoring forest or densely built wooden towns
and cities nationwide, or globally, these solutions for data
harvesting become comprehensive and costly. When parameters
are modelled to assess the current risk level, the presentation of
computed risk becomes important. The recent work of Yousefi
et al. [25] aimed to produce an accurate multi-hazard risk
map for the mountainous regions of Iran. They modelled the
probabilities of snow avalanches, landslides, wildfires, land
subsidence and floods, using machine learning models. Results
were plotted as heat maps, similar to the mapping of road
traffic accidents hot spots as done by [26]. Understandable
visual presentations of current and future risk, is important when
considering the implementation of the risk concept into new areas.
Tsipis et al. [24] developed a complete system, summarizing
and highlighting the possibilities within implemented technology

related to wildfire risk. Utilizing a novel cloud/fog hybrid network
architecture solution, similar to [27], combined with several
wireless sensor networks for data acquisition of real-time data,
they successfully indicated wildfire risk through the chandler
burn index and communicated risk-levels through their web
based graphical user interface, called "F.E.M.O.S", Fog- assisted
Environmental Monitoring System.

Outline
In Section 2 we present the predictive fire risk indication model
which served as a basis for the study. Section 3 presents our system
architecture, and how we have implemented a software prototype
by aggregating data from external cloud-services to provide a fire
risk indication service. In Section 4 we present selected results of
our experimental evaluation. In Section 5 we introduce the risk
assessment concept and outline how the modelled single-structure
TTF may be utilized as a risk indicator for a single structure as
well as a major conflagration. Finally in section 6, we sum up the
conclusions and discuss directions for future work. A preliminary
workshop version of this paper appeared in [28], as well as
a revised appearance in Procedia Computer Science [29], as a
part of The 12th International Conference on Ambient Systems,
Networks and Technologies, ANT 2021. In the present paper, a
more complete presentation of the fire risk indication model is
provided, as well as an improved software architecture. Further,
the experimental results include evaluations of a recent fire in
Norway, as well as consideration of historic fire risk variations.
Furthermore, the effect of wind on fire spread in wooden towns is
introduced, in accordance with the main objectives. Additionally,
a novel fire risk concept is introduced, based on results from
the model. For the interested reader, most of our experimental
results and implementation details are available in the underlying
technical report [30].

2. Predictive Fire Risk Indication Model
For compartment fires, flashover is the rapid transition between
the growth phase and the fully developed fire. The onset of
flashover indicates untenable conditions within the compartment
(building), with typical heat flux at floor level quickly increasing
beyond 20 kW/m2. There are many factors influencing the TTF,
such as ignition source, fuel, heat release rate, ventilation and
compartment size. The modeling in the present study is based on a
wooden home environment with indoor combustible hygroscopic
surfaces, i.e., wooden floor, walls and ceiling. The latter two
interact with smoke and hot gases produced in the fire, which in
turn cause preheating and onset of pyrolysis for these surfaces.
The rate at which this takes place is dependent on the fuel moisture
content [31].

The predictive fire risk indication model estimates the TTF
for a compartment based on the calculated FMC, which again is
based on ambient temperature and relative humidity both fetched
from the MET API (forecasted) and the FROST API (measured),
as well as the indoor temperature, set to a constant of 22 oC [16].
The model computes the indoor RH by modelling the indoor air
water vapor concentration, accounting for local production of
water vapor, air changes due to ventilation or stack effect, and
the effects of the hygroscopic wooden materials. Then, the FMC
of the indoor surfaces is computed as a function of the indoor
RH. TTF is then found through an empirical relation with the

2



i
i

“output” — 2021/9/8 — 17:23 — page 3 — #3 i
i

i
i

i
i

Strand et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

FMC [31]. The main theoretical foundation of the implemented
fire risk indication model is outlined below. The details can be
found in [16, 17].

The indoor air volume water concentration is modelled by the
following differential equation,

Vh ·
dC

dt
= ṁwall + ṁac + ṁsupply (1)

where, C ( kg
m3 ) is the compartment water vapour concentration,

t (s) is the time, Vh (m3) is the compartment volume, ṁac ( kg
s

)
is the ingress of air due to the ventilation and ṁsupply ( kg

s
) is the

moisture supply from, e.g., people, pot plants, dishwashing, etc.
The contribution to the indoor water vapor concentration

taking place through the wooden surfaces is accounted for through
ṁwall. The term expresses the net transfer of water vapor from the
wall boundary layer, to the compartment air volume by diffusion.
The RH within the solid surface boundary layer is a linear function
of the bulk air RH and the RH corresponding to the surface
layer FMC. The indoor surface layer water concentration can be
calculated by,

C1(t+4t)
= C1(t) +

4t
4x ·

(
Dw,a

δ
· (RHin(t)

−RHwall(t))

·Csat,in +
Dw,s

4x · (C2(t) − C1(t))

)
(2)

The equation represents the modelling of water concentration,
kg/m3, for layer n = 1, refer the subscripts. The wall panels
are divided into N layers of thickness 4x = L/N , where L
is the panel thickness. For the rest of the equation; 4t is the
time step, Dw,a is the diffusion coefficient of water vapor in
air at 22 ◦C, 2.5 · 10−5 m2/s. Dw,s = 3.0 · 10−10 m2/s is
the solid wood water diffusion coefficient. The boundary layer
thickness typically takes the value δ = 0.01 m [17]. The water
concentrations in the remaining panel layers are obtained by
solving the second order partial differential "heat equation" [17].
The vapor barrier backing the wall panels in Norwegian homes,
for rot prevention, is mathematically treated as a reflection plane.

The net vapor exchange related to the air change rate per
hour (ACH), is modelled within ṁac. The ACH depends on
the ventilation principle of the specific building. In the case of
natural ventilation, the model utilizes a rate based on the Bernoulli
equation, as proposed by Log [17], but corrected here to account
for summer conditions, Tout > Tin.

ACH = γ ·

√√√√ABS
(

1
Tout

− 1
Tin

)
Tout

(3)

The value of γ was originally proposed at 300 h−1, assuring
that under normal temperature differences, Nordic climate, the
ACH would equal 0.25. The present study justifies a value in the
range of 300 - 380 h−1, potentially resulting in anACH = 0.32,
i.e., in compliance with a Swedish study of 1200 homes [32].

Moisture supplied through local production, such as
respiration, plants and cooking is accounted for through ṁsupply .
The model has mainly been applied for older wooden homes,
assuming the kitchen as a separate compartment thereby justifying
a 1 kg/day moisture supply.

Fig. 1. Correlation between TTF and the indoor relative humidity
according to Eq. 4 [31], where the FMC is taken as in equilibrium
with the indoor RH [33], according to [17].

Accounting for the above mentioned terms, the indoor water
concentration allows for calculation of the indoor RH by dividing
C with the saturated water vapor concentration at a representative
indoor temperature of 22 ◦C. The computed indoor RH then
becomes a part of the next iteration.

The model requires historical weather data to properly adapt,
relative to days of previous weather. The original work of Log
initiated calculations at 40 % indoor RH. A sensitivity study
performed in the present work indicates 30 % RH to reduce the
need of historical weather data and is recommended for future
use. The FMC value at the first time step is taken as a function of
the initial RH estimate.

Finally, the TTF is estimated by an empirical correlation to the
FMC [31],

tFO = 2 · e16·FMC (minutes) (4)

where FO denotes flashover and FMC is the water to dry wood
mass ratio. Figure 1 presents the correlation between TTF and
indoor relative humidity. The latter represents an indoor humidity
level in equilibrium with the fuel moisture content of the specific
house.

3. Cloud- and Microservice-based Software
Implementation

A software prototype for a fire risk indication system was
designed and implemented. The basic idea is to provide the fire
risk indication as a REST web service relying on underlying
weather data REST services [18, 19] provided by the Norwegian
Meteorological Institute (MET) and Netatmo [34]. Figure 2 shows
the overall software architecture of the developed prototype which
has been organised into several smaller components following a
microservice-oriented architecture [35] based on REST [36] web
services. Since the external web services provide data in a JSON or
XML representation, noSQL databases [37] were used for storing
the weather data and fire risk indications. The application services
and components were deployed on the Amazon EC2 platform and
implemented using the Spark/Java microservice framework. The
data storage uses a MongoDB database deployed on the Azure
cloud platform. The main components of the software architecture
are briefly explained below.

3
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Fig. 2. High-level software architecture for the developed fire risk
prototype application.

3.1. Fire Risk Prediction Service

This is the main service provided by the system. It constitutes
a REST web service where a consumer provides longitude and
latitude in order to trigger computation of a fire risk indication
for the geographical location. Once the geographical location
has been registered in the service, it triggers the data harvesting
service to start collecting the required weather data elements for
the location. In turn, it triggers the fire risk model service to start
computing the fire risk indications based on the measurements
and forecasts collected by the data harvesting service. As fire risk
indications become available, they can be obtained via the fire
risk prediction service.

3.2. Data Harvesting Service

This component is responsible for collecting weather data
measurements and forecasts from the external weather data
services and storing them in the associated database. The
application uses two external web services to obtain weather data
recordings, namely Frost (MET) and Netatmo, and one external
web service to obtain forecast weather data, as to predict the fire
risk in the coming days, namely MET Norway weather API. In this
study, experimental results obtained using the Frost measurements
and MET forecasting services are presented.

3.3. Fire Risk Model Service

This component implements the fire risk indication model
(Section 2.) capable of computing fire risk indications based on
historical data in the form of measurements from meteorological
weather stations, forecast data, and a combination of the two. To
initiate immediate monitoring of a location, measurements and
predictions must be combined, so that measures adapt the model
and allows for predictions the upcoming days. The current fire
risk predictions are stored in the underlying database such that
they can be retrieved via the fire risk prediction service.

3.4. External weather data services

The Frost API [19] is a REST web service providing historical
weather data recorded by MET. Consumers of the service must
provide the locations of where it shall retrieve weather data. This
can be done by providing the identity of the source (station), or by
giving the longitude and latitude of a position. Then, the service
will find the nearest station. The service gives access to all the
stored data that MET has recorded. The Frost API gives access
to resources about locations, weather records, observations,
lightning, sources (weather station metadata), elements (weather
elements), climate normals, and frequencies. The application uses
location, observation, and meta-data about the stations.

The Netatmo service [34] provides the same type of weather
data as the Frost service, but relies on consumer grade weather
stations typically installed inside and outside private homes.
The consumers publish their weather data into a cloud service.
Through this cloud service server, it is possible to retrieve the
recorded weather data, which can then be used in the application.

The MET API [18] provides predictive analysis of the weather
in terms of forecast data. It offers resources that estimate how the
weather will be in the near future, as well as current weather data
such as the lowest and highest temperatures over a certain period.
The service is able to provide weather predictions for a nine day
period into the future. The first three and a half days are provided
as hourly measures. The next five and a half days are provided at
six hour intervals.

4. Experimental Evaluation and Model Validation
The implemented cold climate fire risk model of Log [17]
computes the TTF based on modelling of the indoor relative
humidity and transient drying of wood wall panels. The model
relies on applied physics and mathematics to arrive at indoor
conditions, but utilizes an empirical relation correlating FMC with
the TTF. The modelled indoor conditions are based on quantities
representing a wooden home living room, the most common room
of fire origin in Norway [38, 39]. Hence, the computed value is
an estimated TTF for a specific enclosure within the building
envelope.

In the present study, modelling results have been compared to
three historical fires, as to evaluate how the system would have
indicated the fire risk prior to these fires. Further, the model was
applied at four selected locations during the winter 2019, two
locations at the Norwegian coast and two inland locations. This
was done as to evaluate whether modelling in different climates
would give expected differences. Furthermore, the town of Lærdal
was considered, by use of historical data, for as a long as eight
winters in the period 2013/2014 until the winter 2020/2021. The
purpose of this experiment, was to evaluate how the model depicts
seasonal changes. The main aim of these initial experiments was
to validate the fire risk indication model in terms of providing
plausible indications, as an aspect of validation is to consider
whether the software system outputs reasonable values based on
the implemented model. The experiments were carefully chosen
to represent cases where the outcome was partly known from
theory or observations prior to being modelled. Modelled results
could then be compared to expected results.

Additionally, since the cloud-based prediction service is
intended to predict fire risk indications, the difference in predicted
risk and historic risk is investigated. Finally, computation
time and storage efficiency were evaluated. As one of the
underlying objectives of this study is to contribute towards
reduced conflagration risk, interesting observations will be
commented.

4.1. Fire Risk Indications for Historical Fires

Three historical fires were chosen for comparison, two of older
dates, and one recent fire in Risør 2021. All these fires developed
rapidly, which should render low TTF values, and hence, high
modeled risk. Historical weather data was loaded into the model,
to determine how the fire risk was prior to and at the day of the
fire.

4
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The Lærdalsøyri town fire, 18th of January 2014 serves as
the first example [11, 12, 40]. The town houses many wooden
buildings worthy of preservation and experiences cold and dry
periods during the winters. The estimated fire risk is presented
in Figure 3 (top), with day 0 being the day of the fire. During
a 12 days period prior to the fire, the ambient temperature and
RH started dropping. This resulted in drier indoor air. In this dry
period, the wood inside the homes released humidity to the indoor
air, which was gradually ventilated. At the time of the fire (22:50),
the fire risk model indicates a TTF of about 3.8 minutes. The fire
department was notified at 22:53, and the fire fire truck was on
scene at 22:59 [40]. Then, the home was fully involved in the
fire, both inside and outside. The exact TTF for the evolving fire
is difficult to determine, but the rapid fire development observed
suggests TTF in the range of 3 - 7 minutes. The fire department
apparently did not have sufficient time to respond to the fire. It
should also be noted that there were shifting storm strength winds
in the area [40] contributing to rapid spread of fire to adjacent and
distant structures.

The second fire considered is the fire in Risør 24th of February
2021. The estimated fire risk is presented in the center of Figure
3. It can be seen that the fire occurred after about ten days of
an increased ambient temperature. The associated TTF increased
slightly during this period, hence a slightly lower risk. The relative
humidity is not presented but in general, increased temperature is
consistent with reduced risk as the potential for drier indoor air
reduces. The fire was detected automatically at 04:41, by an IR-
camera which continuously monitored the densely built wooden
heritage cite [41]. As the house was partially hidden from the
IR-camera behind taller structures, at the time of detection, it
was already burning heavily on the outside. At 04:44 the fire had
developed into the roof construction of a neighbouring house,
evident through private video-recordings taken just outside the
house of fire origin. When the emergency manager arrived as the
first responder on scene, 04:52, he communicated flashover in
two houses [41]. The fire developed very fast and observations
and video recordings suggest a development somewhat less than
the fire in Lærdal, but in the range of 4 - 10 minutes. The
computed TTF at the day of the fire indicates flashover in about
5.2 minutes, consistent with the above observations. It can be
seen from Figure 3 (center), that had the fire occurred a week or
two earlier, conditions would have been even worse, and hence,
considering how the fire department struggled the day of the
fire, more buildings had probably been lost. This illustrates the
importance of the developed model and the ability to predict high
risk periods.

The last fire considered, was at a home care center in
Kongsberg, 24th of December 2017, resulting in the loss of
life [42]. The fire risk indication for this period is visualised
in Figure 3 (bottom). During the December month of that year,
the TTF averaged around 4.2 minutes, which is close to the
indoor conditions in Lærdal. Since this is a home care center,
the fire department must conform to the regulations, stating the
required response time to be 10 minutes or less. If presented results
are correct, they confirm the conclusion given in the aftermath
of the fire in Lærdal 2014, i.e., that the TTF is considerably
lower than the required response time from the fire department.
This makes it likely that the model could have warned the fire
department to be readily available. More generally, it suggests
that the regulated response time does not take into consideration
dry indoor conditions. However, being aware of high risk periods

Fig. 3. TTF and temperature for the fire in Lærdal 2014 (top),
Risør 2021 (center) and at a home care center in Kongsberg 2017
(bottom).

can initiate proactive measures, which could reduce the imminent
risk.

In general, and as initially expected, modelled TTF indications
appear reasonable compared to identified range for these historic
fires and results indicate low TTF values as initially stated.

4.2. Fire Risk Indications from Varying Climates

Historical weather data was collected from the winter of 2019
at four selected locations with different climate, i.e., Bergen,
Haugesund, Gjøvik and Lærdal. At the west coast (Bergen and
Haugesund) it is more humid than in the inland locations (Gjøvik
and Lærdal), which in turn are generally much colder during the
winter. Figure 4 presents the average fire risk indications based
on measurements collected in the winter of 2019 (December 12
until May 05). It can be seen that the fire risk model generally
indicates a greater fire risk (shorter TTF) at the colder inland
locations. The average TTF for Bergen and Haugesund is 5.50
and 5.70 minutes, respectively, while for Gjøvik and Lærdal it
is 4.48 and 4.77 minutes, respectively. Outputted values are as
expected, the climatic variations are easily identified, as evident
within the presented figure.
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Fig. 4. Estimated TTF for the four selected locations, winter
2018/2019.

4.3. Fire Risk Indication and Periodic Variations

The aforementioned fire in Lærdalsøyri is a devastating reminder
of city fires still posing a threat to a modern society. Generally,
Lærdal has a very dry climate, but analysis of weather parameters
in the aftermath of the fire, performed by the Norwegian
Meteorological Institute, suggest that January 2014 was drier than
average [11]. Possibly, as a result of this, it has been a common
understanding that the Lærdal fire was due to exceptionally
dry weather and strong winds. However, Figure 5 presents the
computed TTF values for Lærdal prior to the fire in 2014 and
throughout, until the winter 2021. It can be seen that the TTF
value did not experience a particular low-point at the time of
the fire in 2014, even though being dry. While the TTF value
reflects the FMC of indoor wood panels, the FMC depends on
the indoor relative humidity, which in turn primarily depends on
the water content of the outside air and the indoor versus outdoor
temperature. This is true, since other sensitive parameters are kept
constant within the model, such as indoor humidity production.
MET noted that the precipitation levels during January 2014 was
about 30 percent of the average precipitation, while temperatures
was about four degrees warmer on average, during December and
January [11]. It should be noted, however, that Lærdal is known
for low precipitation levels in general, in average 25 mm in the
month of January [11].

Fig. 5. Annual TTF variation in the town of Lærdal.

With regards to the outdoor relative humidity, the first half
of January 2014 was approximately similar to the upcoming
seven years, but about midways into the month, the 24-hour

averaged ambient relative humidity dropped to below 40 %,
continuing into the next month. Hence, observations indicate
dry conditions. It appears that while outdoor conditions were
drier than average, internal wood coverings (wall panels, roofing,
flooring) did not experience a particular drought historically, as
can be seen from Figure 5. Being a city fire, the condition of the
wooden homes is of special interest. A possible explanation is the
increased temperature that occurred simultaneously with the dry
period. Increases in outdoor temperature reduces the potential
of drying indoor hygroscopic materials, as the temperature
difference decreases. Hence, winters of greater humidity and
lower temperatures could have an equal effect on the indoor
humidity and corresponding FMC as drier winters with greater
temperatures.

Nevertheless, it needs to be differentiated between indoor and
outdoor conditions. The conditions during the Lærdal city fire,
were particularly dry outdoors, affecting outdoor conditions and
fire spread. However, the results presented in Figure 5 indicate
that the indoor conditions during the winter drought in Lærdal, is
periodically low and approximately equally low each year for the
period 2014 - 2021. Further, the fire in Lærdal did not even occur
at the driest period that winter, but as it still was getting drier. Thus,
the light drought identified by MET did not cause for exceptionally
dry indoor conditions, and thereby did not cause a particularly low
TTF compared to the period 2014 - 2021. However, it did result
in outdoor wooden materials becoming dry and susceptible to
fire, i.e., increasing the likelihood of fire spread to neighbouring
homes.

Considering the modelled results, it appears to describe
seasonal changes reasonably well. It is well known that the
ambient air water concentration is higher in summer and lower
in winter, and thus produce seasonal variations in indoor relative
humidity and expected TTF [32].

4.4. Lærdal and Risør - Effect of Wind

In the end of the presented experiments, and as a part of the
primary contribution of this paper, concerned with reducing
conflagration risk, it is worthwhile to briefly address the
differences between the Lærdal and Risør fires. The former was
characterized as a town fire, while the latter fortunately was
limited to only a few houses. From the presented data it was
evident that the TTF value was somewhat lower for the Lærdal
fire, indicating a more rapid fire development. Still, this primarily
relates to the first house catching fire. Two additional parameters
were also important for the Lærdal fire becoming so extensive,
i.e., the dry external wooden claddings, and storm strength winds.
Combined, these parameters contributed to the conflagration that
developed.

In Risør, the houses stood much closer, as can be seen from
Figure 6, which could partly outweight the calm wind conditions
the day of the fire. However, even though the response time was
higher during the Risør fire and the fact that the fire developed
unnoticed for some time, the scenario did not develop to a major
conflagration. As a town by the coast, the external cladding is
likely to have greater moisture contents compared to the fire in
Lærdal, but still, the wind appears a very important parameter
in the context of conflagrations. It appears, by comparing the
two cases, that fire spread by radiation and flame impingement to
nearby structures, as was the case in Risør, is less critical if the fire
department is on scene, compared to heavy winds and increased
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ember transport, as was the case in Lærdal. This is merely
an observation post studying the two fires. Further, fire spread
through ember transport, requires spreading firefighting resources
over larger areas, thereby severely straining the emergency system
capacity.

Fig. 6. Comparing the town of Lærdal, top, and the dense wooden
houses in Risør, bottom. House of fire origin is marked with a red
circle.

4.5. Combining Measurements and Weather Forecast Data

Being able to predict the fire risk for the coming days is a main
objective. Therefore, risk indications based on measurements
(historical data) and forecast data were computed separately and
compared. Figure 7 presents the results from Bergen during the
first days of January 2019. At the 3rd of January, the fire risk was
predicted for the upcoming nine days, represented by the black
line. That is, all data constituting the black line, was computed
at day 3. The grey line represents the fire risk solely based on
measured data. This means that calculations started at day 3, and
was computed each day, based on measures, for the next nine days.
By comparing the two, the deviation between predicted TTF and
the measured TTF is obtained. From the figure it can be seen that
the forecasted fire risk coincide with the historical fire risk for the
first three and a half days. Then, predicted risk begins to deviate,
but the deviation appears relatively stable. The average difference
was approximately 0.26 minutes with the standard deviation at
0.24 minutes. The maximum difference was found to be 0.62
minutes.

In general, the degree to which the two curves coincide, is
dependent on the degree to which forecasted weather occurs. The
model is not very sensitive to changes in outdoor conditions, so

there is a natural time lag before indoor wood moisture content
is significantly affected. Further, the modeled risk indication is
dependent on the occurring mean weather. That is, if the weather
predicted the upcoming nine days occur in some arbitrary order,
the crucial part is that the weather occur within these days. The
nice fit the first 3.5 days, can be explained partly by the resolution
of the retrieved external weather forecast and partly by the fact that
the resolution decreases as a consequence of greater uncertainty
in the weather predictions. The resolution of the retrieved weather
data corresponds to 3.5 days of hourly predictions, while post this
point weather data is given only per six hour, due to uncertainties
in the predictions. For this reason, predicted fire risk appears
to coincide well with measured risk the first 3.5 days. In turn,
this implies that the model successfully predicted the upcoming
fire risk in Bergen. It validates that the model can be used for
predicting fire risk indications, but more data is still needed to
further assess the model.

Fig. 7. Comparing time to flashover based on forecast and historic
weather data separately.

4.6. Computation Time and Data Storage

During the evaluation period, the implemented model
continuously harvested weather data for approximately five
months. Every 24 hours, the application fetches historical data for
the previous days and forecasts for the next nine and a half days.
Whenever the application fetches new historical weather data, it
will take the previously calculated fire risk indication and create
an augmented fire risk indication based on the new weather data,
and add it to the back of the previous one. This way, the storage
efficiency depends not on the weather data, but only on how many
fire risk indications are stored.

Each weather forecast stored in the database had a list of
87 objects containing weather information, such as temperature
and relative humidity. The total amount of storage that these
forecasts use, amounts to 12.5 Mb, with an average of around
25.4 kb per forecast. The weather data from the Frost stations was
stored in 24 hour intervals and contains hourly recorded weather
elements, mostly the same types as the forecast. The collection
in the database that stores historical data finally contained 634
documents, each of these documents covering 24 hours worth of
weather data. The total amount of storage used was 5.6 Mb with
an average of 9.0 kb per document. A fire risk indication for a
24 hour period at one location requires 61.6 kb of storage. Given
this, it is possible to calculate how much storage is needed when
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doing continuous fire risk calculations for several locations. For
instance, with continuous fire risk calculations for 10 locations
this will amount to 616 kb of fire risk indications every day. For a
whole year this will require 225 Mb of storage. With 100 locations,
each with a separate weather station as source, the total amount
of storage for a whole year would be 2.24 Gb, which is a modest
space requirement.

With regard to runtime efficiency, it took 0.07 s to compute fire
risk indications for one year. Note that this excludes the time to
retrieve the weather data from the external services and the time
for converting the data. If everything is included for creating fire
risk for one year, 4.1 s is required to retrieve the weather data
and another 0.2 s to convert it. Then it is passed on to the fire
risk component which adds another 0.6 seconds for conversions
and it takes 0.07 s to compute the fire risk. The total time elapsed
for creating a fire risk indication with weather data for a full year
amounts to 5 s. If the same was done for half a year, the time is
2.5 s of which 2.36 s is used to fetch the data, and 0.04 s is used
for conversion and computations. The remaining time is spent
communicating between the components. This shows that with
the proposed software architecture, fire risk indications can be
computed and stored in both a space and time efficient way.

5. Risk Assessment Concept
In Norway, both the industry and the government promote the
necessity of further introducing the concept of risk in safety related
work. This became evident within fire safety preventive work
in 2015, as a new preventive regulation was introduced [43].
Although a risk-based approach has always been used by first
responders when units respond to emergencies, the new regulation
introduced a risk-based approach for the preventive department
within the fire services. Thus, allowing risk-based inspections on
buildings of special interest, housing high risk activities. This
was in contrast to the previous requirements of frequency-based
inspections.

Among the main contribution of this study, is the introduction
of an understandable risk concept, aimed at those without any
technical background. The presented concept is developed for
non-technical people as well as decision-makers and management
controlling resources, particularly within the fire service, as to
understand how changing weather conditions affects the current
and near-future wooden house fire risk. Norway has more than
180 locations nationwide, of densely built wooden heritage sites.
Thus, reflecting a long tradition of wooden homes, which still
constitute the vast majority of new single family houses.

The model of Log [17], briefly presented above, is in itself
a single-structure fire risk model. However, the results apply to
all similar structures in an area, like all the houses at a wooden
heritage site. Any conflagration is dependent on an initiating
event, a source of ignition e.g., a house on fire. Most house
fires in Norway originate in the living room or kitchen [38, 39],
thus intervening before a fire reaches flashover and produces
external flames and embers could be critical. In his study, Log
proposed the modelled TTF to be used for risk assessment and
compared the indicated TTF with the time needed for the fire
department to get water on fire (WOF). Any imbalance in the
time budget with regards to tFO < tWOF indicates an increased
risk. Considering this time budget, the single-structure fire risk
model can be interpreted beyond the risk associated with the

house of fire origin, and also serve as an indicator of an initiated
major event, a possible conflagration. Such an indication would
be especially helpful if it is known that outdoor conditions are dry.
The fire department could then consider TTF indications with their
expected overall time to get WOF. The TTF value is a fire risk
indicator, just as existing forest fire indices, hence the degree of
imbalance between tFO and tWOF , determines the conflagration
risk level. The present study elaborates on the proposed concept
and introduces conceptual location specific risk contours (LSRC).

The following description relates to wooden single family
houses, representing the majority of single houses in Norway. The
time needed for the fire department to initiate extinguishing and
life saving work in case of fire, depends on a sequence of events of
varying duration. The specific sequences in question depends on
the particular case, for instance the presence of connected alarm
service. In general, these sequences may be described through
detection, interpretation, notification, turnout time, driving and
on-scene preparations, in accordance with [44].

By considering a time budget, including the different
sequences and comparing it to an indicated TTF, it is possible to
arrive at the theoretical available time for driving. This in turn, can
indicate the distance and area covered by the local fire brigade. In
this case, TTF represents the maximum available response time,
since it indicates time until critical conditions. Table 1 presents
a simple time budget, including most of the presented sequences
that constitute the overall time to WOF, i.e., the time until the
actual fire fighting starts. The table compares two cases, i.e., at 50
% and 20 % indoor relative humidity, and subtracts the respective
duration of each sequence from the available response time, until
left with a theoretical time for driving from the fire station to the
house on fire. Presented values and sequences are based on [44–
46]. Values are not taken as worst-case, that is, the duration of the
sequences presented, is generally equal to or lower then what the
literature suggests.

Table 1. Time budget indicating area coverage assuming a driving
spead of 60 km/h. TTF’s are given with corresponding indoor relative
humidities

Sequence of events TTF 50% TTF 20%

Time to flashover (min.) 8 4

Detection, notification and alarm-
central processing (min.)

-1 -1

Turnout time (min.) -1 -1
On-scene preparations (min.) -0.5 -0.5

Time available for driving (min.) 5.5 1.5

Straight distance (km) 5.5 1.5
Area covered (km2) 95 7
Relative coverage (%) 100 7

The results presented in Table 1 may illustrate the importance
of indoor relative humidity on the area covered by the local
fire department. During the winter, cold temperatures result in
outdoor air having a low moisture content. When this air enters
a heated building, the relative humidity of that air decreases and
indoor hygroscopic materials desiccate, as modeled in the present
study. The resulting low FMC results in reduced TTF and thereby
reduced available response time. An indoor relative humidity of

8



i
i

“output” — 2021/9/8 — 17:23 — page 9 — #9 i
i

i
i

i
i

Strand et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

20 % is common during the winter months in Norway, especially
from December throughout February. The time budget indicates a
reduction in area covered by 93 % compared to an indoor humidity
at 50 %. This could render large portions of high-risk regions out
of reach, prior to flashover, for the local fire department.

Figure 8 displays location specific risk contours for the city
of Stavanger, Norway. The fire station is located at the origin.
In general, the risk of uncontrolled fires increases as distance
increases from the local fire station. The contours indicate the
theoretical area covered by the fire department at a FMC in
equilibrium with the specified indoor humidity. It is assumed
that within each contour, the fire department will be able to
reach the object of interest within the object reaching critical
conditions during a fire, i.e., high risk of the fire spreading to
neighbour homes. The location specific contours, indicating local
fire risk, given a fire, do not take into account trafficability for first
responders. When indoor FMC of the wooden houses of Stavanger
corresponds to an indoor humidity of 20 %, the number of houses
covered by the local fire station, compared to the case at 50%
RHin, is reduced by about 85 %.

Fig. 8. Location specific risk contours, indicating area covered
by the local fire department during specific conditions. High-risk
regions are outside the contours.

The presented example illustrates how the implemented
model [17], combined with cloud-based weather data services and
the outlined risk concept, may serve as a tool enabling fire brigades
to identify periods of increased risk locally. Thus, they may initiate
proactive measures, especially when low indoor FMC coincide
with forecasted high strength winds. The system may be used for
predicting the fire risk in any densely built wooden neighbourhood
and heritage sites in Norway. It may also be used internationally
where sufficient quality weather services are available.

6. Conclusions and Future Work
An innovative and science-based predictive fire risk indication
model has been implemented in a cloud-service context where
external services were used to obtain the weather data required
for the computation. Regarding storage efficiency, the application
requires relatively little storage, i.e., the software architecture has
adequate storage efficiency. Furthermore, it is evident that it does
not accumulate large amounts of weather data. Regarding the run-
time efficiency, most of the time is spent fetching data from the
external services. The time for computing a fire risk indication
was negligible. The most time consuming internal operation of
the application was conversion of weather data. Fire risk for a
whole year was calculated withing 5 s, i.e., the model is both
storage efficient and fast.

With regards to the risk indication model, given the
retrospective risk estimates for the fires in Lærdal, Kongsberg and
Risør, combined with the reproduced natural seasonal variation in
terms of the TTF, as well as consideration of the climatic separated
locations, it may be concluded that the model produces sufficiently
accurate fire risk indications and that variations in output reflects
the modelled environment. Considering these results, many of
the Norwegian fire brigades would not have sufficient time to
respond to a fire during the winter period - even if they formally
conform to current regulations during other periods of the year.
Further, initial results show that predicted fire risk indications are
well within the accuracy needed to notify local fire departments,
at least 3-4 days in advance of high risk periods. Considering
the historical fires presented in this study, the model could have
predicted that the fire department would not be able to properly
handle those fires. The current minimum response time that the
fire department is expected to comply to, appears to be too high
for the dry periods during winter time. In general, considering the
overall performance, it can be concluded that the implementation,
predicted TTF and the risk concept, constitute the initial stages of
a sufficiently accurate risk predicting tool.

On the implementation side, end-user clients have not yet been
consulted for, e.g., the graphical user interface. As part of future
work it may be further investigated how to optimise the required
storage and computation time. Despite producing accurate results
when validated during the winter months, the model has potential
for improvements regarding risk predictions during the summer
months. This relates largely to the ventilation rates. Wind-speed,
wind direction and building density could also be included for
site specific fire and conflagration risk warnings. This would be
very valuable for densely built wooden town areas also outside
Norway, e.g., Japan, China, etc.
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