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Abstract

Software Defined Networks (SDN) is a networking paradigm that helps transform networks by breaking away from the
restrictive constraints put by networking hardware used in traditional non-SDN networks. They bring improved agility,
scalability, and programmability of the control and the switching of the traffic. The challenges of structuring the SDN data
plane for security still necessitate further investigation especially to deal with dynamic SDN networks. The use of the Robust
Network and Segmentation (RNS) algorithm, which is based on Product Family Algebra, is essential for implementing
layered defence and segmentation strategies to compartmentalize the networks and attain an access-control secure network.
In this paper, we present an additional plane in charge of the configuration and governance of SDN data planes that we call
Dynamic Configuration and Governance (DCG) plane. It is intended to give agility to dynamic networks. It implements the
RNS algorithm in the SDN environment. Moreover, we propose and assess three architectures that use the DCG plane. The
assessment results identify an architecture that is suitable for dynamic networks and another for networks that are more
stable regarding changes to policies and network topology.

Keywords: Dynamic SDN, SDN Architecture, Secure SDN, SDN Segmentation, Formal Methods for Network Segmentation

1. Introduction
Computer networks consist of connected communicating
resources that are protected by a security system. The goal of
this system is to ensure proper access to resources and to enhance
their availability and integrity. Firewalls play an important role in
this security system by enforcing security policies that enable
only legitimate users to access resources. Other mechanisms
such as Intrusion Detection System (IDS) can also be a part
of the security system. Firewalls are network security devices
that monitor incoming and outgoing network traffic and decide
whether to allow or block specific traffic based on given security
rules. The operation of determining which set of resources to
be placed under each of the firewalls is commonly referred to as
segmentation. Network security policies are deployed on network
devices that could be switches or firewalls. While in traditional
networks the network devices encompass the control plane and
the forwarding plane, in Software Defined Networks (SDN) there

is a separation between these planes. This decoupling of the
two planes enhances the modifiability due to the separation of
concerns; the control is separated from the forwarding.

SDN is a network architecture that allows the control of a
network using software applications, which takes the stateful
control to higher levels by involving several of the attributes of
the network and its traffic into the control. OpenFlow protocol [1]
is a communication protocol that gives the control plane access
to the forwarding/data plane devices. The control plane decides
on how the traffic is handled using a dedicated program called
the controller. The data plane devices forward traffic based on
the decisions of the control plane. This separates the concern of
the control from that of the execution of the control decisions.
This separation of concerns has the benefit of allowing the
controller to dynamically and simultaneously manage multiple
network nodes. Moreover, it brings, as stated above, advantages
to network management such as the ease of modifiability and the
ease of testing. These advantages come with several challenges
especially related to the security of the network [2, 3] such as
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the vulnerability of the network to man-in-the-middle attack and
Denial-of-Service (DoS) attacks.

In a network of computing resources, a security system
to be effective has to adhere to the strategies of layered
protection (i.e., layered defence) and segmentation (i.e.,
compartmentalization) [4, 5]. Layered protection means having
multiple firewalls consecutively on the traffic path. On the other
hand, segmentation means grouping resources into clusters of
“similar” security requirements, which would help in providing
the resources in a segment with the same defence mechanisms.
The two strategies are proved to be effective for securing network
resources [6, 7]. By adopting the two strategies we end up having
resources segmented into different segments that are protected
by layers of firewalls. Moreover, segments are placed into the
network based on the strength of their security requirements.
Therefore, segments with higher security requirements are placed
deeper in the network while segments with lower requirements,
such as the Demilitarized Zone (DMZ), are placed close to the
network’s entry point.

The above two strategies have been formalised and
implemented in the Robust Network and Segmentation Algorithm
(RNS) [8]. We briefly present the RNS algorithm in Section 3.
The RNS algorithm provides a systematic approach to segment
network resources into clusters and provides the network topology
that indicates the placement of these clusters in the network.
Given a set of resource policies, the RNS algorithm invoking
algebraic calculations generates the topology of the network in
which the resources under consideration ought to be organized.
Moreover, it generates the policies that have to be enforced by
the firewalls. The algorithm can be used in SDN environment
to create the data plane topology and to assign policies to be
enforced by the switches. Moreover, it could also be used to
segment large networks into multiple sub-networks with multiple
controllers. The RNS algorithm and its interfaces to the data plane
and the control plane form a module for dynamic configuration
and governance of the network. We call this module Dynamic
Configuration and Governance (DCG) plane. It forms a layer at
the same level as the Application Plane as shown in Figure 1.

Application PlaneApplication Plane

Control PlaneControl Plane

Data PlaneData Plane

SwitchSwitch

Controller

Southbound API

Northbound API

HostServer
Switch

ApplicationApplicationApplication

Dynamic Config. & 
Gov. Plane

RNS module

Dynamic Config. & 
Gov. Plane

RNS module

Fig. 1: SDN Architecture and the module running the RNS
algorithm

Today networks are very dynamic. It is typical within a modern
network to have resources that are added and removed frequently,
which leads to a change of the network. The RNS algorithm can be
used in real-time for this dynamic configuration of the network as
it evolves. For instance, resources in Internet of Things (IoT) [9]
are very dynamic: frequently connect to and disconnect from the
network. This leads to the necessity of dynamic control on the
access to the network. A policy that is defined for the network
at a time t might become irrelevant at a later time t + δ(t).
Recalculating the topology of the network and the policies for its
firewalls as the involved resources or their policies change leads
to changes in the network topology. The latter change entails
reconfiguration of the control at the control plane, or data plane
if some of the control is delegated to the switches. Hence, it
is essential to assess the effect of a dynamic amendment of the
control on the network performance. Two of the major questions
related to dynamic networks that we aim at addressing are the
following:

1. How can we separate the management of the dynamic aspects
of an SDN in a real-time setting from the control and the data
related issues? For this question, we apply the design principle
of separation of concern and we propose an additional plane
(DCG plane) that specialises in reconfiguring the network
following changes to its resources or their policies.

2. What SDN architecture is the most suitable for dynamic
networks? For this question, we present and discuss the
results of the assessment of the three SDN architectures under
consideration.

To assess the efficiency of the use of DCG plane that is
supported by the RNS algorithm in SDN. For this purpose, we
build three SDN architectures using mininet [10] that conform
to the topology calculated by the RNS algorithm that we
present in Section 3. Since in SDN network the firewalls can
be placed either at the control plane or the data plan (see
the discussion in Section 2.), we conceive the following three
possible implementations for the firewalls calculated by the RNS
algorithm:

• Architecture 1: A single and centralised stateful firewall
located at the control plane. The firewall governs all the data
plane switches. Figure 5 illustrates this architecture.

• Architecture 2: Multiple distributed stateful firewalls located
at the control plane. Each of the firewalls is assigned to a
unique switch at the data plane. Hence, we have as many
firewalls as switches. This architecture is presented in Figure 6

• Architecture 3: Multiple distributed stateful firewalls located
at the data plane. Each switch is transformed into a stateful
firewall. This is made possible by the usage of the data plane
abstraction, BEBA software switch [11], which is an extension
of OpenState [12]. Figure 7 shows this architecture.

To assess the usage of the RNS algorithm, as an essential
component of the DCG plane to handle dynamic changes to
a network, within the three above architectures. We aim at
determining the most appropriate architecture to use with the RNS
algorithm for SDN environment. We look at the performance of
the above architectures. We consider the following performance
attributes:
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1. Setup cost: It is evaluated by the number of packets exchanged
between control and data planes during the setup phase. We
use Wireshark [13] to count the number of exchanged packets.

2. Reachability: To test the effectiveness of the enforced
policies, we use ping [14] utility such that each host tries
to reach every other host in the network.

3. Response time or latency: We use ping [14] utility to find out
the time needed for the communication between two selected
nodes.

4. Bandwidth: We assess this performance parameter using
iPerf [15] tcp test to obtain the bandwidth for the link under
consideration.

5. Latency variation(jitter): We use iPerf udp test to get the jitter
for the link under consideration.

6. Resilience to topology change: It is measured by the number
of packets exchanged to fulfil an intended topology change.

1.1. Main contribution of the paper

The contribution of the paper is twofold. First, it illustrates the
use of the RNS algorithm as an essential component of the DCG
plane in SDN. It shows how the algorithm is essential for a
dynamic SDN. We give the details on the use of the RNS algorithm
in SDN for the implementation of the three architectures under
consideration. Second, we assess these architectures to capture
their drawbacks and strengths. This helps us identify the most
appropriate architecture for using RNS algorithm in SDN. We find
out that when the network is very dynamic, Architecture 2 is the
most appropriate. For a relatively stable network, Architecture 3
is the most appropriate. Although it has the highest cost in the
setup and the update phases, in the operation phase it does not
need any communication between the control and the data plane.
While some of the material of the paper has been presented in [16],
this paper brings additional details on the background material,
on the techniques used in the implementation of the architecture,
and additional assessments of the proposed architectures.

1.1.1. Structure of the paper

The structure of the paper is as follow. In Section 2., we present
the background and review the related work. In Section 3., the
RNS algorithm is presented along with its implementation. In
Section 4., we present three architectures for the implementation
of firewalls. Section 5. presents the testbed and selected use cases
for the experimentation. In Section 6., we show and discuss the
assessment and its results. Finally, in Section 7., we conclude and
point for our future work.

2. Background and Related Work
2.1. Background

The background for the work presented in this paper covers SDN
and stateful data plane. In the following, we cover these topics.

2.1.1. Software Defined Network (SDN)

In traditional networks, the control plane and the data plane
are combined in the same network device. Therefore, network
administrators need to configure each device separately. This
approach makes traditional networks hard to setup, maintain

and manage. Moreover, traditional networks cannot cope with
the demands of modern networks such as dynamic changes and
scalability. SDN separates or decouples the control plane from the
data plane. The control or the management is centralized and has
a global view of the network. Data plane devices (e.g., switches)
are basically dummy forwarding devices. They forward traffic
based on rules specified remotely. The rules could be coming
from applications and are triggered by information extracted from
traffic or traffic events [3].

SDN architecture consists of three planes: application, control,
and data planes [3, 17] as shown in Figure 1. In this work,
we propose an additional plane to be added which is the DCG
plane. Each plane has its own specific functionality. An SDN
network has at least a single controller at the control plane, a
northbound application programming interface (API) between
the control plane and the application plane, and a southbound
interface between the control and data planes. We propose an
interface between the control plane and the DCG plane as well as
an interface between the data plane and the DCG plane.

Data plane has network devices (e.g., switches) that forward
packets without taking decisions on their own, and they
communicate with the controller using southbound APIs (e.g.,
OpenFlow protocol). Each OpenFlow enabled switch has a flow
table. Each entry in the flow table has matching fields, action,
and counters. The matching fields can be any of the packet header
attributes such as source mac address, source IP, destination mac
address, destination IP, destination port, protocol, etc. A flow
table entry can execute many actions including forward the packet
on a specific port, forward packet to controller, or drop. Flow table
entries have priority to specify the order of the evaluation. An
entry with high priority gets evaluated first, and an entry with low
priority is evaluated later. The development of SDN architecture
allowed for the introduction of software switches. The most used
of which is open vSwitch [18].

The southbound API is the interface between the control
plane and the data plane network devices. OpenFlow is the most
accepted and used southbound API. There are multiple OpenFlow
messages that can be sent from the data plane devices to the
controller including packet-in, switch features reply, flow remove,
etc. And the OpenFlow messages from the controller to data plane
switches include packet-out and add flow.

SDN control plane runs the network operating system
(NOS) which has a global view of the network and configures
network devices based on policies and commands defined by
applications [2, 3, 19]. It also abstracts the low level/data
plane network for the application plane. There are two
types of controller architectures: centralized and distributed.
The centralized controller architecture has a single controller
responsible for managing data plane devices. Examples
of centralized controllers are Ryu [20], POX [21], and
floodlight [22]. SDN distributed controller architecture has
multiple controllers with interfaces between them. ONOS [23]
adopts an architecture that distributes the controller. For further
information on SDN controllers, we refer the reader to [24].

2.1.2. Stateful Data Plane

In a typical SDN architecture, data plane switches are stateless.
For SDN to handle stateful communications, switches need to
forward heavy traffic to the controller. This results in a controller
overhead and latency in response time. Stateful data plane
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approaches allow data plane switches to track stateful connections
and therefore take some load off the controller which results in
less latency [3, 25].

OpenState [12] is a stateful data plane abstraction that extends
OpenFlow to handle stateful connections at the data plane. The
motivation behind OpenState is that some simple operations can
be done based on the switch knowledge and can be delegated to
the switches, therefore allowing the controller to focus on global
network decisions. The controller is still informed of the delegated
operations and remains in control of the switches. As shown in
Figure 2, each switch holds two tables: state table and eXtensible
Finite State Machine (XFSM) table. The state table keeps track
of the state of the connection. XFSM is a Mealy Machine and the
XFSM table is the tabular representation of its transition function.
For a packet and its current state, OpenState uses an XFSM table
to identify the action to be taken and the new state. In this paper,
we use BEBA software switch [11] which extends OpenState to
handle TCP flags in the implementation of Architecture 3.
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Packet
Sate lookup (Action + Next state)

lookup

key
Packet headers 

+ State
Packet headers 

+ Actions

Key extractor
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+ Next state
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Fig. 2: Packet Flow Diagram in OpenState

There are other approaches (e.g., Flow-level State Transitions
(FAST) [26], Stateful Data Plane Architecture (SDPA) [27]) that
use more than two tables. We refer the reader to [25] for other
approaches for building a stateful data plane.

2.2. Related Work

In this section, we provide coverage of the literature related to
the topics relevant to this paper. We cover SDN architectures that
have been proposed, the challenges within dynamic SDN, and the
architectures to implement firewalls in an SDN environment.

2.2.1. SDN architecture

In the literature, there is an emphasis on the whole SDN
architecture (e.g., [28, 29]) and on control plane structure (e.g.,
[23, 30]). While there is a large literature dealing with the
controller placement at the control plane, the authors of [19]
indicate a shortage of research work on the placement of
resources and switches at the data plane. One of the topics
discussed in regards to SDN data plane structure is that of data
plane flexibility [19]. Data plane flexibility can refer to many
issues including adding and removing resources (i.e., changing
the topology). The issue of micro-segmentation and slicing is
also one of the topics discussed in data plane structure [31].
Network slicing and micro-segmentation are two related concepts
concerning isolating parts of the network from each other.
Network slicing is the instantiation of a complete end-to-end

logical self-contained network with all its functionalities for
a specific service or application. Micro-segmentation provides
finer-grained isolation of network parts. It allows for dividing
networks into finer segments up to an individual machine level and
defining security control policies for each segment and therefore
limiting lateral traffic movement between segments.

In this paper, we focus on using the topology and the firewall
policies provided by the RNS algorithm (presented in Section 3.)
to structure the data plane. As far as we know, there are no
systematic approaches in the literature that provides guidance on
how to, automatically and without human involvement, segment
the resources at the data plane.

2.2.2. Dynamic SDN

Resources in modern networks are dynamic. They join and leave
the network at any time. This is related to the flexibility of SDN
data plane discussed in [19]. We also find that many approach
dynamic networks by focusing on routing and load-balancing in
the control plane [32, 33] and data plane [34]. Papers [32–34]
focus on the dynamic aspect of packet handling. In contrast, we
are considering a dynamic topology of the network: Resources
get added and removed and the structure of the networks changes
by changing the locations of the switches and their policies.
The dynamism that we are considering is related to the network
topology and the access policies that regulate its access.

Modern networks and related technologies such as IoT,
5G, SDN and Network Function Virtualization (NFV) have
experienced exponential growth in the last few years and are
expected to grow further in the future. However, security
challenges are some of the factors that limit the growth of such
technologies. These challenges are the result of the nature of
the vulnerabilities of the environment. One of the characteristics
of such an environment is its dynamism. To mitigate against
the changing security threats and the dynamic nature of the
environment, security solutions need to be adaptive [35].
The static security solutions of traditional networks are not
sufficient to provide security for such changing and evolving
environment. Therefore, the focus of research should be on
adaptive security [35]. In our work, the DCG plane provides such
a feature. It allows to automatically reconfigure a network as the
security situation requires.

For example, we find in [36, 37] that SDN paradigm is
mostly deployed to static data centres topology. The application
of SDN into dynamic networks such as spontaneous Wireless
Mesh Network (WMN) [36] and Mobile Adhoc Network
(MANET) [37–39] is recently emerging. In [36], a middleware
at every node is proposed that provides better management of
WMN networks as well as allowing the network to be flexible,
dynamic, and scalable. The approach employs multiple SDN
controllers, one for each collection of nodes or what is referred
to as WMN islands. The focus of these studies is to use SDN in
dynamic networks. However, the focus of our work is to structure
networks topologies for security. Our work can be used with these
approaches to structure dynamic networks for security.

2.2.3. SDN Firewalls

In the literature, we find many architectures to implement firewalls
in an SDN environment. These architectures present designs of
firewalls in SDN that are either stateless or stateful, centralised or
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distributed, or whether the firewalls reside at the data plane or the
control plane.

2.2.3.1. Single stateless firewalls
We find in [40–42] designs of single stateless firewalls. In [42],
the rules are entered individually and given a name by the user
through the Command-line interface (CLI), which makes this
architecture limited in handling a policy with a large number of
rules. Moreover, in this architecture, all traffic is handled by the
firewall at the control plane except for limited deny rules which
are inserted in the switch flow tables. This manual approach for
entering the rules would have limited usage in a large dynamic
network. It has a scalability limitation as all the traffic is assessed
by the firewall at the control plane. There is a high coupling
between all the switches and the firewall. We did not consider
this architecture as we built on later improved ones and because
we are interested in stateful firewalls.

2.2.3.2. Distributed stateless firewalls at the control plane
The architecture presented in [43] uses distributed stateless
firewalls. The architectures in [44–46] while they use only a single
firewall at the control plane, they adopt the same approach as what
we found in [43] of inserting deny rules in the switches at the data
plane. In the architecture presented in [43], the controller assigns
a firewall module for each switch. Each firewall inserts deny rules
in the switch, such that the switch drops unwanted traffic without
forwarding the packets to the controller. When a packet arrives
at a switch with no entry in its flow table to handle the packet,
it forwards the packet to the firewall at the controller. The latter
firewall instructs the switch on how to forward the packet and
insert an entry to handle such packets in the future. Such an
approach is basic and does not take the state of the connection
into account and blocks traffic in both directions. However, in
real settings, it is desirable to allow traffic in one direction and
block traffic in the other direction. While these architectures
enable distributed firewalls, they are stateless, which does not
meet our needs to implement a stateful firewall. Stateless firewalls
are not able to block packets that are not part of an established
connection and therefore not able to protect from fake packets.
Moreover, stateless firewalls block traffic in both ways while
in real scenarios it is required to allow traffic initiated from the
internal network and allow outside reply traffic while block traffic
initiated from outside to internal resources. Stateful firewalls keep
track of the connection state and therefore block packets that are
not part of an established connection. Moreover, they allow for
one-direction traffic. The architectures in [47, 48] use a stateful
firewall. Firewalls at the control plane suffer potentially from
controller overhead and scalability issues because of the amount
of traffic needed to be forwarded to the controller.

2.2.3.3. Distributed stateful firewalls at the data plane switches
The architectures presented in [49–51] implement distributed
stateful firewalls at the data plane switches. These approaches
take a load off the controller by putting the stateful firewall logic
in the data plane switches. However, these approaches are costly
in the setup and maintenance phases. In [50], we find a firewall
for SDN called Stateful Distributed FireWall (SDFW). It has
one or more modules at every SDN plane: A user interface at
the application plane for the user to specify high-level security
policies, modules for translating user policies to OpenFlow rules,

and other management modules at the control plane. Besides the
data plane switches having the stateful capability. Open vSwitch
conntrack module [18] is used to enable data plane state tracking.

In [49], an architectural design for a stateful firewall for
SDN coined FORTRESS is presented. Two different architectural
designs are presented: Stand-alone and cooperative. In the stand-
alone design, no packets are exchanged between data plane
switches and the controller. In the cooperative design, traffic can
take different paths and therefore the connection state needs to
be synchronized between the different data plane switches. The
implementation of this system is done using OpenState [12] where
finite state machines are used to inspect incoming packets at each
data plane switch. They used a Mealy machine for every protocol.
Their implementation is limited to only the TCP protocol.

2.3. SDN/NFV-Based Security Systems

NFV is proposed as an approach to decouple network functions
(e.g., firewall, load balancer, NAT, or web proxy) from
its dedicated hardware. Then, the network functions are
implemented as software instances running on powerful servers.
It is claimed that NFV together with cloud platforms enable
building flexible virtual networks [52]. It deals with changes of
Virtual Networks (VNs) by ensuring that the virtual firewalls be
properly amended to ensure the protection of the resources. Based
on heuristics, some mechanisms were designed to dynamically
adapt virtual firewalls to VNs changes [52]. However, these
mechanisms cannot be easily fully automated. The RNS algorithm
could play an important role in the process of dynamically
adapting virtual firewalls to VNs changes. In this sense, the RNS
algorithm could be a part of an NFV enabling the virtualization of
firewalls. In [53], we find the presentation of three architectures
implementing stateful firewalling with NFV and SDN: Controller-
Centric Approach, Virtual Network Function (VNF)-Centric
Approach, and Hybrid SDN/NFV Approach. The Controller-
Centric Approach exploits the capabilities of SDN switches for
implementing the data plane firewall functionality. In this case, the
firewall app as given in the architecture presented in [53] could
play the role of DCG plane shown in Figure 1. However, the
DCG plane is specialized in network segmentation and automatic
generation of bulletproof (access-wise) policies for the firewalls.
In the VNF-Centric Approach and the Hybrid SDN/NFV, the
VNFs approach relies on virtualized firewalls that are deployed
in a cloud environment. In this case too, the DCG plane can be a
part of the vFirewall component in the architectures (VNF-Centric
and Hybrid SDN/NFV) presented in [53].

3. Robust Network and Segmentation (RNS)
Algorithm

To ensure a network segmentation that guarantees the best
structure and configuration of the network, the RNS algorithm,
given in Algorithm 1, has been proposed in [8]. It is a procedure
that takes a set of resources and their individual access control
policies, then it derives the topology of the network that connects
them to one entry point allowing authorised access to each of them.
It calculates the policies to be executed at the firewalls on the paths
to the resources from the entry point such that we have defence
in depth [54, 55] and an access control protection that is robust.
The topology obtained by the algorithm and the segmentation
it entails ensure the robustness of the network. The algorithm,
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that we only briefly present in this paper, uses Product Family
Algebra (PFA) [56–58] theory to calculate the topology and the
firewall policies. In determining the topology and the policies
for the firewalls, the algorithm works out a segmentation of the
resources such that resources of similar access control policies
are grouped under the same firewall. The placement of firewalls
is determined by the notion of refinement on families of policies.
For further details, we refer the reader to [54]. The commonalities
between policies are calculated using their Greatest Common
Divisor (GCD) as presented in PFA. Firewalls have to enforce
common policies. For instance, if all the policies associated with
the resources under a firewall deny access for any traffic coming
from a range of IPs, then the firewall will deny all the traffic
coming from this considered range of IPs. If we take a resource
from a segment and arbitrary move it to another segment, then the
weight associated with the access control policy of the firewall
protecting its initial segment will be higher than the weight of
the segment it has been moved to. In ranking policies of the
firewalls, weights are given to the different security requirements.
For instance, if traffic from an internal resource is deemed less
dangerous than that from an external one, the weight will take into
account this requirement. For further discussion on the role played
by the weight function in assigning a resource to a segment, we
refer the reader to [8].

The RNS algorithm is a polynomial algorithm and it is efficient
in calculating a network topology and the policies of its firewalls.
Hence, it could be easily used to reconfigure dynamic networks.
For instance, at each change of the availability or the policies of
the network resources, the algorithm is executed to recalculate
within seconds the topology and the new firewall policies. Then,
the network is changed to have the calculated topology and to
enforce the new calculated firewall policies. The RNS algorithm
is essential for the DCG plane, which is responsible for amending
the network configuration and the network access control policies.
It dynamically determines changes to the network topology and
the policies of its firewalls to ensure proper almost real-time secure
governance. The mathematical foundations of these procedures
are given in [8].

The originality of the RNS algorithm resides in the fact that
it is based on rigorous algebraic calculations. Although many
approaches and formalisms exist to build a secure network and
harden security in existing networks, they do not use a formal
approach to achieve network segmentation. Their approaches
lack the ability to automate the derivation of the best solution
for network segmentation and prove its correctness. The RNS
algorithm deals well with the dynamic nature of networks. At
each change of the network topology or policies, the algorithm
calculates the amendments to the topology, distribution of the
firewalls, and the policies that the latter need to enforce.

The output of the algorithm (i.e., topology and firewall
policies) achieves the principle of layered defence. Moreover, the
firewall policies on every path from the entry point to resources
get stricter by reducing the attack surface as we go deep into the
network. The focus of internal firewalls is then on monitoring and
controlling internal traffic and lateral movement, which enhance
the overall network performance.

3.1. RNS implementation

For this study, the RNS algorithm has been implemented as
a module located in the DCG plane. In the context of SDN,

Algorithm 1 Robust Network and Segmentation (RNS)
Algorithm [8]

1: procedure Segmentation(R) ▷ R = {r1, r2, . . . , rn}
2: G← NULL ▷ G = (V,E, r)
3: r ← Create-node(R) ▷ Create root r
4: Add-node-to-G(G, r, ∅, false) ▷ Add root r to G

5: S1, S2, . . . , Sm ⊂ R such that
m⋃
i=1

Si = R, and no two subsets

have resources with same polices
6: F = ∅
7: for each s ∈ {S1, S2, . . . , Sm} do
8: F = F ∪ Create-node(s)
9: end for
10: while F ̸= ∅ do
11: wmax ← maximum weight of any s ∈ F .
12: T ← ∅
13: for each s ∈ F do
14: if s.weight = wmax then
15: T ← T ∪ s;F ← F − s

16: end if
17: end for
18: Add-Nodeset-to-G(G,F, T, wmax)
19: end while
20: end procedure

main

policy gcd graph

node
utilities

RNS module

Resource 1 
Policy

Topology File

Resource 1 
Policy
Resource 
Policies

Resource 1 
Policy

Resource 1 
Policy
Firewall 
Policies

RNS moduleRNS module

1..*1..*

1..*1..*

1..11..1

1..*1..*

Fig. 3: Structure of the RNS module and its input and output

the RNS module generates the data plane topology and structure. It
determines how many switches are needed, where they should be
placed, and the links between resources and switches. Moreover,
it generates policies to be enforced at each switch. In the case
of a policy or topology change, the DCG plane gets notified and
re-executes the RNS module dynamically to generate the updated
topology and firewall policies. The updates are then carried to the
data plane topology and the firewall policies are updated.

The RNS module at the DCG plane consists of six classes
as shown in Figure 3. A main class, a class for storing and
manipulating policies, a class for storing and calculating GCDs
of the families of policies, and a class for storing and generating
network graph that uses a node class. Moreover, it has a utility
class that encompasses useful methods used by the classes of
the RNS module. In the assessment work that we carried for
this work, we provide to the RNS module a list of resource
names along with their policy files. In the policy file, the first
line indicates the IP address of the resource. The rest gives the
policy by sequentially stating the rules. The grammar of the rules
is given in Figure 4.
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⟨rule⟩ −→ [⟨source_ip⟩], [⟨source_port⟩], [⟨destination_ip⟩],
[⟨destination_port⟩], [⟨protocol⟩], ⟨action⟩
⟨source_ip⟩ −→ ⟨ip_number⟩ | ⟨sub_network⟩
⟨source_port⟩ −→ ⟨port_number⟩ | ⟨port_range⟩
⟨destination_ip⟩ −→ ⟨ip_number⟩ | ⟨sub_network⟩
⟨destination_port⟩ −→ ⟨port_number⟩ | ⟨port_range⟩
⟨protocol⟩ −→ TCP | UDP | ICMP | all
⟨action⟩ −→ allow | deny
⟨sub_network⟩ −→ ⟨ip_number⟩/⟨dgits⟩
⟨ip_number⟩ −→ ⟨8bit_digit⟩.⟨8bit_digit⟩.⟨8bit_digit⟩.⟨8bit_digit⟩
⟨8bit_digit⟩ −→ 0− 255
⟨port_range⟩ −→ ⟨port_number⟩ : ⟨port_number⟩
⟨port_number⟩ −→ ⟨digits⟩
⟨digits⟩ −→ ⟨digit⟩ | ⟨digit⟩⟨digits⟩
⟨digit⟩ −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Fig. 4: Firewall Rule Grammar

The non-terminals ⟨source_ip⟩ and ⟨destination_ip⟩ are
optional indicating the source IP and destination IP, respectively.
They can be a specific resource IP address, a network, or a sub-
network. When these non-terminals are not given, it indicates the
IP that covers all IP domain (i.e., 0.0.0.0/0). The non-terminals
⟨source_port⟩ and ⟨destination_port⟩ are optional indicating the
source and destination ports, respectively. They can be a specific
port or a range of ports. When not provided, it indicates the
whole range of possible ports (i.e., 0 to 65535). The non-terminal
⟨protocol⟩ is optional and indicates the communication protocol.
The non-terminal can be a specific protocol (i.e., TCP, UDP, or
ICMP) or “all" which indicates all protocols. When no value is
given for this field, it indicates the “all" value. The non-terminal
⟨action⟩ is the only mandatory one which indicates the action to
be taken by the switch. The possible values in our simulation are
allow or deny which instruct the switch to forward the packet to
its destination or drop the packet, respectively.

The RNS module at the DCG plane creates a policy object for
each resource. The policy object reads a policy file and stores the
policy. It transforms the sequential rules into disjoint rules such
that executing them in any order produces a consistent policy.
It does the transformation as it reads rules one by one from the
policy file. If a new rule has a domain that intersects with that of
an already existing rule, the intersected part is removed from the
new rule as it already exists in another rule. The policy object uses
a weight function to calculate and stores the weight of the policy.

The RNS module proceeds to implements the RNS algorithm.
In the case of a policy or topology change, the DCG plane gets
notified and re-executes the RNS module dynamically to generate
the updated topology and firewall policies. The updates are then
carried to the data plane topology and firewall policies are updated.

4. Implementation of the Architectures
In this section, we present the implementation of the three
architectures introduced in Section 1. They implement stateful
firewalls, which keep track of connections state. Therefore, each
firewall needs to follow the progress of a session by recording its
state attributes and values. The firewall changes the state of the
connection upon receiving a packet. The architectures presented
in this paper record sessions’ attribute values using state tables. In
all architectures, each firewall has its own state table. Therefore,
Architecture 1 has a single state table as shown in Figure 5,
Architecture 2 has a state table for each firewall as shown in

Figures 6. Architecture 3 has a state table at each firewall for
each protocol as shown in Figure 7.

In all the architectures that we are considering, the topology
that is generated by the DCG plane is used to create the data plane
architecture as shown in the Figures 5, 6 and 7. It is the same
topology that we will be using in the assessment section. Also,
the firewall policies in all architectures under consideration are
generated by the DCG plane. In the setup phase, each firewall
fetches its policy. In Architecture 1, the single firewall reads its
policy, processes it, and stores it in a policy holder as shown in
Figure 5. The same applies to each firewall in Architecture 2 in
Figure 6. However, in Architecture 3, as each switch registers
with the controller, its policy is read and processed at the control
plane then pushed down to the flow tables of the switch at
the data plane as shown in Figure 7. In the operation phase,
switches in Architectures 1 and 2 forward the first packets of
every communication to the control plane for checking policy and
connection state. Once a connection is established or denied by the
policy, flow table entries are inserted in the switch to handle future
packets. However, Architecture 3 checks policy and track state
connection at the switch without the need for any communication
with the control plane.

Before we go on to explain the details of the implementation
of each architecture, it is important to explain how the ICMP,
UDP, and TCP communications are processed in a network.

ICMP is a protocol that provides error and information
messages for IP-based network. ping application uses ICMP
messages to test connectivity. It sends an echo request to a host
and waits for the echo reply, if no reply is received within a
certain period of time it times out and the remote host is declared
unreachable.

UDP is a connectionless protocol which means there is no
need to establish communication before sending data. iPerf sends
a UDP stream from the sender host. In the end, the receiver host
sends an acknowledgement to the sender host.

TCP is a reliable connection-oriented protocol. TCP needs to
establish the communication before sending data. The connection
is established using the three-way handshake in which three
packets are exchanged between the communicating hosts. The
first packet in the handshake, sent by the first host, is identified
by setting the SYN bit. The second host replies with a second
packet in which the SYN and ACK bits are set to indicate the
acknowledgement of receiving the first packet and continuing the
handshake. To which, the first host sends a third packet that has
the ACK bit set to inform the other host of the establishment of
the connection.

4.1. Architecture 1 Implementation

The first architecture is a single centralised firewall as shown in
Figure 5. In this architecture, the firewall application creates a
single firewall object responsible for enforcing the policies of all
the switches in the data plane.

To implement this architecture, we have created a firewall
application attached to the controller. It has a policy holder, a
state table, a package that has protocol handlers, a handler for each
protocol, and a module that implements the switch functionality
or to communicate OpenFlow commands to the switch. In this
architecture, the state is handled by the firewall, it has a single state
table to keep track of all the connections for all the switches in the
network. The same applies to the policy, in this architecture we
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Fig. 5: Architecture 1

have a single policy that gets enforced. Hence, the question is then
how to obtain the policy of this unique firewall from the several
policies to be deployed at the internal control points calculated
by the RNS algorithm? The idea is to add to the state-space of
the policies as an attribute that indicates on what switch a rule is
enforced. Hence, generating this global policy is straightforward
from the policies of the internal access control points calculated
by RNS algorithm.

Once this application is initiated and the firewall object is
created at the control plane, it reads and stores its policy that
governs the decisions of all the switches. The policy generated
by the DCG plane for this architecture is one single policy. When
the topology is created on mininet, each switch registers with the
controller and the firewall instructs it to add a single rule with
low priority to forward packets to the controller. When a switch
receives a packet, it matches the added rule and forwards the
packet to the firewall. The firewall inspects the packet header and
assigns it to the appropriate handler. For example, a first ICMP
packet in communication is checked against the state table. If the
state table has no entry for it, the policy is checked. If the policy
denies the packet, the firewall instructs the switch to drop the
packet and add an entry to its flow table to drop similar packets
for a certain period of time. However, if the packet is allowed by
the policy, the firewall adds an entry to the state table to handle
the reply packet. It also instructs the switch to forward the packet
and adds an entry to its flow table to forward similar packets for a
certain period of time. When the reply packet arrives at the switch,
the switch forwards the packet to the firewall. The firewall finds
an entry in the state table, then updates the state table setting the
connection state to established and instructs the switch to forward
the packet and add an entry to its flow table. A UDP connection is
handled in a similar way. The firewall handles the TCP protocol
handshake in a similar way except the first packet has a SYN
flag, the second packet has a SYN-ACK flag, and the third packet
has an ACK flag. The firewall prevents DDoS attack by keeping
track of request packets that have no reply, if it passes a certain
threshold, the firewall instructs the switch to add an entry to drop
such packets and avoid overhead.

In the data plane switches, each time the firewall add an entry
to the flow table, it set an expiry time for its usage. Once an
entry reaches its expiry time, it is removed from the flow table
and the firewall gets a notification by an OpenFlow message.
Once it receives this notification message, the firewall application
removes the state table entries.

4.2. Architecture 2 Implementation

Architecture 2 consists of multiple firewalls each one is
responsible for managing a single switch as shown in Figure 6.
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Fig. 6: Architecture 2

To implement this architecture, we have created a firewall
application at the controller. It creates a firewall object for each
switch. Each firewall object has a policy holder, a state table,
a package that has a protocol handler for each protocol, and a
module that implements the switch functionality or communicates
OpenFlow commands to a switch. In this architecture, the state
is handled by each firewall separately as it has a state table to
keep track of connections for the assigned switch. Compared
to Architecture 1, this architecture presents a better design as
it applies the principle of separation of concerns: what concerns
a switch is delegated to a firewall object.

In the setup phase, Once a switch is created at the data plane
and sends its feature to the controller, the firewall application
creates a firewall object designated for this switch. A firewall
object reads the policy that governs the decisions of its switch and
stores it. When the switch receives a packet that is not matched by
any entry table in its flow tables, it forwards it to its corresponding
firewall. The firewall checks its state table and, if needed, the
policy, then it instructs the switch on how to handle the packet.
When a communication is established, the firewall instructs the
switch to add an entry to its entry table to handle similar future
packets.

4.3. Architecture 3 Implementation

Architecture 3 is a distributed firewall architecture at the data
plane. In this architecture, we transform data plane switches
into stateful firewalls using BEBA software switch as shown in
Figure 7. Such that switches handle firewall rules and keep track
of the connection state without forwarding traffic to the controller.

In this architecture, we use a state machine to handle each
protocol. This is why each protocol is handled by a separate
flow table as we explain below. A state machine for a protocol
forwards legitimate packets or drops packets according to their
state transitions, and changes state if needed. If a packet is part of
an established connection or a connection to be established, then
it is forwarded by the firewall. Otherwise, it is dropped.
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Fig. 7: Architecture 3

In Architecture 3, each protocol is handled by a separate flow
table which has a state table. Therefore, we have a state table for
each of TCP, UDP, and ICMP protocols. Policies might involve
rules that are specific to a protocol. Therefore, the policy at each
switch can be split into (sub-)policies associated with the flow
tables of the protocols. Each flow table enforces the rules that are
relevant to its protocol.

To implement Architecture 3, we have created an application
attached to the controller. The application consists of a main class,
and five more classes each is assigned to handle a flow table. The
first class inserts rules in the first flow table, T0, to route packets to
the appropriate flow table. The second class inserts flow entries in
the flow table, T1, to handle ICMP packets. The third class inserts
TCP packets rules in the flow table T2. The fourth class inserts
rules in the flow table T3 to handle UDP packets. The last class
inserts entries in the flow table T4, which is intended to keep track
of what port is assigned to communication on each mac address.

In Architecture 3, the firewall application starts with the
controller. When a switch sends a feature reply message to the
controller (i.e., registers at the controller), the firewall object reads
the policy associated with the switch and stores it. It then starts
a first table object which inserts six rules in the first flow table,
the first two rules are to drop every LLDP and IPV6 packets.
The third, fourth, and fifth rules forward ICMP, TCP, and UDP
to tables T1, T2, and T3, respectively. The sixth rule forwards
packets not matched by the above rules to T4.

Afterwards, the firewall starts the second object, which is
to prepare the flow table T1 to handle ICMP packets. The first
OpenFlow command sets T1 into a stateful table. Then it sets the
lookup-scope attributes, which are the attributes that the switch
extracts from the packet and match with the state table entries as
discussed in Section 2.1. The lookup-scope in the ICMP case is the
tuple (source_ip, destination_ip). The next attributes
to be set at the switch are the update-scope attributes, which are the
attributes used by the switch to update the state table. In ICMP, the
update-scope is the tuple (destination_ip, source_ip).
Finally, it is the step of inserting entries in the XFSM flow table.
The first entry is to handle an established connection. It checks

if the state found in the state table is 1 (i.e., established) then the
switch forwards the packet to T4 to be forwarded to the right port,
and update the state for the other direction to 1 (i.e., established).
This rule is given the highest priority. Then the object checks the
policy rules and inserts flow entries for the rules that are related
to ICMP or “all" packets. These rules are used to match the first
packets in a communication (i.e., state 0). An allow rule passes
the packet to T4 to be forwarded, and updates the state for the
other direction to 1, otherwise, it drops the packet. An allow
rule is given a medium priority and a deny rule is given a low
priority. A first packet is processed by the state table which does
not match any entry and is given the default state 0. The XFSM
table processes the packet to either forward it and update the state
table, or to drop the packet.

The third and fourth objects have similar functionality to
handle TCP and UDP packets. The fifth object is intended to
update the T4 entries, which are for keeping track of the ports
associated with every mac address.

5. Assessment of The Architectures
5.1. Testbed environment

To assess the three architectures presented in Section 1., we use
the following components:

• mininet 2.2.2 [10]: It is a tool used to emulate and prototype
SDNs, running on Ubuntu 14.04.4 (64 bit) virtual machine on
VirtualBox 6.0.

• BEBA controller: It is based on Ryu OpenFlow Controller
3.29.

• BEBA software switch supporting OpenFlow 1.3.

For generating flows and collecting measurement data we used
ping, Wireshark 1.10.6, and iPerf 2.0.5 utilities. The testbed
environment is setup on a MacBook Pro with a CPU 2.7 GHz
Intel Core i5 and a memory of 8 GB 1867 MHz DDR3.

5.2. Selection of the topology to be used in the testbed

The topology used in the testbed is the topology generated by the
RNS module in the DCG plane for a network composed of two
engineering workstations (Engineering1 and Engineering2), two
finance workstations and a database (Finance1, Finance2, and
Finance DB respectively), a File server, a Web server, and an
Email server. The topology can be seen in the Figures 5, 6, and 7.

The high-level policies of these resources are the following:
Engineering1 and Engineering2 belong to the engineering
department and limit access to resources belonging to the
respective department. Finance1, Finance2, and Finance DB have
a similar policy applied to the finance department. The File server
allows access to resources belonging to internal departments (i.e.,
engineering and finance) only. The Web server and Email server
allow access to internal resources and allow limited access to outer
resources (i.e., HTTP and SMTP protocols).

The above requirements are translated into low level policies
and then fed to the RNS module in the DCG plane. The DCG
plane generates the topology as shown in Figures 5, 6, and 7. It
also generates firewall policies.

To test the dynamic nature of the network, we added two admin
resources to the set of resources. The policy of these resources
is to allow access to traffic generated from the admin resources

9
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only. These resources are to gain access to every resource in
the network and this is achieved by updating the policies of all
network resources. The DCG plane recalculates the topology and
generates updated firewall policies.

6. Results and discussion
In this section, we present and discuss the results of the assessment
of the three architectures. The tests are done on the SDN topology
generate by the DCG plane for the network resources mentioned
above. We have tested the three architectures for the topology
shown in Figures 5, 6, and 7.

One of the criteria to compare the architectures is the cost for
the setup of the network. The cost is measured by the number of
packets exchanged between the control plane and the data plane
in the setup phase. For Architectures 1 and 2, 46 packets are
exchanged to complete the setup. Architecture 3 took on average
1508 packets. We performed 10 tests on Architecture 3 and the
minimum number of packets exchanged is 1459 and the maximum
number is 1742. This is due to the fact that in Architectures 1
and 2 the only messages exchanged are the setup messages, while
in Architecture 3 besides setup messages, the messages for setting
stateful tables, inserting flow table entries are also exchanged at
this stage.

6.1. Reachability

After the setup of the environment, the first test we perform on
all architectures is whether the policies are enforced as expected
for the ICMP protocol, and for that, we did a reachability test
between all the resources in the network. Architectures 1, 2, and
3 all have the same result as shown in Figure 8. The reachability
test is done by the command pingall1, where every host tries to
ping every other host in the data plane. In the first line in the result,
we see a label at each line (i.e., eng1) which is the name of the
resource initiating the ping request. After the arrow -> a resource
name (i.e., eng2) indicates a successful communication with that
resource (i.e., reply), and an x indicates a failed communication
(i.e., blocked). For example, eng1 is able to accesseng2, file,
web, and email while failing to access fin1, fin2, and
finDB.

Fig. 8: Reachability test

1 The pingall command tests the reachability for the ICMP protocol only.
For the other protocols we use the iPerf tool as shown in bandwidth and
latency variation tests.

6.2. Response Time

The response time or latency test measures the time it takes to get
a reply for a request. We carried this test by sending several ICMP
packets using ping. We measure the response time for the traffic
originating from Engineering1 to Web server.

In Figure 9, we present the results for only 10 ICMP packets
as the results are the same for a number above 10 packets.
Figure 9 shows that the first packet took about the same time for
Architectures 1 and 2 and less time for Architecture 3. The reason
is that switches in Architectures 1 and 2 do not have entries in their
flow tables to handle the packet, and the packet is forwarded to
the controller. On the other hand, switches in Architecture 3 have
entries in their flow tables to handle the packet, which reduces
the time to handle the first packet. Moreover, Architecture 1
and Architecture 2 needed to exchange 32 packets between data
plane switches and the controller while Architecture 3 does not
need to exchange any packets. Architectures 1, 2, and 3 show
similar response times for the subsequent packets. The reason is
that the subsequent packets switches already have entries in all
architectures to handle the packets that follow the first packet.

An important factor impacting the response time is the number
of hosts trying to communicate in a short time interval and several
sessions are being established. For this purpose, we performed
the same tests as shown in Figure 9 measuring the response
time for the traffic originating from Engineering1 to Web server
while there are different communications going in the network.
Figure 10 presents the results for 10 ICMP packets. It shows that
the first packet takes almost the same time for Architectures 1
and 2 and less time for Architecture 3 for the same reason
presented above. Architectures 1, 2, and 3 show similar response
times that is due to the fact that subsequent packets switches
already have entries in all architectures to handle subsequent
packets to the first packet of a new connection.

To see the difference in response time between the three
architectures more clearly, we have created three different
topologies with the Engineering1 on one end and Web server
on the other end. The three topologies consist of 1, 10, and 20
switches between these resources. These switches enforce the
same policy. In all tests, Engineering1 sends a single ICMP packet
(i.e., ping request) and we measured the response time. Figure 11
shows the average results for 10 tests. The average times for the
case of a single switch for Architectures 1, 2, and 3 are 30.31
ms, 29.5 ms, and 1.18 ms, respectively. The average times for
the case of 10 switches for Architectures 1, 2, and 3 are 1312.2
ms, 1300.3 ms, and 607.5 ms, respectively. Finally, the average
times for the case of 20 switches for Architecture 1, 2, and 3 are
4963.3 ms, 5003 ms, and 2116.5 ms, respectively.

We performed the above test while there is ongoing
communication in the network. Figure 12 shows the average
results for 10 tests. The average times for the case of a single
switch for Architectures 1, 2, and 3 are 46.530 ms, 42.140 ms,
and 0.176 ms, respectively. The average times for the case of 10
switches for Architectures 1, 2, and 3 are 2691.6 ms, 2676.3 ms,
and 1409.0 ms, respectively. Finally, the average times for the
case of 20 switches for Architecture 1, 2, and 3 are 8123.1 ms,
8278.6ms, and 2924.7ms, respectively. It is clear from Figure 11
and Figure 12 that Architectures 1, and 2 has comparable response
time and Architecture 3 has significantly better time-performance.
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6.3. Bandwidth

One of the tests we performed to compare the three architectures
is network bandwidth. Network bandwidth is the maximum rate

or volume of data that can be transferred on a link per unit of time.
The bandwidth test is done by performing a TCP communication
using iPerf between the selected hosts (i.e., eng1 and web).
The result is shown in Table 1 and broken down into 0.5 second
intervals in Figure 13. Note that bandwidth test between virtual
hosts depends on the host machine CPU speed. The bandwidth
for the virtual host in mininet varies because of the host machine
running processes and CPU load at a given time [59]. Therefore,
the three architectures will not vary in bandwidth as they use the
same environment with the same switches and links.

Interval Transfer Bandwidth
Architecture 1 0.0-20.4 sec 512 KBytes 206 Kbits/sec
Architecture 2 0.0-19.0 sec 512 KBytes 221 Kbits/sec
Architecture 3 0.0-20.4 sec 512 KBytes 205 Kbits/sec

Table 1. Network bandwidth for Architectures 1,2, and 3

For a TCP communication, Architecture 1 and Architecture 2
exchange 154 packets between the data plane and control plane
while Architecture 3 does not exchange any packet.
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Fig. 13: Bandwidth

6.4. Latency Variation

Latency variation or jitter is the variance in delay time or latency
between packets’ arrival. The jitter test is done by performing a
UDP communication using iPerf between the selected hosts (i.e.,
eng1 and web). The result is shown in Table 2 which is broken
down into 0.5 second intervals in Figure 14. We notice that the
three architectures have very similar jitter and that it is not affected
by the difference in architectures for the same reasons discussed
for the bandwidth.

Architecture 1 and Architecture 2 exchange 45 packets in UDP
connection while 0 packets are exchanged in Architecture 3.

Interval Transfer Bandwidth Jitter
Architecture 1 0.0-8.8 sec 1.09 MBytes 1.05 Mbits/sec 17.349 ms
Architecture 2 0.0-9.1 sec 1.14 MBytes 1.05 Mbits/sec 16.792 ms
Architecture 3 0.0-9.9 sec 1.25 MBytes 1.06 Mbits/sec 15.962 ms

Table 2. Network jitter for Architectures 1, 2, and 3

Looking at the tests done on the operation phase which are
the latency, bandwidth, and jitter, we can notice the following.
First, results are similar for bandwidth and jitter tests for the three
architectures as they are based on the environment consisting
of topology, switches, and links which are the same for our
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Fig. 14: Latency variation (jitter)

architectures. Second, the result for the response time is high in
Architecture 1 and Architecture 2 and low in Architecture 3. The
reason for this is the time architectures 1 and 2 take to add entries
in the flow table of the switches in response to the first packet.
Finally, we also notice that for all these tests, Architecture 1 and
Architecture 2 exchange packets between the data plane and the
control plane while Architecture 3 does not exchange any packet.

6.5. Resilience to Topology Change

In network topology, many changes to the topology can occur.
These changes can be intentional and planned for by network
administrators such as adding resources, removing resources, or
changing resource policies. Moreover, in a dynamic environment,
resources can be in and out of the network at will. Hence for
efficient security, the governance of the network access needs to
shadow the changes. In any of these cases of change, the RNS
module in the DCG plane is re-executed on the fly to generate
an updated topology and firewall policies. Then, the data plane
topology running on mininet needs to be updated at run-time. For
this purpose, the updated topology is compared to the old topology
and a topology update script is created. The script contains mininet
commands to delete or add hosts, switches, or links. We run
the script on mininet CLI. The controller gets notified of such
topology changes, and it updates the firewall policies that are
provided by the DCG plane.

To assess the effect of a change, we added two administration
workstations. These workstations can access all resources and
they allow access between themselves and deny everything else.
We use this case to re-execute the RNS module and generate new
firewall policies and an updated topology. The mininet topology
is updated on the fly as explained above.

To compare the response for the update by the three
architectures, we evaluate the update cost of each architecture
by counting the number of exchanged packets between the
control and data plane to fulfil the update. In our example,
Architectures 1 and 2 exchanged 54 packets between control and
data planes. Architecture 3 exchanged 1670 packets on average.
The difference is huge between Architectures 1 and 2 on one side
and Architecture 3 on the other side.

We also did the reachability test of all the architectures after
the topology update. The result for the architecture 1, 2, and 3 are
shown in Figure 15.

The use of mininet does not allow to test the effect of topology
changes perfectly with BEBA software switch as it is not supported
fully by mininet. Instead, mininet fully supports Open vSwitch.

Fig. 15: Reachability test after topology update

One of the future suggestions is to implement the RNS algorithm
using the new version of Open vSwitch.

7. Conclusion and Future Work
The RNS algorithm is a product family approach for policy-
based network design. It uses the policies of a set of resources
to segment them to achieve the best access control security. This
paper has presented three different architectures for implementing
the RNS algorithm into SDN. We assessed these architectures
to compare them. We observe a difference in cost between
setup and operation phases. Architectures 1 and Architecture 2
have a low setup cost but high operational cost, while it is the
opposite for Architecture 3. Hence, there is a trade-off between
the time to setup proper routing mechanisms and the time for
normal communication operation. It becomes obvious that if an
environment is high in traffic but more stable, then Architecture 3
is more suitable. However, if the topology is more dynamic
compared to traffic volume, then Architectures 1 and 2 are more
suitable.

Architecture 1 and Architecture 2 are similar in terms of
where the firewalls reside, however they are different in terms
of design. Architecture 2 is more suitable for modifiability than
Architecture 1 as it is designed based on the separation of concerns
principle and gives more flexibility in updating policies when we
need to update the affected policies only rather than updating the
single policy that governs the whole network traffic. Moreover,
for a given packet arriving at the controller, we need to go through
a limited number of rules rather than going through all rules for
all switches in the network.

Many security threats or attacks can target an SDN
environment affecting the control plane, application plane,
southbound API, northbound API, or data plane [3] which applies
to all architectures. Architecture 3 by being stateful at the data
plane, by limiting the number of packets exchanged between the
control and data plane, and by handling traffic locally at the switch,
is more resilient to face vulnerabilities and SDN attacks targeting
the controller, northbound API, and southbound API.

To improve the performance of the DCG plane, we can use the
Defence in Depth (DD) strategy as an application at the control
plane, for reactive and quick changes to only update policies
without changing the structure of the whole topology. Moreover,
topology changes are done periodically or at downtime as intended
by the network administrator.

The DCG plane can be combined with other approaches to
improve the security of an SDN environment. Intrusion Prevention
System (IPS) for SDN such as WedgeTail [60] that inspects traffic
going through switches to detect attacks. Such a solution can work
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with our proposed architectures to secure SDN. First, we provide
the best segmentation for resources that support IPS to have a
better view of the traffic going through the network. Moreover,
in the case of IPS detecting clandestine entry point or unusual
network traffic, the use of DCG plane to recalculate policies and
topology to isolated infected resources or segments preventing the
spread of infection.

For future work, we plan on implementing the RNS algorithm
to structure the control plane using distributed controllers such
as ONOS [23], besides structuring the data plane. Another future
work is to use open vSwitch as it is fully supported by mininet
which allows for more flexibility to test the effect of topology
changes. We also plan to carry further empirical studies on the
performance of the RNS algorithm in various real networks. The
aim is to assess its performance in relation to network sizes and
various underlying network architectures.

Also, our future work aims at extending the role of the DCG to
encompass other network management aspects such as preventing
covert channels [61–63]. An analytic module that scrutinises the
data that flows through the network could be also added to the
DCG plane. It would use ontologies and organized data analysis
techniques (e.g., [64, 65] and [66]) to develop an awareness about
the security situation that might play a role in the configuration
of the network.
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