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Abstract 

The advances made in the sensing and communications technologies over the last few years have made the deployment of 

IoT solutions possible on a massive scale. The wide deployment of IoT sensors and devices has resulted in the development 

of smart services that were not possible before. These services typically rely on cloud services for processing IoT data 

streams, given that edge devices have limited computing and storage capabilities. However, time-sensitive IoT applications 

and services do not tolerate the high latency they can encounter when sending IoT data streams to the cloud. Fog 

computing-based solutions for these services are increasingly becoming attractive because of the low latency they can 

guarantee. With increasing deployments of fog nodes and fog clusters, we propose an architecture for the placement of 

IoT applications tasks on a cluster of fog nodes in the vicinity of the application’s data sources. The Fog Broker component 

can implement various scheduling policies to help IoT applications meet their quality-of-service (QoS) requirements. Our 

simulations show that it is possible to maintain low application latency and distribute the load between the fog nodes of 

the cluster by using simple scheduling strategies.  
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1. Introduction 

In recent years, the Internet of Things (IoT) has proliferated at 

an unprecedented rate. IoT devices and sensors are deployed in 

many areas such as factories, manufacturing plants, smart cities, 

healthcare facilities, transportation systems, and more. 

We expect all of the objects around us to be embedded with 

sensors and IoT devices. These devices generate large amounts 

of data while continuously monitoring machinery and 

equipment in manufacturing plants, road traffic conditions and 

availability of parking spaces in cities, weather conditions, 

consumption of energy and water in buildings and facilities, 

safety in public spaces, the structural integrity of bridges, and 

much more. The massive amount of data collected must be 

analyzed to help and speed up decision-making processes, 

improve services, and reduce costs. 

More precious than ever, data is now considered the main 

product of the digital economy. Organizations and businesses 

looking to gain a competitive advantage are investing heavily in 

IoT solutions to capture and store massive amounts of data that 

can help them obtain insights from collected data. These insights 

would help them optimize processes, develop new products, and 

detect anomalies before they occur. The challenge lies in their 

ability to use data streams that are still in motion and to react 

quickly to critical events before even storing the data in the cloud 

for further processing and analysis. 

 

 

In addition to the growing deployment of IoT, new technologies 

in advanced analytics and artificial intelligence promise to take 

IoT-based monitoring to another sophisticated level. Leveraging 

IoT-based data streams means increased visibility into the events 

taking place across edge devices and continuous development of 

smart services. Since edge devices generally do not have the 

computing and storage capabilities for local processing of the 

generated data, the traditional approach is to transfer data to the 

cloud, which has abundant processing and storage resources. 

This approach has proven costly in terms of latency, network 

bandwidth, storage, and energy consumption. To solve these 

problems, a new paradigm called “fog computing” was first 

proposed by Cisco systems [13]. This paradigm is not a 

replacement for cloud computing but a complementary 

computing model. It promotes the idea of moving specific IT 

and storage capacities to the edge of the network and near the 

data sources. An essential benefit of fog computing is the 

reduction in the amount of data that has to be transmitted and 

stored on the cloud. We discuss other benefits of fog computing 

in the background section. 

A growing number of studies have investigated the issues of 

resource allocation and service scheduling in fog computing 

environments [26][32][27][15][2][5]. Most of these 

investigations studied the scheduling of tasks for execution on a 

single fog node or edge device, or cloud. The low latency 

requirement of time-sensitive IoT applications requires finding 
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suitable fog services that provide the service with the required 

QoS. In many scenarios, several fog nodes may be deployed near 

IoT devices, such as in a smart road intersection. Therefore, it is 

essential to choose appropriate fog nodes for these applications 

based on the current state of their available resources to meet the 

QoS requirements of IoT applications. 

In this work, we address this issue by proposing a broker-based 

architecture that uses a fog broker component to schedule the 

different tasks (of time-sensitive and non-time-sensitive 

applications) on the available fog nodes. The Fog Broker’s 

components receive requests from various applications and 

collect up-to-date information on the available resources of the 

fog nodes of the cluster in order to come up with a schedule for 

the different tasks. It can implement various scheduling 

algorithms. As a proof of concept, we consider a scenario of a 

fog cluster with five fog nodes, and we use the CloudAnalyst 

simulation tool and three scheduling strategies implemented by 

CloudAnalyst to assess the performance of the task placement 

on the fog cluster resources [4]. 

The main contributions of this paper are summarized as 

follows: 

1) the design of a fog broker-based architecture for the 

placement of IoT applications’ tasks in a fog cluster. 

2) A review of some existing works on the issues of resource 

provisioning and task scheduling in fog computing. Our 

work differs from existing works, described in the related 

work section, in that it investigates QoS-aware tasks 

placement in a fog cluster using a scheduler-workers 

model.  Each fog node of the cluster has several virtual 

machines for processing tasks and uses a load balancing 

policy.  

3) The proposed model's performance was assessed using 

simulation with three scheduling strategies and three load 

balancing policies. The results show that the best results in 

terms of latency, average fog node processing time, and 

balancing the fog nodes load are obtained using the 

Throttled load balancing policy irrespective of the 

scheduling policy. To the best of our knowledge, none of 

the existing works assessed the three scheduling policies' 

performance together with the load balancing policies in a 

fog computing environment. 

The remainder of the paper is organized as follows: Section 2 

presents background information on edge and fog computing. 

Section 3 describes related work on the resource provisioning 

and scheduling of applications on the edge, fog, and cloud. 

Section 4 describes our proposed architecture for tasks’ 

placement on a fog cluster. Section 5 details the task scheduling 

and placement problem. Section 6 describes the results of the 

simulations we did using the CloudAnalyst simulation tool. 

Finally, Section 7 concludes the paper and highlights future 

work. 

2. Background 

2.1. Edge and Fog Computing 

 

Edge computing brings data storage and computing closer to the 

edge devices that generate data rather than relying on remote 

cloud servers that are far away. It allows businesses to save 

money by reducing the amount of data that needs to be 

transferred and processed on the cloud [20]. Many firms that 

have adopted cloud-based solutions for many of their 

applications have realized that bandwidth costs are higher than 

expected. Real-time processing of generated data would allow 

time-sensitive IoT applications to avoid latency issues that can 

affect application performance. For example, to monitor road 

traffic conditions multiple Internet-connected video cameras 

deployed at different locations in the road send their live footage 

for processing. Data generated by a single video camera can be 

transmitted easily over a network. However, many problems 

arise when live recordings from multiple video cameras are 

transmitted simultaneously. High latency can affect the 

monitoring application response time, and the bandwidth costs 

can be high. With an edge computing-based solution, the 

application could run locally on an edge server or gateway for 

fast processing and response. Other applications such as 

autonomous cars, virtual and augmented reality, smart 

healthcare systems have similar requirements in term of latency. 

Figure 1 depicts the edge-fog-cloud three tiers architecture for 

managing and processing IoT data. 

Some solutions, such as micro-data centers and cloudlets [19], 

[20], and fog-based solutions have been developed and deployed 

on the edge of the network to address the ineffectiveness of 

cloud computing in data processing for time-sensitive IoT 

applications. Bonomi et al. from Cisco Systems defined Fog 

computing as: “Fog Computing is a highly virtualized platform 

that provides compute, storage, and networking services 

between end devices and traditional Cloud Computing Data 

Centers, typically, but not exclusively located at the edge of the 

network.” [13]. 

The earlier literature treated fog computing and edge computing 

interchangeably as they both deal with processing IoT data close 

to data sources before transferring it eventually to the cloud. 

With edge computing, data is processed in edge devices and 

transmitted, using the communication capabilities of edge 

gateways, to a fog node or cloud server. With fog computing, 

the data is processed in a fog node located near the local 

network. Additional fog nodes can be deployed when more 

computing power is needed to improve scalability and provide 

the elasticity required by several business applications. 

 

 
 
Fig. 1. Edge, fog and cloud layers. 

2.2. 5G and Fog Computing 

The 5G technology promises to boost the cellular 

network not only to interconnect people but also to 

interconnect and control machines, things, and devices. 

The main features of 5G networks are enhanced mobile 

broadband, massive machine-type communications, and 

ultra-reliable and low-latency communications, which are 

expected to foster a wide range of high-performing 

applications and services [33]. 5G will provide new 
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performance levels and efficiency that will allow new user 

experiences and new industries to connect. The 5G will 

offer multi-Gbps data rates, ultra-low latency, huge 

capacity, and more consistent user experience. 

The significant value that 5G brings to fog computing 

is the large number of simultaneous devices supported by 

5G cells compared to 4G. For instance, using 5G in smart 

city scenarios means that the smart city's components can 

be connected autonomously, sharing data, aggregating it, 

and exploiting it in real-time. Santos et al. [34] proposed 

a fog computing-based framework to manage and 

orchestrate smart city applications in 5G wireless 

networks. The framework aims to provide low latency, 

high energy efficiency, and high mobility to overcome 

IoT scenarios' strict requirements. It allows for 

autonomous capabilities for resource provisioning in 5G-

enabled smart cities. Van Lingen et al. [35] discussed 

what they call “The Unavoidable Convergence of NFV, 

5G, and Fog” and described an architecture that addresses 

some of the central challenges behind the convergence. 

The proposed solution was applied to a smart city use 

case. 

2.3. Fog Nodes 

 

The main components of fog computing infrastructures are fog 

nodes, which can be physical or virtual components connected 

with smart IoT end devices and access networks to provide data 

storage and computing resources to these devices. Physical fog 

nodes include gateways, routers, switches, and servers. Virtual 

nodes can be in the form of virtual machines and cloudlets. For 

instance, Cisco fog nodes include wireless access points, 

switches, routers, and the Cisco Unified Computing System 

(UCS) servers. These servers typically include computing 

hardware, virtualization support, switching fabric, and 

management software. The user can develop and deploy IoT 

applications on the cloud or the fog [6]. Fog nodes can operate 

in a stand-alone mode or be part of a fog cluster with several fog 

nodes to provide their services to the users. They can be 

deployed anywhere with a network connection. Several works 

described the design and implementation of fog nodes [31] 

[1][28]. 

2.4. Fog computing to support smart services 

 

Fog computing promises to play an important role in the 

implementation of smart applications and services. For instance, 

smart cities can use fog computing for transportation 

applications, by obtaining data on current road and intersection 

conditions, and security applications by using video 

surveillance. Data management and processing operations such 

as data collection, aggregation, and rich and advanced analyzes 

that involve machine learning and event processing can be 

performed in one or more fog nodes at the edge of the network. 

The main benefits for organizations that use fog computing are 

bandwidth optimization, traffic reduction, reduced latency, and 

improved privacy and security. 

• Bandwidth optimization and Reduced traffic. 

Organizations can reduce network traffic and optimize 

bandwidth usage if they are equipped to process and 

analyze the large amount of data generated by IoT devices 

locally. In doing so, only aggregated and compiled data is 

sent regularly to a cloud server for further analysis. Fog 

analysis can be supported by machine learning and artificial 

intelligence algorithms. Many modern devices already 

support artificial intelligence algorithms. For example, 

edge accelerators, industrial robots and delivery drones 

with computer vision capabilities. 

• Reduced latency. Fog computing-based solutions store and 

process IoT data streams locally, allowing applications to 

get faster responses and reduce network traffic. This is vital 

for many scenarios, such as intelligent transportation 

systems, logistics and supply chain management, and 

emergency response. 

• Enhanced privacy and security. Fog computing reduces 

data propagation by analyzing sensitive data in fog nodes 

instead of a remote data center outside the control of the 

organization. This can greatly improve the privacy of the 

data. 

With the increasing power and resources of fog nodes, 

organizations can acquire, aggregate, and process IoT data 

streams to meet the stringent quality of service of time sensitive 

IoT applications. However, a right balance between cloud and 

edge/fog computing is required since the cloud has more storage 

and processing resources than fog nodes. 

3. Related Work 

Since IoT devices typically have limited compute and storage 

capacity, computationally demanding real-time IoT applications 

are typically offloaded to fog nodes with significant compute 

and storage resources. The QoS they provide to applications 

depends very much on how fog resources are managed and 

provisioned. Resource provisioning has been widely 

investigated in distributed environments in general and in cloud 

computing in particular [29][22]. Resource provisioning in fog 

computing shares with resource provisioning in cloud 

computing similar concepts, challenges, and research problems. 

As fog landscapes are generally more volatile than cloud 

environments, the existing approaches to resource provisioning 

cannot be applied to fog computing without adaptation. 

Therefore, more contextual information about fog landscapes 

and edge devices should be used to adapt effectively to the 

dynamic change in IoT environments. A growing number of 

studies have recently studied the problem of resource 

provisioning in fog nodes. 

Skarlat et al. [26] proposed a conceptual framework for fog 

resources provisioning that aims to distribute task requests and 

data between fog nodes. The framework includes a hierarchy of 

fog colonies, each with a fog orchestration control node that 

controls several fog cells (fog nodes). The fog orchestration 

control node’s role is to monitor resource utilization within its 

fog colony and create a provisioning plan for task requests. The 

authors formalized the resource provisioning problem as an 

optimization problem capable of considering existing resources 

in the fog landscape. The authors stated that the results of their 

resource provisioning model show a reduction in delays of up to 

39% compared to a reference approach, which results in round 

trip times and shorter time intervals. 

Yao et al. [32] considered that a fog node that relies on cloud 

technologies could rent and free virtual machines in an on-

demand manner. The QoS (i.e., task completion time) offered to 

mobile IoT devices with limited power may be degraded due to 

varying conditions of the wireless channel. The authors 

investigated how to jointly optimize fog resources provisioning 

(i.e., decisions on the number of virtual machines to rent) and 

the power control to help maintain the wireless transmission rate 

and therefore enhance the QoS. They formulated the joint 

optimization problem– which aims to minimize the cost of the 

system (VM rentals) while ensuring QoS requirements– as a 
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non-linear mixed integer programming problem, and proposed 

an approximation algorithm to solve the problem. 

The authors of [16] proposed a QoS-aware network resource 

management framework for containers in fog nodes. Fog nodes 

are increasingly using containerization to achieve low overhead 

for resource-limited fog devices such as WiFi access points and 

set-top boxes. However, the control of network bandwidth for 

outbound traffic is a weakness of containers, representing a 

challenge in using containers in fog nodes. The failure to achieve 

desirable network bandwidth control by existing container 

solution make bandwidth-sensitive applications suffer 

unacceptable network performance. The proposed framework 

aims to limit the rate of outbound traffic in fog nodes. It supports 

three scheduling policies, proportional share scheduling, 

minimum bandwidth reservation, and maximum bandwidth 

limitation, which can be applied to containers simultaneously. 

In computing, scheduling represents the process of allocating 

computing resources to an application and mapping its tasks to 

those resources to meet certain quality of service (QoS) and 

resource conservation objectives. The general problem of 

mapping tasks to distributed resources belongs to the class of 

NP-hard problems [8]. No known algorithm has ever found the 

optimal solution in polynomial time for this mapping problem. 

As the exhaustive search solutions are not practical due to the 

extremely high cost of generating schedules, many algorithms 

based on heuristics and metaheuristics have been proposed to 

schedule the tasks of applications in heterogeneous distributed 

systems environments. The scheduling of applications on the 

edge, fog, and cloud servers consists of placing the logical 

components of the application on the resources available on 

those three layers for execution, deciding on their interactions in 

this compute and network hierarchy to meet their QoS 

requirements. As edge resources and fog layers can be mobile, 

applications can also impose requirements on the mobility of 

processes and data. Besides, changes in data generation rates, 

network behavior, or battery energy levels may require reactive 

strategies. The application must be scheduled and coordinated to 

meet a variety of quality of service objectives, such as latency, 

energy, and monetary constraints. 

Over the last two decades, there has been much work on 

scheduling approaches for clouds and clusters. However, given 

that edge and fog computing are emerging paradigms, there are 

a few studies concerning application distribution and scheduling 

on the edge and fog resources individually and in clouds. The 

existing literature has proposed the conceptual underpinnings of 

edge and fog computing [13][10][24]. Others discussed the 

benefits and challenges of coordinating the edge, fog, and cloud 

layers in a hierarchical model [30][25] but did not examine in 

detail their impact on applications and their schedule. There is a 

growing number of research works, which proposed scheduling 

approaches to assign application tasks to edge, fog, or cloud to 

meet the application QoS requirements [27] [15] [2] [5]. 

Bayer et al. [27] studied how to provide a consistent 

environment for combining Fog and Cloud Computing using 

container virtualization. The architecture focused on the 

development of new deployment algorithms for the distribution 

of services between work nodes. The paper described how to 

integrate centralized and decentralized measurement probes to 

collect node conditions, such as available network connection, 

performance, and storage capabilities, as well as security and 

privacy controls. Haruna et al. [15] investigated the problem of 

user mobility and allocation of resources in the edge/fog and 

cloud data centers. They proposed an algorithm that works with 

the Seamless Handover Scheme for mobile IPV6 and suggested 

scheduling policies to mitigate the user mobility challenge to 

reduce application latency. 

Singh A. et al. [2] studied the issue of load balancing in a fog 

computing environment while taking into account the jobs’ 

security constraints on different fog nodes. They proposed three 

heuristic algorithms: minimum distance (MD), minimum load 

(ML), and minimum hop distance and load (MHDL). Also, they 

proposed an Integer Linear Programming-based algorithm to 

solve mapping and scheduling problems. They compared the 

performance of their proposed algorithms to the cloud only 

algorithm and to another heuristic algorithm called fog-cloud-

placement (FCP). The authors stated that the results of the 

simulation they performed revealed that the MHDL heuristic 

works better than other scheduling policies in the fog computing 

environment while meeting application privacy requirements. 

Rahabri D. et al. [9] proposed a Knapsack-based scheduling 

algorithm (GKS) to allocate the appropriate resources to 

modules in a fog network. The algorithm was simulated using 

iFogSim [14]. The authors stated that the results obtained in 

terms of the execution cost, energy consumption, and sensor 

lifetime show that their proposed algorithm outperforms the 

first-come-first-served, concurrent, and delay-priority 

algorithms. 

4. Architecture for task placement on a fog cluster 

Figure 2 depicts our proposed architecture for QoS-aware task 

placement on a fog cluster. The main components of the 

architecture are Edge Gateways, the Fog Broker, the cluster of 

Fog nodes, and applications. 

4.1. Edge gateways 

 

IoT gateways are fundamental components in IoT deployments. 

They have become essential architectural components that 

improve the performance of IoT solutions. Many solution 

suppliers have opted for ready-to-use devices that are flexible 

enough to meet the different demands of individual IoT 

deployments. An IoT gateway is typically responsible for 

aggregating the data received from IoT devices and sensors, 

translating the sensors’ protocols to guarantee their 

interoperability, and preprocessing the data before transferring 

it to other tiers for more advanced processing. Unlike traditional 

network gateways, which habitually perform protocol 

translations, today’s IoT gateways are full-fledged computer 

systems. They are capable of performing advanced tasks such as 

protocol and data bridge between devices that use different 

communication protocols and data formats, protection against 

malware, and storage and analytics [12]. For example, the Dell 

Edge Gateway 5000 family can aggregate data, perform analysis 

locally, and deliver only meaningful information to the next 

level. 

4.2. Fog broker 

  

The Fog Broker extends the capabilities of the IoT gateway in 

order to deal with a cluster of fog nodes. It also decouples the 

applications from dealing directly with the fog nodes. Given that 

these applications do not have the capabilities to monitor the 

available resources of fog nodes, they delegate to the fog broker 

the selection of appropriate fog nodes capable of meeting their 

requirements in terms of latency, response time and throughput. 

The components of the Fog Broker include the Fog Resources 

Monitor (FRM), the Task Scheduler (TS), the Identity and 

Access Manager (IAM), the Fog Services Registration Manager, 

the Queue of Applications Inquiries (QAI), and the Queue of 

Periodic Tasks (QPT). Periodic tasks can come with different 

frequencies and deadlines, according to the current system 
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configuration and requirements of the environment (for 

example, the current number of vehicles at the road intersection 

and the current status of the nearby roads). IAM is responsible 

for managing applications profiles, including their preferences 

in terms of personalized services and required QoS. FRM is in 

charge of collecting up-to-date information about the available 

resources of each fog node in the fog cluster. TS collects all the 

tasks to be processed from both the QAI and QPT queues. This 

component is responsible for the formulation and configuration 

of the task allocation process at the fog nodes. It mainly 

implements a placement algorithm to achieve a sub-optimal 

mapping that minimizes the latency of application tasks. The 

Task Scheduler output is a scheduled mapping between the tasks 

to be performed and the fog nodes. This component is also 

responsible for assigning tasks to the fog nodes assigned to them. 

Metaheuristic-based approaches can often be used to reach 

suboptimal solutions faster than placement algorithms that seek 

to reach optimal mappings [7] [17][21]. 

4.3. Fog cluster 

 

Several heavy field applications such as computer vision, object 

recognition, image processing, and anomaly detection, could 

benefit from fog computing because they do not tolerate high 

latency and high-cost network bandwidth for data transfer to the 

cloud. Their respective tasks must be distributed and executed 

on a cluster of fog nodes to meet their strict latency and 

bandwidth requirements. As shown in Figure 2, the fog broker’s 

scheduler is responsible for assigning tasks to the fog nodes in 

the cluster for processing. Also, fog nodes can support executing 

tasks in virtual machines or containers using well-known 

orchestration frameworks such as Kubernetes, Apache Mesos-

Marathon, and Docker Swarm [3]. Fog nodes can also 

implement several load balancing policies to distribute the load 

between the virtual machines of the node. 

4.4. Fog node 

 

As we mentioned earlier, fog nodes are the main components of 

fog computing infrastructures, which provide data storage and 

computing resources to edge devices. The typical components of 

a fog node might include an orchestration framework, a 

distributed messaging system, a data processing engine, data 

storage, and a load monitoring component. In recent years, 

several implementations of the publish-subscribe message 

broker have been developed. However, the most popular are 

ActiveMQ, RabbitMQ, and Kafka. Apache Kafka is renowned 

as the most advanced open-source distributed messaging system 

that can handle data streams efficiently and in a scalable manner 

[18]. Kafka is perfect for real-time scenarios such as telemetry 

from sensors, social analytics, clickstream analysis, and network 

monitoring. Kafka integrates well with many data processing 

engines such as Apache Storm, and Apache Flink. In our 

previous work, we proposed a fog node architecture for real-time 

processing of urban IoT data streams [11]. 

 

 
 

Fig. 2. Architecture for QoS-based task placement on the fog cluster 

 

5. Task scheduling and placement 

In this work, scheduling is the process that maps and manages 

the execution of application tasks on fog computing resources 

(fog nodes). It aims to allocate appropriate resources to tasks so 

that tasks’ execution can be completed to satisfy the 

performance goal specified by the applications (see Figure 3). 

In the context of fog environments, scheduling decisions need to 

be made as quickly as possible. The rationale is that, as 

mentioned earlier, fog computing is intended to improve 

application latency, and many applications may compete for the 

appropriate resources, and time slots desired by an application 
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task can be occupied by another application at any moment. Our 

objective here is to minimize the latency of tasks and ensure that 

time-sensitive applications meet their deadlines. In some 

scenarios, fog brokers associated with different IoT gateways 

might compete for getting the resources of the same cluster of 

fog nodes. This is the case when IoT gateways are deployed in 

the same area and are configured to interact with the same cluster 

of fog nodes. 

The Task scheduler orchestrates all work across the fog nodes 

cluster. It tracks all active fog nodes (workers) and applications 

and manages the workers to perform the tasks requested by the 

applications. It tracks the current state of the entire cluster, 

determining which tasks execute on which workers in what 

order. It updates the state of tasks in response to stimuli from 

workers and applications. After the update of any new 

information, it ensures that the entire system is on track to 

complete the desired tasks. Workers provide two functions: i) 

process tasks as directed by the scheduler, and ii) store and serve 

computed results to other workers or applications. Each worker 

has a queue of tasks that it has to execute as requested by the 

scheduler. It stores the results of these tasks locally and serves 

them to other workers of the cluster or the scheduler. If a worker 

is asked to execute a task for which it does not have all of the 

necessary data, then it may reach out to its peer workers in the 

cluster to get the necessary dependencies. The scheduler can 

execute several scheduling policies that can range from static 

approaches, such as random and round-robin, to dynamic 

policies that make use of the current status of each worker. 

Dynamic policies very often aim to make the optimal or near-

optimal placement of tasks to meet the QoS requirements of 

applications [23]. 

 

 
 
Fig. 3. Tasks scheduling in a scheduler-workers model 

6. Experimentation 

To assess the performance of application tasks’ placement in a 

fog environment, we use CloudAnalyst [4]. CloudAnalyst is a 

simulation tool that allows simulating cloud environments by 

providing the ability to define data centers and the hosts on each 

data center, and specify three scheduling policies (closest data 

center, optimize response time, reconfigure dynamically with 

load). Each host can support several virtual machines. The tests 

were simulated on MacBook Pro, core i5 processor, 3.40 GHz 

with 8 GB of memory. As in our context, fog nodes are located 

in the same environment close to IoT devices; we are 

considering the same locality as a data center with several fog 

nodes (hosts). Table 1 shows the deployment scenario of fog 

nodes, and Table 2 shows the number of virtual machines that 

each fog node supports. 

 

 

  
Table 1. Deployment scenario of fog nodes 

Fog Node Memory (Mb) Storage (Mb) Available BW Nbr. proc. Proc. speed VM Policy 

FN1, FN3, FN5 8192 1048576 1024 4 10000 time-shared 

FN2, FN4 16384 1048576 1024 8 10000 time-shared 

 

 

Table 2. Deployment scenario of virtual images in the fog nodes 

Fog Node OS VMM Nbr. VMs Image Size 

(Mb)  
Memory 

(Mb) BW 

FN1, FN3, FN5 linux Xen 5 10000  512 1000 

FN2, FN4 linux Xen 10 20000  1024 1000 

 

CloudAnalyst provides support for simulating three policies for 

load balancing across VMs in a single fog node. These policies 

are Round-Robin, Equally Spread Current Execution Load, and 

Throttled. Also, it provides three broker scheduling policies: 

Optimize Response Time (ORT), Closest Fog Node (CFN), and 

Reconfigure Dynamically with Load (RDL). With the above 

configuration and setting, we simulate the execution of the 

application requests for 24 hours using these three scheduling 

policies, respectively. The number of simultaneous requests a 

fog node supports is set to 10, and the load balancing policy of 

the VMs in a fog node is the Equally Spread Current Execution 

Load policy, Round Robin, and Throttled respectively. Each 

execution, corresponding to one of the scheduling policies, 

provides the following results: 

1) Average, minimal, and maximal overall cluster 

response time. 

2) Average, minimal, and maximal overall fog node 

processing time. 

3) Average, minimal, and maximal request servicing 

time of each fog node. 

Figure 4 depicts the overall cluster average response time for 

each scheduling and load balancing policy. Figure 5 depicts the 

overall fog node average processing time for each scheduling 

and load balancing policy. Finally, Figure 6 depicts the average 
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request servicing time of each fog node and for each scheduling 

and load balancing policy. 

The results show that the average response time of the cluster of 

fog nodes is around 109 ms, which is acceptable for many 

applications. The minimum response time obtained is 42.42 ms. 

The best average response time is obtained using the RDL and 

CFN scheduling policies with the Throttled load balancing 

policy. These two scheduling policies did not perform well with 

the Round-Robin load balancing policy. The ORT policy, 

however, gave better results with Round-Robin. 

The average processing time of all fog nodes depends on the load 

balancing policy used by the fog nodes. The best results were 

obtained with the Throttled load balancing policy with an 

average processing time of 0.6 ms for the three scheduling 

policies. 

The average request servicing time is less than 2ms on all nodes 

of the cluster and for all the three scheduling policies and the 

three load balancing policies. Also, the throttled load balancing 

policy allows to have uniform average request servicing time of 

0.6 ms and uniform load across the fog nodes of the cluster with 

the three scheduling policies. 

 

 

 

 

 

 

 

 

 

7. Conclusion 

Organizations that deploy IoT solutions, to improve their 

services and products, need to process IoT data streams in near 

real-time and use data analytics to make sense of collected data. 

Over the last few years, collected data are typically conveyed to 

cloud servers for processing, storage, and analysis. This scenario 

is feasible in many use cases. However, time-sensitive IoT 

applications, such as object detection and processing videos 

recorded by CCTV cameras, cannot endure sending data streams 

to the cloud for processing due to their higher network 

bandwidth requirements and the high latency experience. 

In this paper, we have described an architecture for tasks’ 

placement in a fog computing environment. The processing of 

data streams at the fog layer reduces network traffic and latency 

for time-sensitive applications. The main component of the 

architecture is the fog broker, responsible for scheduling the 

execution of application tasks on suitable fog nodes using 

various scheduling policies. We carried out several simulations 

using the CloudAnalyst simulation tool and three scheduling 

policies and three load balancing policies of VMs in fog nodes. 

The results show that the best results in terms of latency, average 

fog node processing time, and balancing the fog nodes load are 

obtained using the Throttled load balancing policy irrespective 

of the scheduling policy.  

As future work, we intend to investigate: i) the effect of 

several parameters (number of fog nodes and number of virtual 

machines) on the applications' latency; ii) Workflow scheduling 

in a fog cluster as many applications are executed as workflows 

of several tasks; ii) The security challenges at fog nodes and how 

Fig. 4. Cluster Average Response Time Fig. 5. Fog Node Average Processing Time 
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they impact task placement; and iv) Fog AI and deep learning 

models in fog brokers and fog nodes and how they could assist 

in task placement decisions.   

 

  

 
 

Fig. 6. Average Request Servicing Time of the fog nodes 
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