
 Journal of Ubiquitous Systems & Pervasive Networks

Volume 11, No. 1 (2019) pp. 17-25

* Kai Jander. Tel.: +49 152 534 80 400

Fax: - ; E-mail: jander@th-brandenburg.de

© 2019 International Association for Sharing Knowledge and Sustainability.

DOI: 10.5383/JUSPN.11.01.003
17

Practical Defense-in-depth Solution for Microservice Systems

Kai Jandera, Lars Braubachb , Alexander Pokahrc

aBrandenburg University of Applied Sciences
bCity University of Applied Sciences Bremen

cHelmut-Schmidt-University

Abstract

Microservices are a widely deployed pattern for implementing large-scale distributed systems. However, in
order to harden the overall system and when crossing datacenter boundaries, the authenticity and
confidentiality of microservice calls have to be secured even for internal calls. In practice, however, in many
cases no internal security mechanisms are employed mainly due to the increased complexity on backend
side. This complexity arises as result of standard security mechanisms like TLS requiring secrets for each
involved microservice. Building on previous work [19], in this paper we present a novel communication
architecture based on roles that on the one hand guarantees a high level of security and on the other hand
remains easy to manage. The approach provides encryption, forward secrecy and protection against replay
attacks even for out-of-order communication.

Keywords: Microservices, Security, Encryption, Confidentiality, Authentication

1. Introduction

In order to allow horizontal scaling, large-scale software

systems are generally distributed and therefore consist of

multiple machines cooperating via networks. In this

context, microservices are a novel development pattern

for such systems in which the overall functionality is

provided by a large number of small software

components. These components use and provide

software services and are developed and maintained by

independent teams, which enjoy high degrees of

autonomy regarding development and deployment of

technical solutions as long as the service functionality is

provided as agreed. Unlike traditional development

approaches where development teams and operations

teams are separated, microservice teams provide all

development and operation requirements for their service

(DevOps).

Figure 1: Example scenario of a microservice system

Figure 1 shows a simplified microservice system

scenario. The system consists of five services working

together to provide an application like a web shop to an

external user. The user runs a client application such as a

mobile app or a browser application, which accesses the

external user API provided by the system. This API

service is then able to invoke further internal services to

provide the requested functionality: a suggestion service

that provides purchase suggestions to the user, a

payment service to process user payments, a shipping

service that initiates the shipping with a logistics

provider and a warehouse service for managing the

physical products. Each of these services are maintained

mailto:kj@actoron.com

Jander et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 17-25

18

by an autonomous DevOps team that will develop,

maintain and deploy the service.

Most microservice systems are based on standard web

technology for communication between service and

between the external API and the user, though internally

each service team is free to choose any suitable

technology and if agreed upon, other technology may be

used.

However, the segmented nature of microservice systems

actually lends itself towards compartmentalizing

functionality and therefore mitigating the impact of

successful internal and external attacks. For example, in

the given scenario the suggestion service only has

functional interaction with the User API service and

therefore forms a functional domain with it. By

restricting interaction of that service to that particular

functional domain, the impact of the attack can be

substantially reduced. However, in order to be able to

form such functional domains, participants need to be

able to authenticate membership of these domains. As a

result, the focus of this paper will primarily rest on the

provision of a suitable authentication mechanism for

such funcitonal domain that can then be leveraged to

offer ancillary functionality like encryption within the

domain.

The communication between the user and the external

API is usually secured through a combination of

Transport Layer Security (TLS) [10] and additional

authentication mechanisms such as passwords. In

general, the most important aspect of the network

security is the so called perimeter defense, which tries to

protect the system boundaries from the outside internet

[9]. As a result, security of individual microservices

tends to be neglected [22] or considered to be handled by

a separate security team [29].

This lack of internal security results in a system that,

while unauthorized access is generally hard from the

outside, allows an attacker to use all of the internal

services easily once one of them has been compromised.

In the example scenario, if the DevOps team of the

suggestion service failed to adequately secure their

service, an attack can then use the suggestion service

platform to gain access to more valuable targets such as

the payment service. Due to the interally open nature of

the system this attack could succeed despite the fact that

the suggestion service probably does not require access

to the payment service.

As a result, a defense in depth approach for developing

microservice systems is generally desirable. While

technically possible, this is disregarded due to one or

more three factors: First, in most cases, hypertext

transfer protocol (HTTP) communication is employed

and while HTTP Secure (HTTPS) [28] based on TLS is

available, it provides purely channel based security

between two hosts identified by certificates without extra

work. As a result, only one identity for each side of the

communication channel can be used.

Second, while additional authentication and identity

management can be implemented using an external

authentication system, this would need to be managed

separately, possibly even in a centralized fashion.

Finally, the security has to be implemented in large part

in the application code. The service developers would

have to be sure to use secure communication channels

such as HTTPS, ensure proper certificate checks

especially if identities beyond host identities are

employed. If an external authentication management

system is used, tokens would need to be requested and

checked.

All of these checks are often quite non-trivial: A public

key infrastructures (PKI) certificate trust chain would

need to be followed up to a trust anchor, with each step

of the chain validated separately. Validity time intervals

need to be validated for each certificate. Certificate

permissions such as certificate authority signing need to

be ensured. In addition, some systems include concrete

capabilities within tokens that need to be coordinated

with the token provider.

This requires a specialized knowledge set to be available

to each of the DevOps teams and strongly distracts from

the development focus of the team of providing the

service functionality to the system. Some approaches

would also undermine team autonomy by requiring

coordination with external, possibly centralized systems

to acquire certificates and capability sets.

As a result, a microservice system should be able to

address the following three challenges in order to

encourage developers to internally harden their systems:

Role Support:

How can service communication be secured

independently of communication channels

while providing potentially multiple roles to be

attached to the communication?

Autonomy:

How can authentication be provided in a

flexible manner that allows each DevOps team

to make independent decisions regarding

identities?

Ease of Use:

How can this be achieved in an easy-to-use

manner that does not require extensive expert

knowledge within the team and without

resorting to centralized dependencies for the

team?

Figure 2: Trade-offs: Security versus ease-of-use

In Fig. 2 the well-known relationship beween security

and ease-of-use [26] (increases in one dimension will

typically lead to a decrease in the other dimension) is

illustrated with respect to the microservice scenario. It

can be seen that defense in depth needs at least one

secret for the access of services. Of course, one secret is

easy to handle but comes with the danger that an attacker

only needs to gain access to one service in order to

Jander et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 17-25

19

compromise the whole backend. On the other hand, one

could enforce maximal theoretical security by having

independent secrets for each of the services. This makes

establishing the communication between services far

more complex and error-prone. It could even lead to a

reduced security level as DevOps begin working around

security measures when those are perceived as

unreasonably strict and labourious [24]. Thus, the

security level in practice will be best when a good trade-

off can be found beween security effort and ease of use

of the system. With respect to microservice systems this

means that a solution should be aimed for avoiding both

extremes.

In the next Section existing microservice approaches for

service authentication and encryption are discussed.

Afterwards, in Section 3 fundamental requirements for a

solution are presented and in Section 4 a novel approach

addressing these requirements is conceptually described.

Details of its implementation are introduced in Section 5.

Thereafter, in Section 6 an evaluation of the approach in

the context of an example scenario is discussed. A

summary and an outlook on future work are given in

Section 7.

2. Microservice Approaches for Service

Authentication and Encryption

Since microservices are a design pattern and not

restricted to any particular technology, any applicable

technology can be used to develop distributed systems

based on the approach. For example, the developers of a

microservice system may always choose to implement

their own internal security approach, however, this

would require a high degree of expert knowledge in the

development teams as mentioned.

Table 1: Approaches for securing microservice

systems
 Role Support Autonomy Ease of Use

Plain TLS
-

(No Roles)

o

(lightweight key

management

effort)

o

(PKI knowledge

req., certificate

mngt. For O(n2)

connections)

TLS +

Auth Service

+

(roles via auth.

service)

- to o

(increased effort

for role

management)

-

(same as plain

TLS + central

mngt. of auth.

service)

Microservice

Framework

-

(only one role)

o

(same role for all

services)

o

(bus

management)

As a result, existing technologies and frameworks are

used to support microservice development. When based

on the three challenges in Section 1, the most common

technologies used in microservice systems can be

categorized into three different approaches as shown in

Table 1.

The first approach is relying on TLS to secure a

connection between two hosts. This includes the

common case of basing the service invocation of the

microservice system services on representational state

transfer (REST) [14], in which case HTTPS can be used.

TLS supports authentication of both sides of a

communication channel through server and client

certificates. Provided the authentication is successful and

sufficient, the following communication is encrypted and

authentication based on the original certificates is

ensured.

However, the most common use case of TLS

authenticates only the server side based on host names

using a public PKI. If client authentication is required, it

is usually performed in-band through the use of a

separate password or similar authentication. The use of

client certificates is rare and support would have to be

explicitly invoked by the application code. Furthermore,

authentication based on host name only may be

insufficient. While TLS does not strictly mandate how

the certificates are used and validated, thus allowing

custom authentication approaches, these complex

approaches must be implemented in application code.

Authentication extensions for TLS are available [8], but

library support for them is generally poor. For example,

RFC 8492 [18] describes an extension for securing

password-based authentication, however, standard Java

libraries do not offer the necessary cipher suites.

In any case, the implementer would still be forced to deal

with detailed authentication aspects if they are used. This

means that there is a tradeoff between ease-of-use and

sophisticated authentication styles such as roles. With

server-side-only authentication, the implementation

effort is moderate, but role support is not available.

Team autonomy is restricted by the use of an external

PKI.

The second approach attempts extending host-

authenticated TLS with in-band authentication options.

In most cases, a trusted third party is used to issue

permits in the form of tokens like e.g. JSON Web

Tokens (JWT) [20]. The trusted third party can be either

implemented manually as a separate service or with a

single sign-on framework such as OAuth2 [17]. Some

approaches can be quite advanced such as Shibboleth

[21], which allows federated security that can exhibit

higher degrees of autonomy for the DevOps team.

However, deploying and integrating such systems is very

complex and once again requires specialized knowledge.

Finally, there are microservice frameworks that support

the development of microservice systems by providing a

middleware for service acquisition, invocation and

communication. They also offer programming models to

deal with the distributed and concurrent nature of such

systems. While microservice frameworks offer the

potential for a well-integrated security solution that

enable easy implementation of security concepts,

features offered by such frameworks are often quite

limited.

For example, the Vert.x framework [12] offers an event

bus for communication between services. While the bus

itself can be secured using TLS, every service that has

access can use all capabilities of the bus without

limitation. As a result, defense in depth would have to be

Jander et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 17-25

20

built on top of it and implemented by the service

providers. Another example is the Lagom framework

[11], which is based on Akka [3]. Here, the same issue

applies: TLS is available, more advanced authentication

and defense in depth is left up to the service

implementation.

Since microservice frameworks are comparably easy to

use, offer a high degree of transparency and come with a

helpful programming model, it would be advantageous

for microservice frameworks to also provide flexible and

autonomous security solutions that allow microservice

systems to provide defense in depth. In the following

sections we will present a solution for the microservice

framework Jadex which provides a high degree of

security, high performance while allowing for easy usage

and autonomous management.

3. Requirements
The basis of communication for services is the exchange

of messages. In order to support multiple roles getting

attached to messages, all messages need to be encrypted

and associated with one or more identities. The goal of a

security system is to provide the service implementation

with the identities associated with the message and the

assurance that confidentiality was maintained and the

associated identities are verified. The service

implementation can then implement the authorization

layer based on the identities provided.

Roles are a useful pattern in this regard since they are not

restricted purely to an identifier of a single entity but can

be claimed by multiple identities if necessary. A role that

can only be claimed by a single entity therefore becomes

equivalent to that entity. As a result, specific support for

entity (e.g. particular services or hosts) are not necessary

and can be subsumed as roles.

Claims to a role can be proven by a prover to a verifier

through a number of means, typically either using a

shared secret in possession of both the prover and

verifier or using a digital signature generated by the

prover with a secret key that is verified by the verifier

with a corresponding public key that follows a trust

chain to a trust anchor for the role.

While digital signatures tend to be the most powerful

approach, in particular allowing the verifier to verify

roles without being able to claim them, it generally

requires complex management of a public key

infrastructure (PKI). If the use case is simple enough for

an approach based on a shared secret, this overhead can

and usually is avoided as can be shown by the continuing

popularity of WPA2-PSK (Wi-fi Protected Access with

Pre-Shared Key, see [25]) for easy wireless network

deployment.

As a result, a solution should therefore be capable of

supporting both approaches, allowing the service

implementers to pick an approach most suitable for their

use case. Furthermore, passwords as a particular type of

shared secret, despite their weaknesses, are widely used

due to their convenience and should therefore be also

supported in some fashion.

Confidentiality should be ensured by means of

authenticated encryption. The authentication can be

based on the role identities of the participants.

Furthermore, if possible, forward secrecy should be

provided through the use of ephemeral keys to prevent

compromising past communication if long-term keys are

exposed.

Finally, since the communication may be routed through

intermediary systems, these should be unable to read the

message content. Additionally, they should be prevented

from modifying the message content without the

recipient noticing the modification. Finally, the message

should reveal as little information to the intermediary as

possible but enough to ensure delivery is possible.

In summary a defense-in-depth solution should support

at least:

 A role-based authentication model

 Peer-to-peer authentication (without trusted

third party)

 Flexible secret mechanisms including e.g. keys

and passwords

 End-to-end security

4 Solution Concepts

A microservice system generally consists of multiple

processes, often server applications like web servers, that

are distributed on multiple machines, which can be either

virtual or real. Each process can offer one or more

services and make use of other services. Since each

service within a process has access to the memory space

of the process and could therefore undermine any further

subdivision, it makes sense to treat those processes as a

single entity with regard to the roles it has, regardless of

the number of services provided by the process. If

further separation between services is needed, the

process providing multiple services could be split up in

multiple processes for each service.

The basic approach for setting up secure and

authenticated communication between two of such

processes is the execution of a key exchange between

those processes and authenticating that exchange with all

of the roles available to each process. The processes

would then be able to verify both that the exchange was

authenticated (if at least one role could be verified) as

well as associate all verifiable roles with the exchanged

key. The resulting ephemeral key can then be used in a

symmetric authenticated encryption scheme. Messages

that are encrypted and can be validated using the

ephemeral key can then be tagged with the roles that

were verified during the key exchange.

Based on the requirements, the resulting system should

support role authentication based both on public/private

key pairs as well as shared secrets. Since shared secrets

are further subdivided into passwords and keys, three

approaches can be differentiated: passwords, keys and

asymmetric key pairs as represented by X.509

certificates.

Jander et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 17-25

21

In this scenario, the use of public/private keys is

relatively straightforward: The contributions to the key

exchange are signed for each role with the private key

and the public key chain is transmitted with the signature

to the other participant who can verify the signature

using the public key trust anchor associated with each

role, resulting in a list of verified roles.

Table 2: Overview of authentication approaches

 Convenience Entropy
Asymmetric

Roles

Password High Low No

Symm.

Key
Medium High No

Key Pair

(X.509)
Low High Yes

As shown in Table 2, while keys and passwords are

technically both a type of shared secret, they are

distinguished here with regard to their assumed entropy.

Keys are assumed to contain sufficient entropy to make

any brute force attacks computationally infeasible.

Therefore, authentication using a key simply takes the

key exchange contribution as input and generates a

message authentication code (MAC) using the key. This

procedure is then repeated by the other participant and

the MACs are compared: If they match, then the

associated role is considered verified.

Passwords are often considered to be a very convenient

way of authentication. Depending on complexity, they

can be memorized by the user and therefore can always

be entered if the user is present. However, this

convenience is often due to the generally low entropy of

passwords: High-entropy passwords are often difficult

for people to remember, so simpler, low-entropy

passwords are chosen. Although, in production

environments using microservices the memorability of

secrets might not a problem and keys can safely be used

there are scenarios in which passwords are beneficial as

well. For example when prototyping systems lightweight

solutions are helpful as changes might be required

frequently. Additionally, in all cases when client

authentication is obligatory, both options should be

considered. Passwords e.g. allow a user to switch

devices and access services by simply entering the

password. In contrast, using a key typically requires

some form of data transfer e.g. using a key file,

repository or communication channel.

However, low-entropy passwords are an easy target for

brute force attacks: A completely random password that

is 8 characters long containing, potentially, upper- and

lowercase letters as well as numbers has an entropy of 6

2 8 ≊ 2 48 possible combinations and thus roughly

48 bits.

If an attacker is able to mount even a moderately fast

brute force attack, the password will be discovered

quickly. Brute force attacks tend to be especially

effective if they can be mounted offline, i.e. without

interacting with participants who know the password.

As a result, a simple MAC using the password as the key

is insufficient since it would allow an attacker to perform

a fast, offline brute force attack which could not be

resisted by the password's low entropy. WPA2-PSK

attempts to resolve this issue by using an key derivation

function (KDF). A key derivation function performs a

large number of both CPU- and memory-intensive

operations such as expanding and contracting hashes on

the password and using the result similar to a high-

entropy key. This approach can slow down brute force

attacks considerably since they are required to repeat the

same number of expensive operations for each trial.

However, a major disadvantage of this approach results

from the fact that legitimate participants each also need

to perform the expensive operation albeit only once. As a

result, the complexity of the KDF needs to be carefully

balanced between slowing brute force attacks and effort

required by legitimate participants. This situation is

made worse by the fact that this balance shifts with

hardware capabilities: As hardware gets more processing

capabilities and memory becomes cheaper, the KDF

iterations and memory footprint needs to be expanded to

keep pace. Since this changes the output of the KDF,

such changes are not backward-compatible.

A better approach is therefore to prevent the attacker

from performing fast offline attacks and forcing them

instead to perform online attacks, which can be slowed

hardware-independently by the participants. Another

advantage is that such attempts can be logged for later

analysis and even stopped by establishing a maximum

number of trials per given timeframe and an

accompanying blacklist that will impede brute force

attempts.

Forcing the attacker to perform online attacks can be

accomplished by a set of protocols called password-

authenticated key exchanges (PAKE). In such protocols,

a shared secret is agreed upon in a key exchange

protocol that is authenticated using the password. The

end result of such an exchange is a randomly generated,

high-entropy key. An attempt by an attacker to

manipulate such an exchange results in the keys on each

side to differ. The PAKE protocol chosen for this

approach is the password-authenticated key exchange by

juggling (J-PAKE [16]). For each password-

authenticated role a J-PAKE exchange is set up which is

then performed in parallel to generate a key for each

password-authenticated role.

The resulting high-entropy key can then be used as if the

role had been secured with a high-entropy key in the first

place: A MAC is generated based on the key exchange

contribution and the J-PAKE-generated key and verified

by the receiver using the same generated key. If a

mismatch occurs, it means that either the passwords did

not match in the first place or an attacker attempted to

manipulate the J-PAKE exchange. In either case the role

is not accepted as valid and the exchange has to be either

repeated or accepted without the role being accepted.

Jander et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 17-25

22

5 Implementation

The protocol was implemented in the Jadex Active

Components framework,[7] [6] which offers message

exchange and service invocation using a multi-transport

overlay network. Since Jadex builds its service call layer

on its message exchange layer, authentication and

encryption was implemented for the message exchange,

therefore automatically providing its capabilities to the

service call layer as well.
Messaging in Jadex is transparent and can be performed

using multiple types of communication channels such as

TCP/IP [27] and Websockets [13]. When a message is

being sent to a remote Jadex platform, the local platform

attempts to find a communication channel, called

transport. Potentially, there can be multiple transports to

a remote platform and platforms can dynamically change

available transports as well. While transports are chosen

based on performance criteria, the choice is relatively

consistent but messages can be sent using multiple

different transports to the same platform. As a result,

while Jadex is supposed to provide at-most-once

semantics for messages, it does not preserve message

order.

Figure 3 shows the handshake protocol between two

participants who wish to communicate. The goal of this

protocol is to establish an ephemeral symmetric key

between the two participants and securely associate the

key with the verifiable roles available to each side. The

protocol starts either when the initiator attempts to send

its first message to the responder or occasionally by

participants with established key to negotiate a new key

to maintain forward secrecy.

Figure 3: Handshake protocol between participants

The initiator begins by sending a list of names of

proposed cryptosuites which are sets of concrete

cryptographic primitives used during handshake and

later communication. The initiator must ensure to select

only suites of acceptable security since the responder can

select any of the proposed suites. The responder will

then select a single suite based on its own preferences. If

no match is found, the protocol fails. The selected suite

is then sent to the intiator to confirm the selection. This

is done for modularity, so an agreement about the suite is

confirmed before the exchange itself starts. An

optimization of this approach would be to interleave the

subprotocols to a greater extent, however, since this

exchange is independent of the communication channel,

it is expected to occur only on occasion to ensure

forward secrecy.

After suite selection, the J-PAKE exchange is started by

the responder by sending the data set of the first round of

J-PAKE for all its passwords to the initiator. The

initiator then generates its own first round J-PAKE data

set and calculates the second round information and

sends both back to the responder. If no passwords are

used, these J-PAKE parts of the handshake could be

skipped.

The responder then finalizes the J-PAKE exchange. At

this point, both sides have generated shared keys

authenticated by their shared passwords. The key

exchange algorithm is then initialized by the responder,

which generates the key contribution of the responder.

This contribution is hashed and authenticators are

generated based on the hash: For both shared keys and

password-derived keys a MAC is generated with the key

contribution hash as input. For X.509 certificates, a

signature for the hash is created. The second round data

of the J-PAKE exchange, the key exchange contribution

and the authenticators are sent to the initiator.

The initiator finalizes the J-PAKE exchange, generates

its key exchange contribution and generates the

ephemeral key. The third round of the J-PAKE protocol

which confirms that the keys match can be omitted at

this point since the generated keys are used for

authentication only: If the keys differ, the authentication

will fail. The received authenticators are verified, only

roles with a verified authenticator are associated with the

ephemeral key. The intiator also generates authenticators

for its own key the same way as the responder

contribution and sends those along with its key

contribution to the responder.

Afterwards, the responder generates the ephemeral key

and verifies the authenticator and sends a confirmation

that it is now ready to exchange messages. After this

exchange, both sides possess a shared ephemeral key that

is associated with the roles that could be verified. If no

role could be verified, it can be indication of either a

man-in-the-middle attack or no matching roles between

Jander et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 17-25

23

the participants. In this case, the participants can either

abort the communication or accept that the

communication is untrusted and only has opportunistic

encryption available.

The shared ephemeral key is then used in an

authenticated encryption algorithm with nonces to

encrypt messages. In order to prevent replay attacks,

nonces are only accepted once by the receiver. Since the

message order is not guaranteed, a sliding window is

used: Successfully decrypted messages advance the

window and mark the nonce as invalid. Lower nonces

are valid until their message arrives, at which point they

will be marked as invalid in the data structure. In order

to limit memory consumption, any nonce below a fixed

distance from the highest received nonce are

automatically considered invalid whether they have

arrived or not (unarrived messages are considered lost).

The current implementation only offers a single

cryptosuite that attempts to secure the key exchange as

much as possible while offering high symmetric

performance after the exchange. The cryptographic

primitives contained in this suite are as follows: The

Blake2b [2] algorithm is used both as hash and MAC

function. The authenticated encryption combines the

ChaCha20 [5] symmetric cipher with the Poly1305 [4]

[23] authenticator.

For the key exchange, two algorithms are run in parallel

and their outputs are hashed together to hedge against

each of their potential weaknesses: The Ed448 elliptic

curve algorithm [15] is used for the historically good

record of elliptic curve cryptograpgy, while the

NewHope algorithm [1] is used to potentially provide

quantum security, provided the authentication is also

quantum-secure (i.e. MACs based on keys are used). By

hashing their outputs together, an attacker would have to

tackle both of the algorithms.

With regard to the challenges identified in the

introduction, the solution supports roles as described

above. Furthermore, the solution achieves the same

Figure 4: Example scenario of a microservice system

autonomy as other microservice frameworks like Vert.x

that also provide a ready to use messaging infrastructure.

Considering ease of use, our first experiences with the

new security architecture are promising. Roles can be

defined bilaterally between two services, but also, e.g. as

a convention that is agreed upon in the company, applied

to the system as a whole, if needed. Yet, in no case a

central authentication service is needed for roles, which

reduces management effort (usability) and supports the

DevOps approach (autonomy).

6 Evaluation

In Section 1 we have shown a simplified

microservice system scenario based on a web shop

application. In this scenario it was shown that in a

standard microservice system design, in which all

services are trusted, a successful attack on a weak but

relatively unimportant service like the suggestion service

can lead to subsequent severe breach of a more sensitive

service like the payment service.

The right side of Figure 4 shows how the services can be

assigned roles in the scenario: The user information role

used to publish information to the user is available to the

suggestion service, the shipping service and the user API

service by distributing a secret among them. The

information can consist of either a suggestion from the

suggestion service or a shipping confirmation from the

shipping service.

The payment role is used by the user API to submit

payment information to the payment service, while the

approval role is used by the payment service to authorize

shipping to the shipping service.

Finally the shipping role is used by the shipping service

to issue the final shipping order to the warehouse.

In total, given a pre-shared key approach, a total of only

four secrets are needed to secure the system.

The left side of Figure 4 demonstrates how the system

can mitigate and contain a service breach and prevent the

escalation in that scenario. Identical to the original

scenario, it is assumed that an attacker has successfully

breached the suggestions service and is now trying to

Jander et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 17-25

24

leverage that breach to gain access to the payment

service. However, in this scenario he was only able to

capture the user information role, which the payment

service does not recognize. The attacker is therefore able

to manipulation purchase suggestions or send out fake

shipping confirmations, but is unable to access the

payment service of the system. As a result, while the

attack was successful by definition, its impact has been

contained and the attacker is unable to leverage the

microservice system to gain access to additional

services.

The roles for each service functionality can be negotiated

and agreed by the two microservices planning an

interaction independent of other project participants. In

fact, it can be integrated in the process of designing the

inter-service API between two services which aims to

define the syntax and semantics of the interactions. As a

result, the key management process can be seamlessly

integrated in existing microservice processes, furthering

both ease of use of the approach as well as autonomy of

the microservice teams.

In addition, a centralized management structure such an

identity management system is avoided. This has the

procedural benefit of introducing no global

administrative entity which every microservice team is

required to interact with, a situation microservice

architectures specifically try to avoid since such

processes tend not to scale up to very large software

projects, leading to loss of developer productivity.

Furthermore, any secret used by the system that ends up

being compromised only affects a small part of the

system and can be replaced through action of a small

number of microservice teams rather than a global

reintroduction of secrets such in the case of a

compromised centralized identity management or in case

of a global shared secret.

The system allows the use of single shared-secret roles

in case of less critical functionality, trading some of

security for simpler key management. For example, in

the scenario the functionality of the shipping service that

provides shipping confirmation as well as the suggestion

service use the same role to provide information to the

user API. This means that in case of a breach additional

functionality will unlock for the attacker, but it can be

considered a worthwhile trade for the simpler key-

handling procedure of the user API and the rest of the

services given the low impact of the functionality

available.

In summary, the proposed solution is able to fulfill the

requirements of Section 3. It enables end-to-end security

for services using role-based authentication with peer-to-

peer based validation. The secrets for roles can be

chosen among different options including passwords and

keys.

7 Conclusion and Outook

Security in microservice systems is often neglected and

responsibility is delegated to an API gateway which

shields the internal services and provides authentication

as well as authorization. While convenient for the

DevOps this approach lacks defense in depth and a

hacker only needs to find a weakness in the gateway to

get access to any of the hidden backend microservices.

Current solutions with TLS are either complex by

requiring a PKI or need certificate distribution

mechanisms.

In order to prevent this, an approach is proposed that

combines a high degree of security with ease of use by

reducing the number of secrets to be managed in the

system. The novel approach provides authentication and

decentralized role-based authorization out of the box.

The solution has been designed to be adoptable with

minimum effort and tries to hide as many security

aspects from the application layer as possible. It supports

authentication via password, key and key pair and

ensures that low entropy approaches are leveraged using

key deviation functions. The approach has been realized

in the Jadex framework.

As part of future work it is planned to optimize the

efficiency of the protocol and to implement the protocol

for standard REST via HTTP. The former can be

achieved by reducing the number of messages while the

latter can be done by first using the proposed protocol to

establish a symmetric key that can be subsequently used

to encode the content of all further HTTP traffic. This

means that invocations could remain plain HTTP but are

secured except for the headers.

References

[1] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe.

Post-quantum key exchangea new hope. In 25th USENIX

Security Symposium (USENIX Security 16), pages 327–

343, Austin, TX, 2016. USENIX Association.

[2] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and

C. Winnerlein. BLAKE2: simpler, smaller, fast as MD5.

In Applied Cryptography and Network Security - 11th

International Conference, ACNS 2013, Banff, AB, Canada,

June 25-28, 2013. Proceedings, pages 119–135. Springer-

Verlag, 2013. https://doi.org/10.1007/978-3-642-38980-

1_8

[3] C. Baxter. Mastering Akka. Packt Publishing, October

2016.

[4] D. J. Bernstein. The poly1305-aes message-authentication

code, November 2004.

https://doi.org/10.1007/11502760_3

[5] D. J. Bernstein. Chacha, a variant of salsa20, January

2008.

[6] L. Braubach and A. Pokahr. Developing Distributed

Systems with Active Components and Jadex. Scalable

Computing: Practice and Experience, 13(2):3–24, 2012.

[7] L. Braubach, A. Pokahr, and K. Jander. Jadexcloud - an

infrastructure for enterprise cloud applications. In

S. Ossowski F. Klügl, editor, Proceedings of Eighth

German conference on Multi-Agent System TEchnologieS

(MATES), pages 3–15. Springer, 2011.

https://doi.org/10.1007/978-3-642-24603-6_3

https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/978-3-642-24603-6_3

Jander et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 17-25

25

[8] M. Brown and R. Housley. Transport layer security (tls)

authorization extensions. RFC 5878 (Standard), May

2010. https://doi.org/10.17487/rfc5878

[9] Y. Choi, C. Sershon, J. Briggs, and C. Clukey. Survey of

layered defense, defense in depth and testing of network

security. International Journal of Computer and

Information Technology, 3:987–992, September 2014.

[10] T. Dierks and E. Rescorla. The transport layer security

(tls) protocol version 1.2. RFC 5246 (Standard), August

2008. https://doi.org/10.17487/rfc5246

[11] M. Eisele. Developing Reactive Microservices - Enterprise

Implementation in Java. O’Reilly Media, Inc., May 2017.

[12] C. Escoffier. Building Reactive Microservices in Java.

O’Reilly Media, Inc., May 2017.

[13] I. Fette and A. Melnikov. The websocket protocol. RFC

6455 (Standard), December 2011.

https://doi.org/10.17487/rfc6455

[14] R. T. Fielding. Architectural styles and the design of

network-based software architectures. PhD thesis, 2000.

AAI9980887.

[15] M. Hamburg. Ed448-goldilocks, a new elliptic curve.

IACR Cryptology ePrint Archive, 2015:625, 2015.

[16] F. Hao and P. Y. A. Ryan. Password authenticated key

exchange by juggling. In the 16th International Workshop

on Security Protocols, SPW’08, 2008.

[17] M. Hardt. The oauth 2.0 authorization framework. RFC

6749 (Standard), October 2012.

https://doi.org/10.17487/rfc6749

[18] Dan Harkins. Secure password ciphersuites for transport

layer security (TLS). RFC, 8492:1–40, 2019.

https://doi.org/10.17487/RFC8492

[19] Kai Jander, Lars Braubach, and Alexander Pokahr.

Defense-in-depth and role authentication for microservice

systems. In Proc. 9th International Conference on

Ambient Systems, Networks and Technologies, Procedia

Computer Science (open-access), pages 456–463. Elsevier

Science, 2018. https://doi.org/10.1016/j.procs.2018.04.047

[20] M. Jones, J. Bradley, and N. Sakimura. Json web token

(jwt). RFC 7519 (Standard), May 2015.

https://doi.org/10.17487/RFC7519

[21] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and

K. Klingenstein. Federated Security: The Shibboleth

Approach. EDUCAUSE Quarterly, 27(4):12–17, 2004.

[22] S. Newman. Microservice insecurity. Container Solutions

Blog, July 2017. http://container-solutions.com/-

microservice-insecurity/.

[23] Y. Nir and A. Langley. The websocket protocol. RFC

7539 (Standard), December 2015.

[24] Donald A. Norman. The way i see it: When security gets

in the way. Interactions, 16(6):60–63, November 2009.

https://doi.org/10.1145/1620693.1620708

[25] Institute of Electrical and Electronics Engineers (IEEE).

Ieee standard for information technology–

telecommunications and information exchange between

systems local and metropolitan area networks–specific

requirements - part 11: Wireless lan medium access

control (mac) and physical layer (phy) specifications.

IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-

2012), pages 1–3534, Dec 2016.

[26] J. Pepin. Security vs. convenience.

https://auth0.com/blog/security-vs-convenience/, 2018.

[27] J. Postel. Transmission Control Protocol. RFC 793

(Standard), September 1981. Updated by RFCs 1122,

3168. https://doi.org/10.17487/rfc0793

[28] E. Rescorla. Http over tls. RFC 2818 (Standard), May

2000. https://doi.org/10.17487/rfc2818

[29] M. Schöfmann. Security challenges in microservice

implementations. Container Solutions Blog, January 2016.

https://container-solutions.com/security-challenges-in-

microservice-implementations/.

https://doi.org/10.17487/rfc5878
https://doi.org/10.17487/rfc5246
https://doi.org/10.17487/rfc6455
https://doi.org/10.17487/rfc6749
https://doi.org/10.17487/RFC8492
https://doi.org/10.1016/j.procs.2018.04.047
https://doi.org/10.17487/RFC7519
https://doi.org/10.1145/1620693.1620708
https://doi.org/10.17487/rfc0793
https://doi.org/10.17487/rfc2818

