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Abstract 

Microservices are a widely deployed pattern for implementing large-scale distributed systems. However, in 
order to harden the overall system and when crossing datacenter boundaries, the authenticity and 
confidentiality of microservice calls have to be secured even for internal calls. In practice, however, in many 
cases no internal security mechanisms are employed mainly due to the increased complexity on backend 
side. This complexity arises as result of standard security mechanisms like TLS requiring secrets for each 
involved microservice. Building on previous work [19], in this paper we present a novel communication 
architecture based on roles that on the one hand guarantees a high level of security and on the other hand 
remains easy to manage.  The approach provides encryption, forward secrecy and protection against replay 
attacks even for out-of-order communication. 
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1. Introduction 

In order to allow horizontal scaling, large-scale software 

systems are generally distributed and therefore consist of 

multiple machines cooperating via networks. In this 

context, microservices are a novel development pattern 

for such systems in which the overall functionality is 

provided by a large number of small software 

components. These components use and provide 

software services and are developed and maintained by 

independent teams, which enjoy high degrees of 

autonomy regarding development and deployment of 

technical solutions as long as the service functionality is 

provided as agreed. Unlike traditional development 

approaches where development teams and operations 

teams are separated, microservice teams provide all 

development and operation requirements for their service 

(DevOps). 

 

Figure 1: Example scenario of a microservice system 

 

Figure 1 shows a simplified microservice system 

scenario. The system consists of five services working 

together to provide an application like a web shop to an 

external user. The user runs a client application such as a 

mobile app or a browser application, which accesses the 

external user API provided by the system. This API 

service is then able to invoke further internal services to 

provide the requested functionality: a suggestion service 

that provides purchase suggestions to the user, a 

payment service to process user payments, a shipping 

service that initiates the shipping with a logistics 

provider and a warehouse service for managing the 

physical products. Each of these services are maintained 

mailto:kj@actoron.com


Jander et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 17-25 

18 

by an autonomous DevOps team that will develop, 

maintain and deploy the service. 

Most microservice systems are based on standard web 

technology for communication between service and 

between the external API and the user, though internally 

each service team is free to choose any suitable 

technology and if agreed upon, other technology may be 

used. 

However, the segmented nature of microservice systems 

actually lends itself towards compartmentalizing 

functionality and therefore mitigating the impact of 

successful internal and external attacks. For example, in 

the given scenario the suggestion service only has 

functional interaction with the User API service and 

therefore forms a functional domain with it. By 

restricting interaction of that service to that particular 

functional domain, the impact of the attack can be 

substantially reduced. However, in order to be able to 

form such functional domains, participants need to be 

able to authenticate membership of these domains. As a 

result, the focus of this paper will primarily rest on the 

provision of a suitable authentication mechanism for 

such funcitonal domain that can then be leveraged to 

offer ancillary functionality like encryption within the 

domain. 

The communication between the user and the external 

API is usually secured through a combination of 

Transport Layer Security (TLS) [10] and additional 

authentication mechanisms such as passwords. In 

general, the most important aspect of the network 

security is the so called perimeter defense, which tries to 

protect the system boundaries from the outside internet 

[9]. As a result, security of individual microservices 

tends to be neglected [22] or considered to be handled by 

a separate security team [29]. 

This lack of internal security results in a system that, 

while unauthorized access is generally hard from the 

outside, allows an attacker to use all of the internal 

services easily once one of them has been compromised. 

In the example scenario, if the DevOps team of the 

suggestion service failed to adequately secure their 

service, an attack can then use the suggestion service 

platform to gain access to more valuable targets such as 

the payment service. Due to the interally open nature of 

the system this attack could succeed despite the fact that 

the suggestion service probably does not require access 

to the payment service. 

As a result, a defense in depth approach for developing 

microservice systems is generally desirable. While 

technically possible, this is disregarded due to one or 

more three factors: First, in most cases, hypertext 

transfer protocol (HTTP) communication is employed 

and while HTTP Secure (HTTPS) [28] based on TLS is 

available, it provides purely channel based security 

between two hosts identified by certificates without extra 

work. As a result, only one identity for each side of the 

communication channel can be used. 

Second, while additional authentication and identity 

management can be implemented using an external 

authentication system, this would need to be managed 

separately, possibly even in a centralized fashion. 

Finally, the security has to be implemented in large part 

in the application code. The service developers would 

have to be sure to use secure communication channels 

such as HTTPS, ensure proper certificate checks 

especially if identities beyond host identities are 

employed. If an external authentication management 

system is used, tokens would need to be requested and 

checked. 

All of these checks are often quite non-trivial: A public 

key infrastructures (PKI) certificate trust chain would 

need to be followed up to a trust anchor, with each step 

of the chain validated separately. Validity time intervals 

need to be validated for each certificate. Certificate 

permissions such as certificate authority signing need to 

be ensured. In addition, some systems include concrete 

capabilities within tokens that need to be coordinated 

with the token provider. 

This requires a specialized knowledge set to be available 

to each of the DevOps teams and strongly distracts from 

the development focus of the team of providing the 

service functionality to the system. Some approaches 

would also undermine team autonomy by requiring 

coordination with external, possibly centralized systems 

to acquire certificates and capability sets. 

As a result, a microservice system should be able to 

address the following three challenges in order to 

encourage developers to internally harden their systems: 

Role Support: 

How can service communication be secured 

independently of communication channels 

while providing potentially multiple roles to be 

attached to the communication? 

Autonomy: 

How can authentication be provided in a 

flexible manner that allows each DevOps team 

to make independent decisions regarding 

identities? 

Ease of Use: 

How can this be achieved in an easy-to-use 

manner that does not require extensive expert 

knowledge within the team and without 

resorting to centralized dependencies for the 

team? 

 
Figure 2: Trade-offs: Security versus ease-of-use 
 

In Fig. 2 the well-known relationship beween security 

and ease-of-use [26] (increases in one dimension will 

typically lead to a decrease in the other dimension) is 

illustrated with respect to the microservice scenario. It 

can be seen that defense in depth needs at least one 

secret for the access of services. Of course, one secret is 

easy to handle but comes with the danger that an attacker 

only needs to gain access to one service in order to 
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compromise the whole backend. On the other hand, one 

could enforce maximal theoretical security by having 

independent secrets for each of the services. This makes 

establishing the communication between services far 

more complex and error-prone. It could even lead to a 

reduced security level as DevOps begin working around 

security measures when those are perceived as 

unreasonably strict and labourious [24]. Thus, the 

security level in practice will be best when a good trade-

off can be found beween security effort and ease of use 

of the system. With respect to microservice systems this 

means that a solution should be aimed for avoiding both 

extremes. 

 

In the next Section existing microservice approaches for 

service authentication and encryption are discussed. 

Afterwards, in Section 3 fundamental requirements for a 

solution are presented and in Section 4 a novel approach 

addressing these requirements is conceptually described. 

Details of its implementation are introduced in Section 5. 

Thereafter, in Section 6 an evaluation of the approach in 

the context of an example scenario is discussed. A 

summary and an outlook on future work are given in 

Section 7. 

2. Microservice Approaches for Service 

Authentication and Encryption 

Since microservices are a design pattern and not 

restricted to any particular technology, any applicable 

technology can be used to develop distributed systems 

based on the approach. For example, the developers of a 

microservice system may always choose to implement 

their own internal security approach, however, this 

would require a high degree of expert knowledge in the 

development teams as mentioned. 
 

Table 1: Approaches for securing microservice 

systems 
 Role Support Autonomy Ease of Use 

Plain TLS 
- 

(No Roles) 

o 

(lightweight key 

management 

effort) 

o 

(PKI knowledge 

req., certificate 

mngt. For O(n2) 

connections) 

TLS + 

Auth Service 

+ 

(roles via auth. 

service) 

- to o 

(increased effort 

for role 

management) 

- 

(same as plain 

TLS + central 

mngt. of auth. 

service) 

Microservice 

Framework 

- 

(only one role) 

o 

(same role for all 

services) 

o 

(bus 

management) 

 

As a result, existing technologies and frameworks are 

used to support microservice development. When based 

on the three challenges in Section 1, the most common 

technologies used in microservice systems can be 

categorized into three different approaches as shown in 

Table 1. 

The first approach is relying on TLS to secure a 

connection between two hosts. This includes the 

common case of basing the service invocation of the 

microservice system services on representational state 

transfer (REST) [14], in which case HTTPS can be used. 

TLS supports authentication of both sides of a 

communication channel through server and client 

certificates. Provided the authentication is successful and 

sufficient, the following communication is encrypted and 

authentication based on the original certificates is 

ensured. 

However, the most common use case of TLS 

authenticates only the server side based on host names 

using a public PKI. If client authentication is required, it 

is usually performed in-band through the use of a 

separate password or similar authentication. The use of 

client certificates is rare and support would have to be 

explicitly invoked by the application code. Furthermore, 

authentication based on host name only may be 

insufficient. While TLS does not strictly mandate how 

the certificates are used and validated, thus allowing 

custom authentication approaches, these complex 

approaches must be implemented in application code. 

Authentication extensions for TLS are available [8], but 

library support for them is generally poor. For example, 

RFC 8492 [18] describes an extension for securing 

password-based authentication, however, standard Java 

libraries do not offer the necessary cipher suites. 

In any case, the implementer would still be forced to deal 

with detailed authentication aspects if they are used. This 

means that there is a tradeoff between ease-of-use and 

sophisticated authentication styles such as roles. With 

server-side-only authentication, the implementation 

effort is moderate, but role support is not available. 

Team autonomy is restricted by the use of an external 

PKI. 

The second approach attempts extending host-

authenticated TLS with in-band authentication options. 

In most cases, a trusted third party is used to issue 

permits in the form of tokens like e.g. JSON Web 

Tokens (JWT) [20]. The trusted third party can be either 

implemented manually as a separate service or with a 

single sign-on framework such as OAuth2 [17]. Some 

approaches can be quite advanced such as Shibboleth 

[21], which allows federated security that can exhibit 

higher degrees of autonomy for the DevOps team. 

However, deploying and integrating such systems is very 

complex and once again requires specialized knowledge. 

Finally, there are microservice frameworks that support 

the development of microservice systems by providing a 

middleware for service acquisition, invocation and 

communication. They also offer programming models to 

deal with the distributed and concurrent nature of such 

systems. While microservice frameworks offer the 

potential for a well-integrated security solution that 

enable easy implementation of security concepts, 

features offered by such frameworks are often quite 

limited. 

For example, the Vert.x framework [12] offers an event 

bus for communication between services. While the bus 

itself can be secured using TLS, every service that has 

access can use all capabilities of the bus without 

limitation. As a result, defense in depth would have to be 
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built on top of it and implemented by the service 

providers. Another example is the Lagom framework 

[11], which is based on Akka [3]. Here, the same issue 

applies: TLS is available, more advanced authentication 

and defense in depth is left up to the service 

implementation. 

Since microservice frameworks are comparably easy to 

use, offer a high degree of transparency and come with a 

helpful programming model, it would be advantageous 

for microservice frameworks to also provide flexible and 

autonomous security solutions that allow microservice 

systems to provide defense in depth. In the following 

sections we will present a solution for the microservice 

framework Jadex which provides a high degree of 

security, high performance while allowing for easy usage 

and autonomous management. 

3. Requirements 
The basis of communication for services is the exchange 

of messages. In order to support multiple roles getting 

attached to messages, all messages need to be encrypted 

and associated with one or more identities. The goal of a 

security system is to provide the service implementation 

with the identities associated with the message and the 

assurance that confidentiality was maintained and the 

associated identities are verified. The service 

implementation can then implement the authorization 

layer based on the identities provided. 

Roles are a useful pattern in this regard since they are not 

restricted purely to an identifier of a single entity but can 

be claimed by multiple identities if necessary. A role that 

can only be claimed by a single entity therefore becomes 

equivalent to that entity. As a result, specific support for 

entity (e.g. particular services or hosts) are not necessary 

and can be subsumed as roles. 

Claims to a role can be proven by a prover to a verifier 

through a number of means, typically either using a 

shared secret in possession of both the prover and 

verifier or using a digital signature generated by the 

prover with a secret key that is verified by the verifier 

with a corresponding public key that follows a trust 

chain to a trust anchor for the role. 

While digital signatures tend to be the most powerful 

approach, in particular allowing the verifier to verify 

roles without being able to claim them, it generally 

requires complex management of a public key 

infrastructure (PKI). If the use case is simple enough for 

an approach based on a shared secret, this overhead can 

and usually is avoided as can be shown by the continuing 

popularity of WPA2-PSK (Wi-fi Protected Access with 

Pre-Shared Key, see [25]) for easy wireless network 

deployment. 

As a result, a solution should therefore be capable of 

supporting both approaches, allowing the service 

implementers to pick an approach most suitable for their 

use case. Furthermore, passwords as a particular type of 

shared secret, despite their weaknesses, are widely used 

due to their convenience and should therefore be also 

supported in some fashion. 

Confidentiality should be ensured by means of 

authenticated encryption. The authentication can be 

based on the role identities of the participants. 

Furthermore, if possible, forward secrecy should be 

provided through the use of ephemeral keys to prevent 

compromising past communication if long-term keys are 

exposed. 

Finally, since the communication may be routed through 

intermediary systems, these should be unable to read the 

message content. Additionally, they should be prevented 

from modifying the message content without the 

recipient noticing the modification. Finally, the message 

should reveal as little information to the intermediary as 

possible but enough to ensure delivery is possible. 

 

In summary a defense-in-depth solution should support 

at least: 

 

 A role-based authentication model 

 Peer-to-peer authentication  (without trusted 

third party) 

 Flexible secret mechanisms including e.g. keys 

and passwords 

 End-to-end security 

4 Solution Concepts  

A microservice system generally consists of multiple 

processes, often server applications like web servers, that 

are distributed on multiple machines, which can be either 

virtual or real. Each process can offer one or more 

services and make use of other services. Since each 

service within a process has access to the memory space 

of the process and could therefore undermine any further 

subdivision, it makes sense to treat those processes as a 

single entity with regard to the roles it has, regardless of 

the number of services provided by the process. If 

further separation between services is needed, the 

process providing multiple services could be split up in 

multiple processes for each service. 

The basic approach for setting up secure and 

authenticated communication between two of such 

processes is the execution of a key exchange between 

those processes and authenticating that exchange with all 

of the roles available to each process. The processes 

would then be able to verify both that the exchange was 

authenticated (if at least one role could be verified) as 

well as associate all verifiable roles with the exchanged 

key. The resulting ephemeral key can then be used in a 

symmetric authenticated encryption scheme. Messages 

that are encrypted and can be validated using the 

ephemeral key can then be tagged with the roles that 

were verified during the key exchange. 

Based on the requirements, the resulting system should 

support role authentication based both on public/private 

key pairs as well as shared secrets. Since shared secrets 

are further subdivided into passwords and keys, three 

approaches can be differentiated: passwords, keys and 

asymmetric key pairs as represented by X.509 

certificates. 
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In this scenario, the use of public/private keys is 

relatively straightforward: The contributions to the key 

exchange are signed for each role with the private key 

and the public key chain is transmitted with the signature 

to the other participant who can verify the signature 

using the public key trust anchor associated with each 

role, resulting in a list of verified roles. 

 

Table 2: Overview of authentication approaches 

 Convenience Entropy 
Asymmetric 

Roles 

Password High Low No 

Symm. 

Key 
Medium High No 

Key Pair 

(X.509) 
Low High Yes 

 

As shown in Table 2, while keys and passwords are 

technically both a type of shared secret, they are 

distinguished here with regard to their assumed entropy. 

Keys are assumed to contain sufficient entropy to make 

any brute force attacks computationally infeasible. 

Therefore, authentication using a key simply takes the 

key exchange contribution as input and generates a 

message authentication code (MAC) using the key. This 

procedure is then repeated by the other participant and 

the MACs are compared: If they match, then the 

associated role is considered verified. 

Passwords are often considered to be a very convenient 

way of authentication. Depending on complexity, they 

can be memorized by the user and therefore can always 

be entered if the user is present. However, this 

convenience is often due to the generally low entropy of 

passwords: High-entropy passwords are often difficult 

for people to remember, so simpler, low-entropy 

passwords are chosen. Although, in production 

environments using microservices the memorability of 

secrets might not a problem and keys can safely be used 

there are scenarios in which passwords are beneficial as 

well. For example when prototyping systems lightweight 

solutions are helpful as changes might be required 

frequently. Additionally, in all cases when client 

authentication is obligatory, both options should be 

considered. Passwords e.g. allow a user to switch 

devices and access services by simply entering the 

password. In contrast, using a key typically requires 

some form of data transfer e.g. using a key file, 

repository or communication channel. 

However, low-entropy passwords are an easy target for 

brute force attacks: A completely random password that 

is 8 characters long containing, potentially, upper- and 

lowercase letters as well as numbers has an entropy of 6 

2 8 &ape; 2 48 possible combinations and thus roughly 

48 bits. 

If an attacker is able to mount even a moderately fast 

brute force attack, the password will be discovered 

quickly. Brute force attacks tend to be especially 

effective if they can be mounted offline, i.e. without 

interacting with participants who know the password. 

As a result, a simple MAC using the password as the key 

is insufficient since it would allow an attacker to perform 

a fast, offline brute force attack which could not be 

resisted by the password's low entropy. WPA2-PSK 

attempts to resolve this issue by using an key derivation 

function (KDF). A key derivation function performs a 

large number of both CPU- and memory-intensive 

operations such as expanding and contracting hashes on 

the password and using the result similar to a high-

entropy key. This approach can slow down brute force 

attacks considerably since they are required to repeat the 

same number of expensive operations for each trial. 

However, a major disadvantage of this approach results 

from the fact that legitimate participants each also need 

to perform the expensive operation albeit only once. As a 

result, the complexity of the KDF needs to be carefully 

balanced between slowing brute force attacks and effort 

required by legitimate participants. This situation is 

made worse by the fact that this balance shifts with 

hardware capabilities: As hardware gets more processing 

capabilities and memory becomes cheaper, the KDF 

iterations and memory footprint needs to be expanded to 

keep pace. Since this changes the output of the KDF, 

such changes are not backward-compatible. 

A better approach is therefore to prevent the attacker 

from performing fast offline attacks and forcing them 

instead to perform online attacks, which can be slowed 

hardware-independently by the participants. Another 

advantage is that such attempts can be logged for later 

analysis and even stopped by establishing a maximum 

number of trials per given timeframe and an 

accompanying blacklist that will impede brute force 

attempts. 

Forcing the attacker to perform online attacks can be 

accomplished by a set of protocols called password-

authenticated key exchanges (PAKE). In such protocols, 

a shared secret is agreed upon in a key exchange 

protocol that is authenticated using the password. The 

end result of such an exchange is a randomly generated, 

high-entropy key. An attempt by an attacker to 

manipulate such an exchange results in the keys on each 

side to differ. The PAKE protocol chosen for this 

approach is the password-authenticated key exchange by 

juggling (J-PAKE [16]). For each password-

authenticated role a J-PAKE exchange is set up which is 

then performed in parallel to generate a key for each 

password-authenticated role. 

The resulting high-entropy key can then be used as if the 

role had been secured with a high-entropy key in the first 

place: A MAC is generated based on the key exchange 

contribution and the J-PAKE-generated key and verified 

by the receiver using the same generated key. If a 

mismatch occurs, it means that either the passwords did 

not match in the first place or an attacker attempted to 

manipulate the J-PAKE exchange. In either case the role 

is not accepted as valid and the exchange has to be either 

repeated or accepted without the role being accepted. 
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5 Implementation  

The protocol was implemented in the Jadex Active 

Components framework,[7] [6] which offers message 

exchange and service invocation using a multi-transport 

overlay network. Since Jadex builds its service call layer 

on its message exchange layer, authentication and 

encryption was implemented for the message exchange, 

therefore automatically providing its capabilities to the 

service call layer as well. 
Messaging in Jadex is transparent and can be performed 

using multiple types of communication channels such as 

TCP/IP [27] and Websockets [13]. When a message is 

being sent to a remote Jadex platform, the local platform 

attempts to find a communication channel, called 

transport. Potentially, there can be multiple transports to 

a remote platform and platforms can dynamically change 

available transports as well. While transports are chosen 

based on performance criteria, the choice is relatively 

consistent but messages can be sent using multiple 

different transports to the same platform. As a result, 

while Jadex is supposed to provide at-most-once 

semantics for messages, it does not preserve message 

order. 

Figure 3 shows the handshake protocol between two 

participants who wish to communicate. The goal of this 

protocol is to establish an ephemeral symmetric key 

between the two participants and securely associate the 

key with the verifiable roles available to each side. The 

protocol starts either when the initiator attempts to send 

its first message to the responder or occasionally by 

participants with established key to negotiate a new key 

to maintain forward secrecy. 
 

 

 

 

 

 

Figure 3: Handshake protocol between participants 

 

 

The initiator begins by sending a list of names of 

proposed cryptosuites which are sets of concrete 

cryptographic primitives used during handshake and 

later communication. The initiator must ensure to select 

only suites of acceptable security since the responder can 

select any of the proposed suites. The responder will 

then select a single suite based on its own preferences. If 

no match is found, the protocol fails. The selected suite 

is then sent to the intiator to confirm the selection. This 

is done for modularity, so an agreement about the suite is 

confirmed before the exchange itself starts. An 

optimization of this approach would be to interleave the 

subprotocols to a greater extent, however, since this 

exchange is independent of the communication channel, 

it is expected to occur only on occasion to ensure 

forward secrecy. 

After suite selection, the J-PAKE exchange is started by 

the responder by sending the data set of the first round of 

J-PAKE for all its passwords to the initiator. The 

initiator then generates its own first round J-PAKE data 

set and calculates the second round information and 

sends both back to the responder. If no passwords are 

used, these J-PAKE parts of the handshake could be 

skipped. 

The responder then finalizes the J-PAKE exchange. At 

this point, both sides have generated shared keys 

authenticated by their shared passwords. The key 

exchange algorithm is then initialized by the responder, 

which generates the key contribution of the responder. 

This contribution is hashed and authenticators are 

generated based on the hash: For both shared keys and 

password-derived keys a MAC is generated with the key 

contribution hash as input. For X.509 certificates, a 

signature for the hash is created. The second round data 

of the J-PAKE exchange, the key exchange contribution 

and the authenticators are sent to the initiator. 

The initiator finalizes the J-PAKE exchange, generates 

its key exchange contribution and generates the 

ephemeral key. The third round of the J-PAKE protocol 

which confirms that the keys match can be omitted at 

this point since the generated keys are used for 

authentication only: If the keys differ, the authentication 

will fail. The received authenticators are verified, only 

roles with a verified authenticator are associated with the 

ephemeral key. The intiator also generates authenticators 

for its own key the same way as the responder 

contribution and sends those along with its key 

contribution to the responder. 

Afterwards, the responder generates the ephemeral key 

and verifies the authenticator and sends a confirmation 

that it is now ready to exchange messages. After this 

exchange, both sides possess a shared ephemeral key that 

is associated with the roles that could be verified. If no 

role could be verified, it can be indication of either a 

man-in-the-middle attack or no matching roles between 
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the participants. In this case, the participants can either 

abort the communication or accept that the 

communication is untrusted and only has opportunistic 

encryption available. 

The shared ephemeral key is then used in an 

authenticated encryption algorithm with nonces to 

encrypt messages. In order to prevent replay attacks, 

nonces are only accepted once by the receiver. Since the 

message order is not guaranteed, a sliding window is 

used: Successfully decrypted messages advance the 

window and mark the nonce as invalid. Lower nonces 

are valid until their message arrives, at which point they 

will be marked as invalid in the data structure. In order 

to limit memory consumption, any nonce below a fixed 

distance from the highest received nonce are 

automatically considered invalid whether they have 

arrived or not (unarrived messages are considered lost). 

The current implementation only offers a single 

cryptosuite that attempts to secure the key exchange as 

much as possible while offering high symmetric 

performance after the exchange. The cryptographic 

primitives contained in this suite are as follows: The 

Blake2b [2] algorithm is used both as hash and MAC 

function. The authenticated encryption combines the 

ChaCha20 [5]  symmetric cipher with the Poly1305 [4] 

[23]  authenticator. 

For the key exchange, two algorithms are run in parallel 

and their outputs are hashed together to hedge against 

each of their potential weaknesses: The Ed448 elliptic 

curve algorithm [15] is used for the historically good 

record of elliptic curve cryptograpgy, while the 

NewHope algorithm [1]  is used to potentially provide 

quantum security, provided the authentication is also 

quantum-secure (i.e. MACs based on keys are used). By 

hashing their outputs together, an attacker would have to 

tackle both of the algorithms. 

With regard to the challenges identified in the 

introduction, the solution supports roles as described 

above. Furthermore, the solution achieves the same  

 

 

Figure 4: Example scenario of a microservice system 

 

autonomy as other microservice frameworks like Vert.x 

that also provide a ready to use messaging infrastructure. 

Considering ease of use, our first experiences with the 

new security architecture are promising. Roles can be 

defined bilaterally between two services, but also, e.g. as 

a convention that is agreed upon in the company, applied 

to the system as a whole, if needed. Yet, in no case a 

central authentication service is needed for roles, which 

reduces management effort (usability) and supports the 

DevOps approach (autonomy). 

6 Evaluation  

In Section 1 we have shown a simplified 

microservice system scenario based on a web shop 

application. In this scenario it was shown that in a 

standard microservice system design, in which all 

services are trusted, a successful attack on a weak but 

relatively unimportant service like the suggestion service 

can lead to subsequent severe breach of a more sensitive 

service like the payment service. 

The right side of Figure 4 shows how the services can be 

assigned roles in the scenario: The user information role 

used to publish information to the user is available to the 

suggestion service, the shipping service and the user API 

service by distributing a secret among them. The 

information can consist of either a suggestion from the 

suggestion service or a shipping confirmation from the 

shipping service. 

The payment role is used by the user API to submit 

payment information to the payment service, while the 

approval role is used by the payment service to authorize 

shipping to the shipping service. 

Finally the shipping role is used by the shipping service 

to issue the final shipping order to the warehouse. 

In total, given a pre-shared key approach, a total of only 

four secrets are needed to secure the system. 

The left side of Figure 4 demonstrates how the system 

can mitigate and contain a service breach and prevent the 

escalation in that scenario. Identical to the original 

scenario, it is assumed that an attacker has successfully 

breached the suggestions service and is now trying to 
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leverage that breach to gain access to the payment 

service. However, in this scenario he was only able to 

capture the user information role, which the payment 

service does not recognize. The attacker is therefore able 

to manipulation purchase suggestions or send out fake 

shipping confirmations, but is unable to access the 

payment service of the system. As a result, while the 

attack was successful by definition, its impact has been 

contained and the attacker is unable to leverage the 

microservice system to gain access to additional 

services. 

The roles for each service functionality can be negotiated 

and agreed by the two microservices planning an 

interaction independent of other project participants. In 

fact, it can be integrated in the process of designing the 

inter-service API between two services which aims to 

define the syntax and semantics of the interactions. As a 

result, the key management process can be seamlessly 

integrated in existing microservice processes, furthering 

both ease of use of the approach as well as autonomy of 

the microservice teams. 

In addition, a centralized management structure such an 

identity management system is avoided. This has the 

procedural benefit of introducing no global 

administrative entity which every microservice team is 

required to interact with, a situation microservice 

architectures specifically try to avoid since such 

processes tend not to scale up to very large software 

projects, leading to loss of developer productivity. 

Furthermore, any secret used by the system that ends up 

being compromised only affects a small part of the 

system and can be replaced through action of a small 

number of microservice teams rather than a global 

reintroduction of secrets such in the case of a 

compromised centralized identity management or in case 

of a global shared secret. 

The system allows the use of single shared-secret roles 

in case of less critical functionality, trading some of 

security for simpler key management. For example, in 

the scenario the functionality of the shipping service that 

provides shipping confirmation as well as the suggestion 

service use the same role to provide information to the 

user API. This means that in case of a breach additional 

functionality will unlock for the attacker, but it can be 

considered a worthwhile trade for the simpler key-

handling procedure of the user API and the rest of the 

services given the low impact of the functionality 

available. 

In summary, the proposed solution is able to fulfill the 

requirements of Section 3. It enables end-to-end security 

for services using role-based authentication with peer-to-

peer based validation. The secrets for roles can be 

chosen among different options including passwords and 

keys. 

7 Conclusion and Outook  

Security in microservice systems is often neglected and 

responsibility is delegated to an API gateway which 

shields the internal services and provides authentication 

as well as authorization. While convenient for the 

DevOps this approach lacks defense in depth and a 

hacker only needs to find a weakness in the gateway to 

get access to any of the hidden backend microservices. 

Current solutions with TLS are either complex by 

requiring a PKI or need certificate distribution 

mechanisms. 

In order to prevent this, an approach is proposed that 

combines a high degree of security with ease of use by 

reducing the number of secrets to be managed in the 

system. The novel approach provides authentication and 

decentralized role-based authorization out of the box. 

The solution has been designed to be adoptable with 

minimum effort and tries to hide as many security 

aspects from the application layer as possible. It supports 

authentication via password, key and key pair and 

ensures that low entropy approaches are leveraged using 

key deviation functions. The approach has been realized 

in the Jadex framework.  

As part of future work it is planned to optimize the 

efficiency of the protocol and to implement the protocol 

for standard REST via HTTP. The former can be 

achieved by reducing the number of messages while the 

latter can be done by first using the proposed protocol to 

establish a symmetric key that can be subsequently used 

to encode the content of all further HTTP traffic. This 

means that invocations could remain plain HTTP but are 

secured except for the headers. 
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