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Abstract 
Long Term Evolution (LTE) networks support Quality of Service (QoS) of multimedia services with fast 

communication connectivity, high data transfer speed and high level of security. Video streaming over LTE networks is 
one of the highest proportions of global mobile data traffic and is growing; this has led to the development of several 
scheduling algorithms aimed at improving the performance of these networks. The performance analysis and evaluation 
of existing scheduling algorithms are generally limited to QoS parameters. It is not clear how these scheduling 
algorithms perform in terms of Quality of Experience (QoE) which is the overall acceptability of a service or 
application, as perceived subjectively by end users. Video content has a major impact on QoE; thus its analysis in 
scheduling algorithms performance is critical. The aim of this study is to classify video content based on the impact of 
video content on quality over LTE networks. This classification is then used to develop novel QoE-aware optimization 
scheduling of video traffic in order to achieve maximum QoE. Our approach focuses on the development of optimization 
downlink scheduling based on a novel integration between random neural networks (RNN) and genetic algorithms (GA) 
to learn complex non-linear mapping of QoE and to search for the optimal parameters, respectively. An open source 
simulation tool for LTE networks (LTE-Sim) has been used to collect unique RNN training database based on existing 
scheduling algorithms. A comparison between the proposed scheduler and state-of-the-art LTE downlink scheduling 
algorithms (FLS, EXP-rule, and LOG-rule) has been made under different network conditions. Simulation results 
showed an increase in performance of about 15% in terms of QoE and throughput while maintaining fairness. 
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1. Introduction 

Streaming video content over mobile communications has 
become a major contributor to the Internet data traffic over the 
World Wide Web (WWW). A recent study conducted by Cisco 
[1] indicates that mobile video will grow at a compound annual 
growth rate (CAGR) of 62% between 2015 and 2020, higher 
than the overall average mobile traffic CAGR of 53% as shown 
in Fig. 1. Mobile video traffic represented more than 50% of 
global mobile data traffic beginning in 2012, and more than 
70% of the mobile data traffic will be video by 2020, indicating 
that it is already affecting traffic today, not just in the future. 
With the growing demand for video-based applications, 
granting the QoS to users has become a big challenge. To 
overcome all these challenges, the 3rd Generation Partnership 
Project (3GPP) group has proposed a new generation of 
wireless communication known as LTE. Based on advanced 
technologies, the LTE system could provide a significant 
enhancement to user experience and system performance. Due 
to the shortage of radio resources, the optimal use of the 
available resources is significant for scheduling algorithms to 
improve users’ QoS. Classical scheduling algorithms such as 
Proportional Fair (PF), Frame Level Scheduler (FLS), and 

Modified Largest Weighted Delay First (M-LWDF) are 
fundamentally channel-aware and aim to maximize the network 

 
Fig. 1. Forecast of global mobile data traffic growth 

throughput and/or maintaining a degree of fairness among 
users. However, channel-ware algorithms could not achieve the 
best possible quality for real-time video streaming over 
wireless networks. The architecture of wireless systems, in 
fact, operates with the Open Systems Interconnect (OSI) 
layered design, in which each layer does not consider the 
constraints of other layers. This is not appropriate for the 
increasing demand of real-time applications, especially video 
applications which are highly sensitive to the packet loss and 
transmission rate. Therefore, higher QoE performance could be 
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obtained if the service provider could regularly measure the 
video quality and resource utilization efficiency by taking 
constraints of different layers into consideration. Several 
system parameters have different impacts on users’ QoS which 
could fundamentally be classified as an application or network 
parameters. According to the study conducted by Telecoms 
communication in 2015 [2], most of the network operators see 
video content streaming as one of the highest profitable LTE 
services. The Telecoms Intelligence Annual Industry Survey 
indicates that about 75% of respondents identified video 
content as one of the highest services enabled by LTE and the 
most revenue generating potential. Consequently, we take the 
video content type and level of users’ satisfaction of quality 
into account to design optimization scheduling algorithm of the 
video stream in order to provide high-quality video 
transmission over LTE networks.  

In general, the most important goal of an optimization of 
video streaming is to improve QoE. This is associated with the 
network ability to choose optimal parameters and the 
appropriate scheduling matrix to achieve the best QoS and to 
increase network utilization. The main contributions of this 
paper are: 

(i) An extensive QoE database has been developed based on 
different content types (CT) of video clips using LTE-Sim 
[3], under different network conditions. The obtained 
database is utilized in a unique classification of the video 
contents based on their impact on QoE. 

(ii) The QoE database is also used to train the QoE prediction 
model using RNN techniques. A novel four layers feed-
forward RNN model is presented that learns complex non-
linear mapping of QoE. The distinctive internal structure 
of this model gives it greater accuracy and performance 
than previous models reported in the literature. 

(iii) A unique interaction between RNN and GA has been 
developed to explore the optimal strategy profile for 
network users based on QoE prediction values. The 
developed RNN-GA framework has been used to optimize 
the distribution of available network resources in 
correspondence with the type of video content in order to 
maximize QoE while guaranteeing fairness among users. 

The rest of the paper is organized as follows. Section 2 
presents an overview of LTE system and QoS-aware downlink 
scheduling algorithms. Section 3 presents the fundamentals of 
RNN, GA, and QoE database collection. Section 4 discusses 
the impact of quality parameters on video quality, classifies the 
video content and finds the degree of influence of quality 
parameters. Section 5 presents QoE-aware optimization 
proposed model. Section 6 presents and discusses results. 
Section 7 concludes the paper and outlines the future work.  

2. Overview on LTE Networks 

LTE stands for “Long Term Evolution” and was first 
proposed in Toronto 2004 by the third generation partnership 
project (3GPP) as the preliminary version of the 4G wireless 
communication systems. The purpose of LTE is to provide 
higher radio access data rate, low latency, and high security to 
achieve great capacity and reliable high speed in mobile 
communication networks. Besides, LTE technology guarantees 
enhanced spectrum flexibility and compatibility with other 
3GPP radio access technologies. In addition, Orthogonal 
Frequency Division Multiplexing Access (OFDMA) is applied 
in downlink side to provide higher capacity and eliminate the 
intra-cell interference with sturdiness to the fading nature of 
wireless channel in the time-frequency domain, OFDMA 

technology has been selected instead of CDMA in 3G as the 
radio access technology which offers greater network capacity. 
On the other side, SC-FDMA (Single Carrier-Frequency 
Division Multiple Access) is applied in uplink aims to reduce 
the user’s energy consumption [4]. LTE networks characterized 
by a high degree of flexibility, both time division duplex 
(TDD) and frequency division duplex (FDD) multiple access 
techniques have been supported. Moreover, the overall LTE 
network architecture, which is known as system architecture 
evolution (SAE), has been improved using a new antenna 
technology so-called multiple in multiple out (MIMO) and 
employ it with OFDM to provide data rate up to 100 Mb/s 
download and 50 Mb/s upload. LTE network supports a wide 
range of channel bandwidth from 1.4 up to 20 MHz; this makes 
it highly flexible and scalable to develop in different 
environments. These significant advantages of LTE networks 
granted faster speed about 10 times than 3G networks, LTE 
networks are often up to 10 times faster than 3G networks with 
speeds commonly between 20Mbps and 30Mbps. The quality 
of service (QoS) support is one of the most important features 
of LTE networks [5]. Although the existence of many protocols 
supports the QoS, applying it in live LTE networks remains 
challenging due to several factors, including the channel 
characteristics, changing send bit rates, handoff support among 
a variety of networks, bandwidth allocation propagation 
conditions and application types [6]. 

2.1. Scheduling Algorithms in LTE Networks 
Packet scheduling algorithm which is also known as dynamic 

resource allocation is a significant feature of mobile 
communication systems since it is responsible for the 
distribution of available network resources among users to 
meet the QoS according to individual requirements. The main 
function of the scheduling algorithms is to maximize the 
performance of LTE networks while maintaining fairness 
among network users. Broadcast of the data over LTE 
networks is organized by entities of frequency and time domain 
as physical resources. The Frequency Domain Packet 
Scheduling (FDPS) allocates Resource Blocks (RBs) to each 
user and Time Domain Packet Scheduling (TDPS) selects a 
subset of active users in current Transmission Time Interval 
(TTI). RB is the smallest allocation unit of resource scheduling 
that is a combination of one sub-frame in time over 12 
consecutive sub-channels with the length of 180 KHz. Each 
sub-frame divides into two-time slots of 7 OFDM symbols 
which represent one TTI continue for one millisecond (ms) [7]. 
Fig. 2 shows the physical LTE radio resources in the time-
frequency domain. In details, the scheduling strategy repeats 
every TTI and can be divided into several steps as follows: (i) 
each user explores the quality of the signal and sends feedback 
of Channel Quality Indicator (CQI) of the signal status to the 
enhanced NodeB (eNB). (ii) The eNB uses the information 
obtained by CQI for the allocation Resource decisions and fills 
up an RB. (iii) The best MCS selected by AMC to use by 
scheduled users for data transmission. (iv) The allocated RBs 
and the selected MCS with all users’ information send to the 
UEs on the PDCCH. (v) Each UE reads the PDCCH payload 
and accesses to the proper PDSCH payload [4]. 
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Fig. 2. Time-Frequency LTE radio resources grid 

In general, scheduling algorithms classify into three 
strategies as follows: (i) Channel insensitive Strategy, (ii) 
Channel sensitive and QoS-unaware Strategy, and (iii) Channel 
sensitive and QoS-aware Strategy. Since one of the main 
features of LTE system is QoS, our focus will be on the 
strategy of channel sensitive and QoS-aware. Table 1 
summarizes the most important QoS-aware scheduling 
algorithm in terms of target, key aspects, and input parameters. 

Table 1. Scheduling algorithms based on QoS 

Name Target Key Aspects Parameters 
PF [8] Fairness & 

bitrate 
Balancing between requirements of 

spectral efficiency and fairness.  
SINR & 

Throughput. 
PSS/PFsch 
[9] 

Fairness & 
bitrate 

Joint TDPS and FDPS structure, PSS 
at TDPS and PFsch at FDPS. 

SINR & 
Throughput. 

M-LWDF 
[10] 

Delay-
Bounded 

PF for channel awareness and LWDF 
scheduler for the bounded delay. 

SINR, DHOL, 
Delay, PLR & 
Throughput. 

EXP/PF 
[10] 

Delay-
Bounded 

Exponential rule for the bounded delay 
and PF for channel awareness. 

SINR, DHOL, 
Delay, PLR & 
Throughput. 

LOG rule 
[11] 

Delay-
Bounded 

Logarithm rule for the bounded delay 
and PF for channel awareness. 

SINR, DHOL, 
Max Delay & 
Throughput. 

EXP rule 
[11] 

Delay-
Bounded 

Exponential rule for the bounded delay 
and PF for channel awareness. 

SINR, DHOL, 
Max Delay & 
Throughput. 

FLS [12] Delay-
Bounded 

Double layer scheduler structure and 
Control law for RB preemption of 

real-time flows. 

Max PLR & 
Queue Length. 

DPS [13] Delay-
Bounded 

Prioritization of delay constrained 
flows. RBs upon meeting QoS needs 

are allocated to the user with the 
highest priority. 

SINR, DHOL, 
Max Delay & 
Throughput. 

MQAF [14] Bit rate Clustering GBR and non-GBR by 
allocating RB to GBR users to meet its 
needs and leave spare RB to non-GBR. 

SINR & 
Throughput. 

QoSP [15] Bit rate Priority: RBs upon meeting GBR 
needs are allocated beginning with the 

users have the highest priority 

SINR, DHOL & 
Throughput. 

CGTVTM 
[16] 

Delay-
Bounded & 

bitrate 

Exponential rule for the bounded delay 
and virtual token mechanism for 

minimum guaranteed bitrate. 

SINR, DHOL& 
Max Delay. 

QoE-aware 
[17] 

Maximum 
QoE 

Consider a resource allocation scheme 
aimed to maximize the overall of 
Mean Opinion Score (MOS) [18]. 

MOS, Min & 
Max Delay. 

QoE-based 
[19] 

Minimum  
change of 
the QoE 

Consider a resource allocation scheme 
aims to minimize the temporal change 
of the video quality with higher QoE. 

CQI, BLER & 
MOS. 

QoE-
Oriented 
[20] 

Maximum 
QoE 

Consider a resource allocation scheme 
aimed at maximizing the QoE for RT 

and nRT traffic. 

Max PLR, DHOL, 
CQI & MOS. 

QoE-based 
[21] 

Maximum 
QoE 

Exploring the optimal strategy profile 
for users aimed to max QoE while 

guaranteeing fairness 

SBR, MCS, 
Playback Time 

& MOS. 
QoE-aware 
[22] 

Maximum 
QoE 

Optimizing the distribution of 
available resources aimed at max QoE 

and maintaining fairness. 

MOS, SBR, SM 
& Max Delay 

Recently video transmit over LTE networks is one of the 
highest percentages of mobile traffic and its applications have 
been growing rapidly. Therefore, the objectives of scheduling 
strategies are shifted from improving QoS to improving QoE. 
Taboada et al. in [17] proposed a novel download scheduling 
algorithm based on minimum delay aimed to maximize QoE. 

However, they do not consider any of application layer 
parameters. In [19] and [20] two resource allocation schemes 
were presented aimed to maximize QoE however, both had 
only applied to the wireless network. Ying et al. in [21] 
proposed a cross-layer design scheme for optimizing resource 
allocation of video applications over LTE networks based on 
QoE. However, the proposed scheme had only considered the 
influence of SBR on the application layer. Our previous work 
in [22] addressed some of these challenges and presented the 
QoE-aware optimization of video stream downlink scheduling 
over LTE networks using RNN and GA in terms of learning 
complex non-linear mapping and searching for the global 
optimum through particular parametric space, respectively. To 
the best of our knowledge, content-aware and QoE 
optimization of video stream scheduling over LTE networks 
have not yet been considered in the recent literature. Our work 
bridges this gap by proposing a preliminary study on this very 
interesting and challenging problem. 

2.2. General Scheduling Metrics in LTE System 
The key function of LTE scheduling algorithms is the 

optimum distributing of available resources among active 
network users. Table 2 shows the most common scheduling 
algorithms used for allocating network resources in LTE 
system. Network resources are allocated to each user based on 
the comparison of Resource Block (RB) metrics: the kth RB is 
allocated to the jth user if its metric mj,k is the highest one 
accordingly, this user will serve first. The value of scheduling 
metric determines according to the priority and performance 
requirement based on the following factors [23]: 
• Quality of Service (QoS), according to QoS requirements, 

the lowest Quality Class Identifier (QCI) value has the 
highest metric. 

• Channel Quality, according to the feedback of Channel 
Quality Indicator (CQI) value, the highest expected 
throughput has the highest metric.  

• Status of transmission queues, according to the status of 
queues, the longest queue has the highest metric. 

• Resource Allocation History, according to the past 
achieved performance, the lowest past throughput has the 
highest metric. 

• Buffer State, according to the buffer condition at the 
receiver side, the highest available space in the buffer has 
the highest metric. 

Table 2. LTE Scheduling algorithms 

Algorithm  Scheduling Matrix (SM) Expression Meaning 

1. PF 
𝑚!,!
!" = 𝑑!! (𝑡)/𝑅!(𝑡 − 1) 

𝑑!! 𝑡 = log 1 + 𝑆𝐼𝑁𝑅!! 𝑡  

mi,k: Generic metric 
dk

i(t):Expected data rate   

2. M-LWDF 𝑚!,!
!!!"#$ = −

log 𝛿!
𝜏!

 .𝐷!"#,! .𝑚!,!
!"  𝐷!"#: Head of line 

packet delay 

3. FLS 𝑚!,!
!" !"#_!"#$ = 𝑑!! (𝑡)/𝑅!(𝑡 − 1) Ri(t): Average 

throughput  

4. EXP/PF 𝑚!,!
!"#/!" = 𝑒𝑥𝑝

𝛼! .𝐷!"#,! − 𝑥
1 + 𝑥

.𝑚!,!
!"       𝑥 =

1
𝑁!"

𝛼! .𝐷!"#,!

!!"

!!!

 

5. EXP rule 𝑚!,!
!"#$%&' = 𝑏!𝑒𝑥𝑝

𝑎! .𝐷!"#,!
𝑐 + 𝑥

. Γ!!  
τi: Delay Threshold 
for the ith user 

6. LOG rule 
𝑚!,!
!"#$%&'

= 𝑏! log 𝑐 + 𝑎!𝐷!"#,! . Γ!!  
Γk

i: Spectral 
efficiency 

2.3. Scheduler Algorithms Parameters 
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Several parameters have been used to calculate the 
scheduling matrix values, which is then used to prioritize 
network resources allocation to active users. The most 
important of these parameters can be summarized below: 
• Throughput is the rate of successful data delivery over a  

wireless communication channel. 
• The signal to interference plus noise ratio (SINR) is a 

measurement of channel quality over wireless 
communication for link adaptation along with packet 
scheduling.  

• Perceived quality of the end user (QoE) is a measure of the 
overall acceptability of a service or application as 
perceived by the customer. 

• Target delay is the maximum time allowed for the packets 
to remain in the queue before it is sent or dropped. 

• Head of line delay is the time delay of the first packet to be 
transmitted. 

• Queue length is the length of data traffic in the queue 
before scheduling. 

3. Overview of RNN and Genetic Algorithm 

This section provides a more detailed description of the 
system and the intelligent learning models as follows: (3.1) 
Summary of Random Neural Networks, (3.2) Summary of 
Genetic Algorithms and (3.3) QoE Database Collection. 

3.1. Random Neural Networks 
Random neural networks (RNNs), is a machine learning 

technique, using interconnected processing elements known as 
neurons, aim to process the information by their state response 
and learn via previous examples and training. The key purpose 
of the RNN models is to learn the input-output relationship, 
transform the inputs into meaningful outputs, and provide 
effective solutions to unseen problems. RNNs were first 
introduced in 1989 by Gelenbe [24]. RNNs are mathematical 
models that combine features of both the classical artificial 
neural networks (ANNs) and of queuing models but cope with 
the limitations of ANNs and have advantages. These models 
have several features that make them more appropriate for 
modeling the QoE of multimedia traffic. Researchers have 
been inspired to form the ANNs in order to mimic these large 
amounts of interconnections observed in the human brain. 
RNN has been efficiently applied in various applications as 
learning tools and has shown high accuracy. The internal 
structure of RNN models can describe as a set of 
interconnected neurons as shown in 

 

Fig. 3. 

 
Fig. 3. Neural network model 

The neurons exchange signals with each other and also with 
the environment. The signals are transmitted directly between 
neurons from layer to layer, or between neurons and the 
environment. Each neuron is represented by a positive or 
negative integer one '+1' or '-1', whose value increases by one 
when it receives excitation spikes and decreases by one when 
an inhibition spike arrives. Thus, the excitation spikes are 
represented as '+1' and inhibition spikes are represented as '-1'. 
The spikes can originate either from outside the network or 
from another neuron within the network. Neurons whose 
excitation state is positive are allowed to send out spikes to 
either kind of neuron in the network. When a neuron sends out 
a spike, it loses one unit of potential, going from the state (qi) 
to (qi – 1). The probability that the spike signal sent out by 
neuron i to neuron j is a positive one is represented as (p+

i,j), 
and the probability that it is a negative one is represented as 
(p−i,j); the signal that leaves the network to travel to the 
environment is represented by di, where N is the number of 
neurons for all i=1,…, N. 

𝒅𝒊 + 𝒑𝒊,𝒋! + 𝒑𝒊,𝒋! = 𝟏
𝑵

𝒋!𝟏
                                                    (1) 

When a neuron receives a positive signal, either from another 
neuron or from the environment, its potential is increased by 1; 
conversely, if it receives a negative signal, its potential 
decreases by 1 if it was strictly positive, and it does not change 
if its value was 0. Similarly, when a neuron sends a signal, 
positive or negative, its potential decreases by 1; it was 
necessarily strictly positive since only excited neurons send 
signals. Neuron i receives signals from outside according to a 
Poisson process with rate (λ+

i) for a positive signal and (λ−i) for 
a negative one. When neurons are excited they are denoted as 
(w+

j,i=rj p+
j,i) and (w−j,i=rj p−j,i); the w represents weight.  These 

weights w may be interpreted and represent the excitatory and 
inhibitory spike rates, and they are typical interconnections 
weights of a neural network that RNN learns through the 
process of training. The non-linear system of equations (2), (3) 
and (4) allows computing the 𝝔 of the input layer (𝝔i), hidden 
layer (𝝔h) and of output layer (𝝔o) neurons directly from the 
values for input layer ones [25].  

𝝔𝒊 =
𝝀𝒊!

𝒓𝒊 + 𝝀𝒊!
                                                                                (2) 

𝝔𝒉 =
𝝔𝒊𝝎𝒊,𝒉

!
𝒊

𝒓𝒉 + 𝝔𝒊𝝎𝒊,𝒉
!

𝒊
                                                                   (3) 

𝝔𝒐 =
𝝔𝒉𝝎𝒉,𝒐

!
𝒉

𝒓𝒐 + 𝝔𝒉𝝎𝒉,𝒐
!

𝒉
                                                                 (4) 

3.2. Summary of Genetic Algorithms 
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A Genetic Algorithm (GA) is a search technique based on the 
concept of evolution and the survival of the fittest [26]. GA is 
inspired by Darwin’s theory of eclecticism where passed 
optimum benefits through successive breeding operations and 
the strengthening of these qualities. In general, the working 
mechanism of GA can be summarized in the following steps: 
(i) a population is created with a group of individuals selected 
randomly. (ii) The individuals in the population are then 
evaluated based on how well they perform at the given task 
(fitness function). (iii) Two individuals are then selected 
according to their fitness value; the higher fitness has, the 
higher chance of being selected. (iv) The individuals then 
reproduce to create one or two offspring, after which the 
offspring are mutated randomly. This continues until a suitable 
solution has been found or a certain number of generations 
have passed, depending on the needs [27]. GA has been used to 
solve both optimization problems that strike a remarkable 
balance between exploration and exploitation of search space 
based on a natural selection process that mimics biological 
evolution. 

3.3. QoE Database Collection  
The most effective parameters of video quality related to 

video applications in LTE networks need to be identified and 
chosen. Ten video clips; (Akiyo, Carphone, Coastguard, 
Football, Foreman, News, Stefan, Suzie, Tempete, and Tennis) 
that available in Video Trace Library [28], were used for the 
model comparison. The video clips were selected from various 
classes, according to the spatial-temporal activity. Each clip 
was coded in H.264 in four send bitrates (128 kb/s, 242 kb/s, 
440 kb/s and 880 kb/s), in three frame rates (10 fps, 20 fps, and 
30 fps) and in two display sizes (QCIF and CIF). Transmission 
impairment was performed with the percentage of packet loss 
between 0% and 2%. The simulation scenario shown in Fig. 4 
was used to create a degraded video database composed of 
sequences corresponding to different configurations of the 
selected parameters. LTE-Sim that developed by G. Piro et al. 
[3] was used to generate a video distortion database as follows: 
a realistic multi-cell scenario was made which had a radius of 
500 meters, and the 19 cells, each cell has one eNB and 
number of 10 to 30 users (UEs). The UEs’ movement traveling 
cells with one video flow were simulated with the random walk 
mobility model with a speed of 3 to 120 km/h. There are three 
sender nodes, one video source, one VoIP source and one best-
effort source, as shown in Fig. 4. A trace-based application was 
used as video traffic, which delivers packets that are based on 
the realistic video trace files. The simulation parameters are 
summarized in Table 3. Five simulations were run for each 
number of users with six different scheduling algorithms 
shown in Table 2 to calculate the average of MOS, throughput, 
and fairness. 

 
Fig. 4. LTE network topology 

In each case when the transmission of video takes place from 
the source to the destination, every configuration with its 
defined input data must be mapped into the system composed 
of the source, the receiver, and LTE network. The destination 
will store the corresponding values of the parameters of the 
transmitted video sequence. Then, by running the simulation 
several times, we generated and stored a set of distorted video 
clips with corresponding parameters.  

Table 3. Simulation parameters 

Parameter Value 
Simulation time  100 s 
Number of cells 19 eNodeB 

Physical details 

Carrier frequency: 2 GHz;  
Downlink bandwidth: 5 MHz; 
Modulation scheme: QPSK, 16QAM, and 64QAM; 
eNodeB: Power trans = 43 dBm; 

Cell layout Radius: 0.5 KM 
Number of users 10, 15, 20, 25, 30 
User speed 3, 30, and 120 KM/H 
Traffic model Video traffic type: H.264, VoIP, and Best-effort 

When the distorted database of the video traffic is ready, the 
open source framework ‘Evalvid’ [29] then used to compare 
the original and distorted video sequences. A PSNR metric 
which measures the quality by simple pixel-to-pixel 
comparisons was chosen as an objective quality assessment 
parameter; because it is the most commonly used and 
represents a high degree of correlation with perceived video 
quality of the end user [21]. Then a set of PSNR values were 
obtained by comparing the original (transmitted) and distorted 
(received) video sequences. The corresponding MOS values 
were extracted as shown in Table 4. The PSNR and MOS 
values with the corresponding parameters’ values related to 
network, application, and LTE layers were stored in a second 
database called the QoE database. 

Table 4. Possible PSNR to MOS conversion [29] 

PSNR [dB] MOS Quality 
> 37 5 Excellent 

31 – 37 4 Good 
25  - 31 3 Fair 
20 – 25 2 Poor 

< 20 1 Bad 

VoIPVoIP

S5/S8

UEUE

UEUE UEUE

UEUE UEUE

UEUE

S1

MME/GWMME/GW

S1

eNodeB

eNodeB

eNodeB

InternetInternet

PDN
Gateway
PDN

Gateway

S11MMEMME

Serving
Gateway
Serving
Gateway

VideoVideo

		Best	effort		Best	effort
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4. The Relationship between the Objective Quality 

Assessments of Video and its Content 

Based on the QoE database introduced above, the 
relationship between objective video quality and video contents 
were analysed. Firstly, the degree of impact of each quality 
parameter on video quality was found, then video content was 
classified on the basis of an objective video quality evaluation 
(PSNR/MOS scores), and finally, our classified contents were 
compared to the spatial and temporal dynamics classification. 

4.1. Impact of Quality Parameters on Video Quality 
In this section, the effect of video content type on video 

quality has been studied by analysis its impact with the selected 
quality parameters (SBR, FR, RES, and PLR). In order to have 
a clear and easy analysis, we selected a set of 3D figures in 
which we varied one parameter with all available content types 
and kept the other three fixed. The PSNR scores were 
computed as a function of the values of the parameters above. 

• Video Content vs. PSNR vs. Send Bitrate  

 
Fig. 5 shows the PSNR scores: the video quality increases 

when the send bitrate (SBR) increases from 128 kb/s up to 880 
kb/s. We observed that with a higher SBR, the video quality 
was excellent (PSNR ≥ 50 dB in news videos); however, the 
quality fades (to PSNR < 27 dB) with decreased SBR, which 
was not an acceptable value to meet communication quality 
requirements. 

 
Fig. 5. Video Content vs. PSNR vs. SBR  

• Video Content vs. PSNR vs. Packet Loss Rate  
Fig. 6 shows the PSNR scores: the video quality decreases 

when the packet loss rate (PLR) increases from 0% up to 2%. 
We observed that with a lower PLR, the video quality was 
excellent (PSNR up to 49 dB); however, the quality fades 
rapidly (to PSNR < 25 dB) with increased PLR, which was not 
an acceptable value to meet communication quality 
requirements. 

 
Fig. 6. Video Content vs. PSNR vs. PLR  

• Video Content vs. PSNR vs. Frame Rate  
Fig. 7 shows the PSNR scores: the video quality increases 

when the frame rate (FR) decreases from 30 f/s to 10 f/s. We 
observed that with a lower FR, the video quality was excellent 
(PSNR up to 50 dB); however, the quality fades (to PSNR up 
to 30 dB) with increased FR, which is an acceptable value to 
meet communication quality requirements. 

 
Fig. 7. Video Content vs. PSNR vs. FR  

• Video Content vs. PSNR vs. Resolution  
Fig. 8 shows the PSNR scores: the video quality decreases 

when the resolution (RES) increases from QCIF to CIF. We 
observed that with a lower revaluation, the video quality was 
excellent (PSNR up to 50 dB); however, the quality fades (to 
PSNR up to 30 dB) with increased RES, which is an acceptable 
value to meet communication quality requirements. 

 
Fig. 8. Video Content vs. PSNR vs. RES  

In conclusion, we can confirm that the SBR effect is 
substantial and comparable to that of PLR. When the SBR 
increases, the quality increases too, particularly in the case of 
poor conditions (i.e. lower values of SBR or higher values of 
PLR), while decreasing FR and RES improve video quality, 
especially in right conditions (high SBR and low PLR). 
Increasing the SBR improves the video quality with no packet 
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loss. However, raising the SBR only improves the QoE if the 
link bandwidth (LBW) at a bitrate greater than or equal the 
SBR. If the LBW is less than the SBR, the video quality 
worsens due to network congestion issues. 

4.2. Content Classification Model 
Video contents were classified according to the PSNR scores 

obtained from the SBR, FR and RES parameters in the 
application layer, from PLR in the network layer and the 
scheduling algorithm in the LTE layer. Cluster analysis [30] is 
one of the most common methods of a multivariate statistical 
analysis was applied to classify the video contents as shown in 
Fig. 9. This technique lays groups’ samples that have similar 
characteristics in the same group (cluster). The objective 
quality scores (PSNR) that obtained from video quality 
evaluation from the QoS parameters listed above addition to 
LTE scheduling algorithm were applied as an input to the 
cluster analysis tool that classifies the video content into four 
types. 

 
Fig. 9. Content Classification Model 

The hierarchical cluster analysis was used to classify our 
data, so the video clips that have the nearest Euclid distance are 
grouped together in the same cluster as shown in Fig. 10 
(dendrogram). Based on Sturge’s rule (k = 1 + 3.3 Log N) [21], 
where (N) is the number of video clips. If we apply this 
equation to our data, k = 4, we will have four groups. As shown 
in Fig. 10, the data contains a clear structure in terms of clusters 
that have similar attributes with a slight difference in the 
degree of similarity between the elements of each cluster as 
indicated by the dotted line.  

 
Fig. 10. Hierarchical Cluster Analysis 

The Hierarchical cluster analysis in Fig. 10 illustrated that the 
selected video clips were grouped into four clusters according 
to content type: Low Motion (LM), Medium Motion (MM), 
High Motion (HM) and Rapid Motion (RM). The correlation 
coefficient (cophenet) was used to determine the defacement of 
our data classification given by cluster analysis method.  The 
value of the cophenet should be very close to 100% for a high-

quality solution which shows how readily the data fit into the 
structure proposed by classification methods. In our 
classification, the cophenet was (84.96%), which indicates an 
excellent classification result. 
 

The classification used in this study is exclusive to this 
research, and it encompasses four of the most frequently used 
contents for video transmitted over wireless networks which 
are classified as below: 

• First type – Low Motion (LM): contains video clips which 
have a slight moving region of interest (face and shoulder 
with a static background), e.g. news type (sequences 
Akiyo, Suzie, and News). 

• Second type – Medium Motion (MM): contains video 
clips which have contiguous scenes unstable in the 
background (face and shoulder with a dynamic 
background), e.g. video call (sequences Carphone and 
Foreman). 

• Third type – High Motion (HM): contains video clips 
which have a wide-angle sequence where the motion 
includes most parts of the picture, e.g. individual sports 
(sequences Coastguard and Tennis). 

• Fourth type – Rapid Motion (RM): contains video clips 
which have a professional wide-angle sequence where the 
motion includes the entire picture parts uniformly, e.g. 
team sports (sequences Stefan, Tempete, and Football). 

4.3. Evaluation of our classification vs. common methods 

The most common method to classify video clips is 
according to their spatiotemporal features [21]. Therefore, to 
classify video clips based on this method and its intricacy of 
content, the spatiotemporal grid divides each video clip into 
four varieties based on its spatial and temporal features, as 
shown in Fig. 11. When we compared our content classification 
based on PSNR scores with correlation (84.96%) and the 
classification in [31] based on the MOS scores with correlation 
(73.29%) to the common method of classification by 
spatiotemporal grid based on feature extraction in [32] with 
correlation (88.1%), a significant correlation between our 
classification and the spatiotemporal grid was found. 

 
Fig. 11. The Spatio-Temporal Grid 

4.4. Degree of Influence of Quality Parameters 

Principal component analysis (PCA) was implemented to 
determine the degree of impact of each video quality parameter 
that used to classify video content. PCA is a method of data 
decrease aimed at obtaining a small set of derived variables 
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which can be utilized instead of the larger set of original 
variables to simplify subsequent analysis of the data. There are 
two types of PCA: a covariance matrix used in the case where 
the same data share a single set of variables, and a correlation 
matrix used in the case where the data has different sets of 
variables. In this work, the type of a covariance matrix was 
used because our data has the same set. PCA was carried out to 
identify the relationship between video quality assessments 
(PSNR/MOS) and related parameters. The PCA was performed 
for the four video content types of LM, MM, HM, and RM 
separately. The PSNR correlation coefficient I matrix of the 
four content types is shown in Table 5. The value of the 
correlation coefficient is such that -1 < r < +1. The (+) and (–) 
signs are used for positive linear correlations and negative 
linear correlations, respectively. The PCA scores of each 
quality parameter are given in the columns in the above table. 
A higher score value, regardless of the sign (+) or (–), means 
that the parameter has a higher impact. Table 5 demonstrates 
the impact of each quality parameter on video quality. This can 
be seen all the values of SBR are positive and the values of 
PLR, FR, and RES are negative. This means that the SBR has a 
positive impact (when the value of SBR increases, the quality 
increases too), while the other variables have the opposite 
effect (when the values of PLR, FR, and RES increase, the 
quality decreases). These findings confirm the results obtained 
in the section IV-A. 

Table 5. PSNR Correlation Coefficient Matrix 

Content Type Clip Name FR SBR RES PLR 

LM 
Akiyo -0.257 0.439 -0.387 -0.711 
Suzie -0.429 0.647 -0.261 -0.506 
News -0.417 0.429 -0.381 -0.640 

MM 
Foreman -0.179 0.343 -0.507 -0.724 
Carphone -0.246 0.512 -0.527 -0.568 

HM 
Tennis -0.434 0.659 -0.489 -0.299 

Coastguard -0.370 0.454 -0.465 -0.606 

RM 
Football -0.475 0.596 -0.335 -0.479 
Stefan -0.410 0.644 -0.514 -0.295 

Tempete -0.462 0.728 -0.331 -0.327 

Another interesting finding in the PCA scores is that SBR 
and PLR parameters for video contents have a higher impact 
than FR and RES parameters for video contents. Moreover, in 
the LM category, higher PLR had a greater impact on video 
quality than SBR, FR, and RES. In contrast, in the RM 
category, SBR had a bigger impact on video quality than other 
parameters. The findings of this work could be used to help in 
understanding the behavior of video streaming over LTE 
networks. It can contribute to the design of accurate models to 
predict the video quality and to develop control schemes to 
optimize values of these parameters in order to achieve the best 
quality for the video streaming over LTE networks. 

5. The proposed Scheme 

The aim of this work is to develop content-aware and QoE 
optimization scheduling of video streaming applications over 
LTE networks. As shown in Fig. 12, the proposed scheme 
consists of QoE-based prediction model using RNN technique, 
optimization model based on GA, scheduler, and transmitter. 
Through the QoE database that obtained above from 
experiments simulation, the RNN models were trained based 
on existing LTE scheduling algorithms so that models become 
able to predict the specific outputs of the network. 
Accordingly, the GA will generate new populations and 
evaluate their fitness using RNN prediction model to define the 

optimal input parameters of the network system. This scheme 
was designed to obtain maximum QoE and throughput while 
maintaining fairness among users. Moreover, it is possible to 
add different extra parameters like QoS, queue length, SINR, 
etc. based on network system requirements. 

 
Fig. 12. The block diagram of the proposed scheme 

5.1. RNN prediction model 
The most significant QoE parameters were identified as the 

input variables for RNN prediction model. Appropriate RNN 
architecture and a training algorithm were selected using 
MATLAB framework [33] and C++ language. The architecture 
of RNN consisting of a four feed-forward layers; input layer 
has six neurons corresponding to the input parameters (SBR, 
SM, target Delay, Speed, UE, and CT), output layer has three 
output neurons corresponding to MOS, throughput and 
fineness, and two hidden layers; each layer has eight neurons, 
as shown in 

 
Fig. 13. The QoE database obtained above in the subsection 

3.3 was divided randomly into two sets: the first set was used 
in training stage while the second set was used in testing 
prediction accuracy. Our RNN prediction models were trained 
with a gradient descent (GD) training algorithm and tested 
using an untrained dataset.  

 
Fig. 13. The proposed RNN based model 

5.2. GA Optimization Model  
Unique integration between optimization techniques (GA) 

and artificial intelligence (RNN) to maximize QoE over LTE 
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networks has been developed. As shown in Error! Reference 
source not found., the flowchart illustrates the integration 
process of GA with RNN to optimization scheduling algorithm 
of the video stream. The process begins by identifying the 
network system input parameters with their boundaries. The 
system input variables are composed of the network, 
application, and LTE layer parameters and divide into two 
categories, either controlled or uncontrolled variables. The 
control parameters are the targets (like SBR, SM, RES, FR, 
bandwidth and target delay) that the system is to respond for 
achieving a fitness function (like maximize QoE, throughput, 
and fairness, minimize delay and PLR).The next phase will 
include the development of the GA population of the input 
network system parameters for use in the probabilistic-based 
optimal search followed by QoE prediction function using 
RNN-based model. In the communication network system, the 
fitness function ordinarily related to the cost of QoE (e.g. 
MOS) or QoS (e.g. throughput, PLR, and fairness). The fitness 
function evaluates the quality of each individual in the 
population at each iteration. There are several methods in [34] 
and [35] can be used to evaluate the fitness of a given 
individual. In this work, the value of the MOS function was 
chosen as QoE fitness value for each individual. When the QoE 
output is available by the RNN-based prediction model, it 
passes to the cost function to calculate the new fitness value 
and compares to relevant previous outputs. The fitness 
requirements are updated from time to time according to the 
cost function, at the same time a new generation of the 
population will be produced and will be going through the 
same evaluation process of previous generations. The same 
process continues until achieving a certain condition or 
reaching the maximum number of generations. The population 
of the generation groups that has the highest cost of fitness is 
rewarded the final generation and selected as the winner [36]. 
The procedure can be summarized in the algorithm below: 

Algorithm 1 A Genetic Algorithm with RNN 
1. Input: lower bound and upper bound of each parameter; 
2. Set random initial population of n chromosomes; 

While the final condition was not met do 
3.   Compute the fitness f(x) of the population using RNN model; 
4.   Evaluate the f(x) of each chromosome x in the population; 

if the f(x) value is the best? Then 
5.    Set the population as Fitness winner; 

end if 
if not final generation? Then 

6.      Create new population: 
         Selection of parent chromosomes ‘roulette’; 
         Crossover to produce children ‘new offspring’; 
         Mutation of children ‘mutated offspring’; 
         Place new offspring in the new population; 
 else 

7.    output: Fitness winner;  
 end if 
end While 

 
Fig. 14. Optimization schema based on RNN and GA 

In the optimization process, the outputs of the GA should be 
the optimal set of network system input parameters i.e. SBR, 
SM, Target Delay, Speed and Users number (UE) to maximize 
QoE while maintaining fairness. In a practical and detailed, the 
GA program works as follows:  

1) Initialization, an initial population of chromosomes is 
randomly created and can be any desired size. In our work, 100 
populations were selected, which is a trade-off between an 
efficient searching process and the avoidance of premature 
convergence. The initial population was created within the 
assigned input constraints as follows: scheduling metric (SM) 
type from 1 to 6 as shown in Table 2, SBR from 128 kb/s to 
880 kb/s, target delay from 0.04s to 0.1s, speed from 3km/h to 
120km/h, a number of users from 10 to 30 (UE) and four types 
of video stream (CT). The input parameters of the population 
were converted from decimal to binary format using C++ code.  
2) Evaluation, during this operation each chromosome in the 
population is evaluated by calculating a fitness for that 
individual using the RNN predicted model to the decoded 
sequences of the variables. The results were obtained for the 
entire population and compared to give the ranked fitness 
values. 
3) Selection, the main idea of selection operation is to 
continuously improve population overall fitness population by 
discarding the poor designs and only passing the best 
individual chromosomes in the population to the next 
generation. There are several selection methods, but the basic 
idea is the same, the roulette wheel method was applied to 
select a new population as shown in Fig. 15. Chromosomes 
with better fitness values occupy a larger block and will have a 
bigger chance to be selected in the new offspring. 

 
Fig. 15. Roulette wheel selection  

4) Crossover, during crossover new individuals, is created by 
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chromosomes. In our work random points along the strings of 
chosen individual chromosomes were selected then exchange 
the values at these points as shown in Fig. 16. The goal is that 
by combining certain traits from two or more individual 
chromosomes will create a new offspring which will inherit the 
best traits from each of its parents.                     

 
Fig. 16. Two-point crossover  

5) Mutation, this operation typically works by making very 
small changes at random to individual chromosomes, in our 
work one of the bits of the new individuals was changed from 0 
to 1. Its purpose is to maintain diversity within the population 
and prevent premature convergence as shown in Fig. 17.  

 
Fig. 17. Binary chromosomes mutation  

6) Repeat, after new generation was generated cyclic 
repetition of the above steps 2 and 3. The algorithm will stop 
after a fixed number of iterations based on the maximum 
number of generations. 

6. Results and Discussion  

6.1. QoE prediction model  
This section presents a detailed analysis of the results 

obtained from the RNN-based model. We studied the impact of 
video content types on perceived video quality, next compared 
the results achieved by the objective method based on PSNR 
for the four content types to our RNN models. Figures 18-21 
show the comparison of outputs from the RNN models we 
implemented with PSNR metric. These figures compare the 
results of PSNR based on a trained RNN to the test-bed PSNR 
measurements of the four different video files in the same 
content type. The validation of the results of the proposed 
content-based RNN, in terms of the RMSE and Pearson 
correlation coefficient between the predicted and measured 
PSNR for the four content types, are given in Table 6. The 
introduction of a content type with application and network 
related parameters as an input to the content-based RNN 
models produced much closer results to objective values (real 
world) compared to previous models [37] and [38] in terms of 
RMSE and correlation coefficient. The overall RNN 
performance of the two hidden layers for feed-forward 
architecture is much closer to PSNR values of objective 
references points than for other architectures. This indicates 
our RNN model is predicting the PSNR of sample video 
signals very accurately. The results demonstrate that the RNN 
models have the ability to learn quickly from the changes in 
input data and that they are more efficient and accurate.  

Table 6. Validation results of RNN models 

Content 
Type 

Correlation coefficient RMSE 
Our RNN ANFI [37] Our RNN ANFIS [37] 

LM 0.80563054 0.7007 0.0866 0.1545 
MM 0.92364838 0.8056 0.0933 0.1846 

HM 0.820923722 0.754 0.0781 0.5659 
RM 0.955947722 0.754 0.0818 0.5659 

 
Fig. 18. RNN mapping of predicted PSNR for LM 

 
Fig. 19. RNN mapping of predicted PSNR for MM 

 
Fig. 20. RNN mapping of predicted PSNR for HM 
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Fig. 21. RNN mapping of predicted PSNR for RM 

6.2. QoE Optimization model 
In this section, QoE optimization scheduling algorithms 

based on RNN and GA was introduced. The performance of 
RNN-GA optimization scheduling was analyzed and compared 
with the most common LTE scheduling algorithms (EXP rule, 
LOG rule, and FLS) in terms of QoE. The proposed framework 
was tested and evaluated using varying the number of users 
from 10 to 30, and three different speeds (3, 30, and 120 km/h) 
to real-time video traffic. The comparison was based on the 
performance of the QoE of MOS, throughput and the fairness 
issues for different content types; (LM, MM, HM, and RM) of 
the video stream. The quality of received video stream was 
estimated computing the MOS between the transmitted and the 
received video streaming over LTE networks. MOS considers 
one of the key metrics for QoE evaluation in real-time 
streaming of video applications. Fig. 22 shows the MOS 
computed for the video streaming, as expected, the MOS is 
dropping by raising the user's number and speed. However, the 
most important result was obtained is that the proposed 
scheduler can achieve the best video quality in terms of MOS 
under all different conditions with all content types. In general, 
the proposed scheme can guarantee an MOS gain up to about 
3.7 in scenarios having speed up to 30 km/h. According to 
ITU-T Recommendation P.910 [39], the MOS score equal to  3 
or higher corresponds to satisfaction for all users with respect 
to EXP rule, LOG rule, and FLS schedulers. 

 
Fig. 22. MOS comparison with four CT 

In general, throughput is the amount of data transferred 
successfully from transmitter to receiver in a given time period 
and typically measured in bits per second (bps). Fig. 23 shows 
the comparison of average throughput between proposed 
scheduler and state-of-the-art LTE schedulers; it is easy to 
observe that the achieved throughput of RNN-GA optimization 
scheduler was the best among all schedulers, thanks to the 

optimal choice of system parameters. Through the study of 
behavior aggregate throughput of video flows under different 
conditions over LTE networks, we also observe that the 
throughput of our proposed scheduler was increased steadily 
with all content types of video traffic. 

 
Fig. 23. Throughput of video flows with four CT 

In addition to above, the fairness is one of the key functions 
of scheduling and should be taken into account when designing 
any algorithm. In more detail, a scheduling algorithm should be 
fair in the sense that, in addition to warranty a QoE 
optimization, it is important to ensure that a fair manner 
distribution of available resources to all network users, and do 
not allow achieving good results for some users at the expense 
of others. Fairness index is a key performance metric to use 
significantly to measure the fairness, the range value of fairness 
index is between 1 and 0, the fairness values closer to 1 the 
index of a metric is the fairer a discipline and vice versa [40]. 
As shown in Figures 24-26, RNN-GA scheduling algorithm 
under three different speeds provides a slightly more fairness 
among state-of-the-art LTE downlink scheduling algorithms 
that reported in [23]. This indicates that RNN-GA optimization 
scheduler works best compared with other scheduling models. 

 
Fig. 24. Fairness of video flows with speed 3 km/h 
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Fig. 25. Fairness of video flows with speed 30 km/h 

 
Fig. 26. Fairness of video flows with speed 120 km/h 

7. Conclusion 

In this study, the design of a novel content-aware and QoE 
optimization algorithm of video streaming over LTE networks 
was formulated. Video contents have been classified into four 
groups based on intrusive objective assessment obtained from 
quality parameters in the application, network, and LTE-related 
layers using hierarchical cluster analysis. The design requires 
the new optimization scheduling algorithm which is an 
integration of applied GA together with RNN to identify the 
optimal CT with global optimal input parameters which target 
maximizing QoE without compromising fairness among 
network users. The strength of this integration is to provide one 
with the compound ability of GA whose function is to ensure a 
quick search choice within the bounded parametric space, and 
RNN whose function is to learn complex nonlinear mapping of 
QoE. The comparative analysis of the performance from a 
range of design scenarios shows clearly that RNN-GA 
integration obtains better QoE and fairness performance over 
FLS, EXP-rule, and LOG-rule schedulers. The results from the 
simulations show about 15% increase in performance; this 
suggests that content-aware QoE optimization proposal 
framework is not only better based on performance but also 
better based on throughput. Applying different optimization 
algorithms like evolutionary algorithms, Convex Algorithms is 
potentially one direction for the future research in this area. 
Another possible route is to develop optimization LTE-uplink 
scheduling algorithms using GA integrated with QoE 
prediction models. 

Abbreviations 
Terminology Meaning 
AMC Adaptive Modulation and Coding 
BLER Block Error Rate 

CAGR Compound Annual Growth Rate 
CQI Channel Quality Indicator 
CT Content Type 
DPS Delay Prioritized Scheduling  
FDPS Frequency Domain Packet Scheduling 
FLS Frame Level Scheduler  
GA Genetic Algorithm 
HM High Movement 
LM Low Movement 
LTE Long Term Evolution 
MCS Modulation and Coding Scheme 
M-LWDF Modified Largest Weighted Delay First 
MM Medium Movement 
MOS Mean Opinion Score 
MQAF Multi-QoS Aware Fair  
nRT Non-Real Time 
OSI Open Systems Interconnect 
PDCCH Physical Downlink Control Channel 
PDSCH Physical Downlink Shared Channel 
PF Proportional Fair 
PLR Packet Loss Rate 
PSS Priority Set Scheduler 
QCI Quality Class Identifier 
QoE Quality of Experience 
QoS Quality of Service 
QoSP QoS Provide  
RB Resource Block  
RM Rapid Movement 
RMSE Root-Mean-Square Error 
RNN Random Neural Network 
RT Real Time 
SBR Send Bit Rate 
SINR Signal-to-Interference-plus-Noise Ratio 
SM Scheduling Matrix 
TDPS Time Domain Packet Scheduling 
TTI Transmission Time Interval 
UE User Equipment 
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