
 Journal of Ubiquitous Systems & Pervasive Networks
Volume 9, No. 2 (2017) pp. 01-13

* Corresponding author. Tel.: +1 306-966-2072
Fax: +1 306-966-4884; E-mail: deters@cs.usask.ca
© 2017 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.09.02.001

1

Virtual Resources & Blockchain for Configuration Management in IoT

Mayra Samaniego a, Ralph Deters a *

a University of Saskatchewan, Saskatoon, Canada, S7N 5C9

Abstract

Until now, most systems for Internet of Things (IoT) management, have been designed in a Cloud-centric manner,
getting benefits from the unified platform that the Cloud offers. However, a Cloud-centric infrastructure mainly achieves
static sensor and data streaming systems, which do not support the direct configuration management of IoT components.
To address this issue, a virtualization of IoT components (Virtual Resources) is introduced at the edge of the IoT
network. This research also introduces permission-based Blockchain protocols to handle the provisioning of Virtual
Resources directly onto edge devices. The architecture presented by this research focuses on the use of Virtual
Resources and Blockchain protocols as management tools to distribute configuration tasks towards the edge of the IoT
network. Results from lab experiments demonstrate the successful deployment and communication performance
(response time in milliseconds) of Virtual Resources on two edge platforms, Raspberry Pi and Edison board. This work
also provides performance evaluations of two permission-based blockchain protocol approaches. The first blockchain
approach is a Blockchain as a Service (BaaS) in the Cloud, Bluemix. The second blockchain approach is a private cluster
hosted in a Fog network, Multichain.

Keywords: IoT, Configuration Management, Virtual Resource, Blockchain, Fog, REST

1. Introduction

The Internet of Things (IoT) connects physical devices
(Things) to the web. From this connection, new and varied
interactions between things, services, and users emerge.
Traditional network configuration management assumes [1]:

• perennial on-site location
• deliberated device login
• specific understanding of the devices’ characteristics,

and so forth.

However, IoT networks have distinctive characteristics [2],
e.g.:

• dynamic positioning,
• heterogeneity,
• energy constraints,
• geographical distribution.

These characteristics make traditional network management
techniques hardly feasible in practice in IoT. Besides, the

performance demand and configuration management are
different in the IoT space. Most research, to a significant
extent, focus on IoT management from a Cloud-centric
perspective. Cloud-centric systems mostly rely on static
virtualizations such as data streaming and batch processes. The
main goal of these systems is to obtain reliable data in an
efficient and secure manner, from constrained networks [3][4].

With the emergence of Fog Computing [5], the management
focus shifts away from a static one-direction communication
towards a dynamic multi-directional interaction over the IoT
components. Configuration and processing tasks can be
distributed among of the edge of the IoT network. However,
the following questions emerge:

• How to manage the configuration of the large and

heterogeneous set of devices in the IoT network?

• How to guarantee the provisioning of the correct
configurations in the IoT network?

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

2

This work introduces virtualization of IoT components
(referred to as Virtual Resources) and permission-based
Blockchain protocols in a Fog network to address the
mentioned questions. The remainder of this paper is organized
as follows. Section 2 introduces Configuration Management &
IoT. The communication patterns in IoT are explained in
Section 3. Section 4 introduces virtualization in IoT. Section 5
introduces Blockchain technology. The evaluations of Virtual
Resources and Blockchain protocols are presented in Section 6.
Finally, a conclusion is presented in Section 7.

2. Configuration Management & IoT

The Internet of Things (IoT) vision aims connectivity with the
world, anytime, anywhere [6]. This vision has been analyzed
by Gubbi et al. [7] from two perspectives. First, object-centric,
which highlights the features of IoT devices and supports direct
interactions among them. This perspective accomplishes a
richer user-experience as users can change the configuration of
devices; however, only one user configuration is supported at a
time in a specific device. Second, Cloud-centric, which centers
around services and implementations that process large data
streams contributed by constrained devices. The Cloud-centric
view identifies three layers of abstractions: Things, Services,
and Applications (Figure 1). The Things layer is the lowest
level of abstraction and represents constrained devices [3] (e.g.
sensor and actuator networks). The Application layer is the
higher-level of abstraction and hosts final solutions such as
monitoring, managing, and other processes. The Service layer
is the link between the Applications and Things. This layer
virtualizes IoT components either as data streaming processes
or as virtualized resources (e.g. proxies). The Cloud-centric
perspective supports multiple user configurations
simultaneously. However, the configurations use the
virtualizations hosted in the Service layer, which means that
the interaction is a static one-direction communication that
focuses on sensor data. Besides, the price for moving
computation away from the edge into the Cloud is a significant
latency when engaging the constrained devices.

In the IoT space, it is essential to have low latency when
engaging the geographically distributed devices to perform
configuration management in an efficient manner. A study in
the healthcare industry presented by Cortés et al. [8] showed
that the centralized Cloud storage cannot handle the velocity of
the data flow generated by the IoT Cloud in real-time.

Services

Application

Things	Network

IoT	Components
Sensors	&	Actuators	

Cloud	Network

Fig. 1. Typical system design pattern in IoT [9]

The Fog Computing paradigm emerges as a solution to engage
networks geographically closer than from the Cloud. Cisco
describes Fog as an extension of the Cloud where computing,
storage, and networking are the main pieces of both [5]. The
characteristics of a Fog network are:

• edge location
• geographical distribution
• large -scale networks
• a considerable number of nodes
• mobility support
• real-time interactions
• wireless connectivity supremacy

Fog Computing benefits IoT in the following aspects [5]:

• location awareness rather than location ignorance,
typical of Cloud computing

• geographical distribution of a vast number of nodes
rather than centralized clusters

• wireless mobility
• real-time things engagement rather than

streaming/batch processes
• resource heterogeneity rather than static features

With Fog Computing capabilities at the edge of the IoT
network, more efficient real-time configuration and analytics
can be handled as the latency and bandwidth consumption to
engage the IoT network components is reduced (see Table for a
comparison between the Fog and the Cloud). Additionally,
dynamic interactions over IoT components can be supported.

Table 1. Fog vs. Cloud Nodes [5]

Fog nodes closest

to IoT devices

Fog
aggregation

nodes
Cloud

Response time Milliseconds to
sub seconds

Seconds to
minutes

Minutes,
days,
weeks

Application
examples

M2M
communication

Virtualization
Simple
analytics

Big data
analytics
Graphical
dashboard

How long IoT
data remains
stored

Transient Short
Duration:
perhaps
hours, days

Months
or years

Geographic
coverage

Very local: for
example, one city
block

Wider Global

3. Communication & IoT

Communication is the primary concern when working in the
IoT space. Reliable management systems require effective
communication among all parties in the IoT network e.g.:
sensors, actuators, back-end services, and so forth. The
communication patterns in IoT can be divided into three groups
[10]:

• Data Centric
• Message Centric
• Resource Centric

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

3

3.1. Data-Centric Communication

The Data-Centric communication pattern focuses on the
reliability and transmission of data.
The Data Distribution Service (DDS) is an Object Management
Group’s (OMG) [11] standard. DDS is a data-centric publish-
subscribe [12] model for distributed application
communication and integration [13]:

• DDS is data-centric because it has a central data
space where the data and the rules to access to that
data are structured.

• DDS is publish-subscribe because it has a
middleware where the communication is performed
through publications and subscriptions of topics.
[14].

Figure 2 shows the DDS service diagram. The data-centric
publish-subscribe middleware guarantees time-effective and
reliable delivery from data writers to data readers. Topics
enable the publishing and subscribing. DDS Domains are kept
completely isolated from each other. There is no data-sharing
across DDS domains [14]. Following the publish/subscribe
pattern, writers and readers work in a decoupled environment
regarding synchronization and time:

• Time: It is not necessary that both actors be active at
the same time

• Synchronization: It is not necessary that any of the
actors have information about each other.

The DDS standard highlights that its main goal is the “Efficient
and Robust Delivery of the Right Information to the Right
Place at the Right Time” [13]. The key features of DDS are:

• Dynamic discovery of participants
• Recovery of data for subscribers
• Quality of Service support
• Publish/subscribe service in real-time
• Peer-to-peer communication between publishers and

subscribers
• Scalability

Fig. 2. Data Distribution Service (DDS) Diagram [14]

3.2. Message-Centric Communication

The Message-Centric communication pattern focuses
exclusively in the delivery of reliable messages from writers to
readers.
The Message Queuing Telemetry Transport (MQTT) [15] is a
lightweight message-centric protocol based on the
publish/subscribe pattern [16].
Figure 3 shows the MQTT architecture. In MQTT, there is a
central broker [17] that supports the communication between
writers and readers. The message-orientation feature of MQTT
makes it content agnostic and only focuses on the delivery of
messages.

MQTT uses TCP for communicating with the message broker.
Using TCP, in turn, can lead to high communication costs.
Consequently, a UDP-based MQTT for sensors (MQTT-S)
[18] was developed.
In the IoT space, MQTT is the most used protocol (e.g.:
[19][20]) due to its low overhead, easy implementation, and
support from all leading vendors. The common design in
systems that implement MQTT is integrating sensors and
actuators in constrained nodes and connecting those nodes to
the central broker [17], e.g.: the AWS IoT platform [21].
MQTT offers to decouple in time, space, and synchronization.

Fig. 3. Message Queue Telemetry Transport Protocol (MQTT)

IBM [17]

3.3. Resource-Centric Communication

The focus of the Resource-Centric communication pattern is
the resources.
The Constrained Application Protocol (CoAP) [22] is a
machine-to-machine (M2M) resource-based protocol whose
features work very well in constrained networks. CoAP
follows the REST architectural design (Figure 4). The method
definitions in CoAP are like the ones in HTPP: GET, POST,
PUT, DELETE. Figure 5 shows an interaction between a client
and a server using CoAP. The REST pattern of CoAP enforces
a resource-oriented view on IoT components [23] [24], e.g.
edge devices. CoAP uses UDP as the default method for
transmission of data, but TCP can be employed as well. The
CoAP package size varies from the minimum 4 bytes (simple
GET requests) to a maximum of 1024 bytes.

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

4

Even though CoAP does not follow the publish/subscribe
pattern, it emulates a publish/subscribe behavior through the
observe feature. Figure 6 shows the interaction between an
observer and a subject. The observer registers into a subject
asking permission to observe a specific resource. The observer
will receive the update from the observed resource any time it
changes.
Contiki [25] and TinyCoAP [26] are implementation of CoAP
in the context of IoT.
Additionally, the use of CoAP provides a unified way to
abstract and engage IoT components.

Application

Request/Response

Messages

UDP

C
O
A
P

Fig. 4. CoAP Abstraction Layer [22]

Fig. 5. Example of a CoAP GET acknowledges interaction [22]

Fig. 6. Observer design pattern [27]

4. Virtualization & IoT

Virtualization in IoT has emerged from the success of common
management techniques such as Software Defined Networking
(SDN) [28], [29]. SDN abstracts and decouples the control
plane (determine destinations of traffic) from data plane
(forwarding traffic). The characteristics of the IoT space have
led to the rise of Software-defined IoT (SD-IoT) [30] [31]. SD-
IoT is a type of virtualization that uses abstractions to simplify
provisioning and customization of the network components.
Virtualizing components is a typical approach to managing IoT
networks, e.g.: virtualized sensors [32] or interface services
[33]. However, these virtualization techniques use the Cloud
as the processing unit, which means they are not scalable and
introduce significant latency and bandwidth consumption.
Besides, this kind of virtualizations focus on abstracting
individual components but neither defining an effective
communication between them nor allowing richer interactions
over them.
The development of Fog Computing gives IoT the possibility
to introduce management techniques closer to the constrained
environment reducing costs and being location and context
aware. Implementing configuration management in a Fog
network instead of the Cloud would represent a more realistic
scenario to engage the IoT components. Solutions at the edge
of the IoT network have been proposed to handle the traffic
and provisioning tasks [34].

Botta et al. [29] present specific management considerations for
IoT and Cloud networks:

• While IoT systems interact with real Things to be the
data providers, Cloud systems interact with
virtualization of Things to be the service providers.

• While IoT networks focus on a pervasive service
using constrained devices and limited storage and
energy, cloud networks focus on a ubiquitous service
available from everywhere using virtually unlimited
computational capabilities.

Definition of Virtual Resources

Because a Virtual Resource is a software artifact, there can be
many definitions of Virtual Resources for different purposes
and scenarios. This paper uses the definition of Virtual
Resources proposed by Samaniego [35][36]. For configuration
management, Virtual Resources are grouped into two levels of
abstraction. Figure 7 illustrates this virtual architecture: first,
the Atomic Abstraction Layer (A2L) that faces the IoT
physical components (sensors, actuators) and manage a one-to-
one configuration relation; second, the View Abstraction Layer
(VAL) that is built on top of the A2L and handles the
configuration of complex views that use the data from the A2L
resulting in a one-to-many relation. Both layers are hosted in a
Fog network.
For both layers, Virtual Resources are defined as RESTful
micro services [36]. These services are programmed using the
features of Go language [37]:

• routines
• channels

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

5

Routines allow to deploy multiple Virtual Resources
simultaneously (see Figure 8. An Example of Virtual
Resources programmed in Go language). Channels are the
communication media among Virtual Resources (see Figure 9.
An example of a Virtual Resource listening to a channel in Go
language).
Virtual Resources in the Atomic and View layers communicate
via the Constrained Application Protocol (CoAP). Also, both
layers transmit data in a JSON format (see Figure 10. An
example of JSON data transmitted by Virtual Resources).
Figure 11 shows the architecture of the Atomic Layer. The
Atomic layer is the lowest level of abstraction. Atomic Virtual
Resources engage IoT components directly. One Atomic
Virtual Resource corresponds to a one physical IoT
component, which leads to a one-to-one relation. An Atomic
Virtual Resource exposes the CoAP method definitions: GET,
POST, PUT, DELETE (Figure 12). By doing this, the simple
CRUD operations can be mapped to the CoAP methods.
Atomic Virtual Resources can share the current state of the
physical component they represent, change their configuration,
interact with other Atomic Virtual Resources, and make the
physical component stop working.

Figure 13 shows the architecture of the View Abstraction
Layer. View Virtual Resources have a higher hierarchy. One
View Virtual Resource can engage one or more Atomic Virtual
Resources, which leads to a one-to-many relation.
This work applies the Constrained RESTful Environment
(CoRE) Link Format to CoAP to manage the two main services
in the IoT space:

• the discovery of services
• the retrieving of state

The discovery of services process is exposed in a “/.well-
known/core” interface, which returns a list of all available

components with their URI’s. The retrieving of state process is
exposed in a “/state” interface, which returns the value of the
IoT component by the time it was requested. View Virtual
Resources expose these two interfaces.
A View Virtual Resource can engage not only Atomic
resources but also another View Resources as well, in this case,
the View becomes a Composite View Virtual Resource with a
many-to-many relation.
In the View layer, Virtual Resources are divided into two
groups, stateless and state-full. Stateless Virtual Resources use
the CoAP REST pattern to pull the states each time a request is
received. State-full Virtual Resources use the CoAP observe
pattern to receive updates of the resources they are observing.
State-full Virtual Resources use caching techniques to keep the
state of their linked atomic resources while it is valid. The
purpose of making View Virtual Resources state-full is to
reduce the traffic load in the IoT network.
The View Layer also works as a processing unit in which the
row data is evaluated and stored.

Please see Samaniego M. [9] for additional information about
the definition and implementation of Virtual Resources.

By integrating Virtual Resources at different levels of
abstraction, we can build a structure to facilitate the
configuration management of the IoT network. Hence, users
can interact with the virtualization of devices in real time and
manage a specific virtual configuration without affecting other
processes.

Fig. 7. Virtual Resource Architecture [9]

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

6

Fig. 8. Virtual Resources programmed as routines in Go
language [9]

Fig. 9. Function of a Virtual Resource listening to a channel [9]

Fig. 10. Example of JSON data transmitted by Virtual
Resources [9]

IoT	Components
Sensors	&	Actuators	

CoAP	Method	Definitions
GET							POST
PUT							DELETE

Fog	Network

Atomic	Layer	(AL)

Atomic	Virtual	Resource

Fig. 11. Atomic Abstraction Layer [9]

Fig. 12. Definition of a CoAP method in Go language [9]

View	Layer	(VAL)

View	Virtual	Resource

Atomic	Virtual	Resource

Fog	Network

CoAP	Interfaces
/.well-known/core
/state

Fig. 13. View Abstraction Layer [9]

5. Blockchain & IoT

The conceptualization of Blockchain is attributed to Satoshi
Nakamoto in 2008 [38]. Blockchain is a distributed ledger that
stores transactions in the form of connected blocks. A
blockchain starts with an initial or genesis block (Figure 14).
Any change in any block is immediately visible to all
participants. Each subsequent block is related to the previous
one through a hash value.

ID:	0
Block	Hash:	327…77A

Parent	Hash:NIL
Trans.	Hash:	01b…46b
List	of	Transactions:

{}

ID:	1
Block	Hash:	00A…CD2
Parent	Hash:	327	..77A
Trans.	Hash:	333	…	B27
List	of	Transactions:
{T1,T2,T3	…	T159}

ID:	45
Block	Hash:	003…882
Parent	Hash:	0AA	..B67
Trans.	Hash:	AA7	…	27F
List	of	Transactions:
{T92345,T92346,…}

Fig. 14. Sample Blockchain [36]

Blockchain was of public domain when it was initially
designed to work as the distributed transaction ledger for the
Bitcoin project [39], but nowadays there are few options to
install it privatively, e.g.: Multichain [40] or Hyperledger [41].
Multichain is free to use, but it is not open source; Hyperledger
is free to use and open source as well.
Each Blockchain technology uses a different mechanism to
write only valid transactions, e.g.: Multichain validates

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

7

transactions using the round-robin method [42], IBM Bluemix
uses the consensus methods [43].
The use of Blockchain has extended to different areas such as
health [44], government [45], and manufacturing [46]. In the
IoT space, IBM presented the ADEPT system [47] as part of
the Bluemix Solution. ADEPT can store the configuration of
IoT devices and as a mechanism for pushing code onto
devices.
Permission based blockchain works based on a set of registered
users. This blockchain technology has the advantage of
limiting the participation in the consensus processes as well as
who can perform transactions.

6. Evaluation

For testing the definition of Virtual Resources, we deployed
them in two IoT platforms: Raspberry Pi and Edison Arduino
board.

For testing the Permission-Based Blockchain protocols as a
provisioning mechanism, we used IBM Bluemix Blockchain as
a Service and a Fog Multichain Blockchain cluster.

Overall, some picks have been observed in the experiments. As
the difference between results is minuscule, those picks are
attributed to the noise of the network (university wireless
connection), memory allocation or background processes of
the device.

Please see Samaniego et al. [9][35][36] for more experiments
and evaluations.

6.1. Evaluation of Virtual Resources

6.1.1. Evaluation of the Performance of Virtual Resources

Experiment 1

This experiment tests the performance of the definition of
Virtual Resources being accessed by a third party.

Figure 15 illustrates the setup of this experiment. The setup
includes a Raspberry Pi to deploy a Virtual Resource, a Linux
machine to run Elasticsearch database, and a Mac computer to
run the clients.

The Raspberry Pi and the Database are part of a Fog network.

The Raspberry Pi hosts a state-full View Virtual Resource.
This View goes to the database to read the current state of the
Atomic Virtual Resources linked to it. The View Virtual
Resource responses with an Acknowledgment CoAP message
to all requests. The response includes the state of the resource
in the payload.

The database server hosts Elasticsearch, which is a RESTful
search engine for analytics [48]. The “query time” and “index
time” features of Elasticsearch support the heterogeneity nature
of the data generated in the IoT Cloud.

The client computer hosts two clients programmed in Go
language. The clients send 500 CoAP GET requests each to
the virtual resource. The client waits for the Acknowledgment
of the current request before sending the next one.

The communication between the client and the Virtual
Resource is performed via CoAP protocol. The client, the
Virtual Resource, and the Database are connected to the
university Wi-Fi.

Fig. 15. Setup of Experiment 1. A Fog network formed by an
Edison Arduino board that connects to an Elasticsearch

database [9]

Table 2 shows the specification of the hardware for this
experiment.

Table 2. Specification of the hardware used in experiment 1

Client

Mac OS X
2.5 GHz Intel Core i7
16 GB RAM

Virtual
Resource

Raspberry Pi Model B
Raspbian. Linux kernel 3.18
900 MHz ARM Cortex-A7
1GB LPDDR2 SDRAM

Database

Linux Ubuntu
Intel Core i7-6700 CPU @ 3.40GHz
14 GB RAM
Elasticsearch DB

This experiment considers three processes to evaluate the
Virtual Resource definition:

1. the Core Link Format (RFC6690) discovery of
services through a /.well-known interface

2. the retrieving of the current state of the Virtual
Resource through a /state interface

3. the communication performance with the database

Figures 16 to 18 show the results of the above-mentioned
processes. In the figures the x axis represents the requests of
each client. The first 500 requests belong to Client 1 and the
other 500 requests belong to Client 2. The y axis represents the
response time in milliseconds.

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

8

This experiment introduces delay intervals of 0, 50 and 100 ms
to test the response time of the Virtual Resource under
different request loads.

The results were measured from the client side.

Figure 16 shows the results of the first part of Experiment 1.
The round-trip time of the Discovery-of-Services process
(/.well-known/core interface) for the 50-Delay series is
between 0.2 ms and 0.6 ms, for the 50-Delay series the round-
trip time is between 0.4 ms and 1.4 ms, for the 100-Delay
series the round-trip time is between 0.6 ms and 1.6 ms.
From these results, we can argue that the delay intervals
directly affect the performance of the virtual resource. The
response times are higher as the virtual resource goes to the
database to get the current state of the Atomic Virtual
Resources. The higher the interval, the higher the response
time.

0

1

2

3

4

5

6

7

8

9

10

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Requests

Discovery	of	Services	of	a	Full-State	Virtual	Resource

Delay	0 Delay	50 Delay	100

Fig. 16. Results of the Virtual Resource performance –
Discovery-of-Services process (/.well-known/core interface).

0

2

4

6

8

10

12

14

16

18

20

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Requests

Evaluation	of	the	Get-Current-State	Process

Delay	0 Delay	50 Delay	100

Fig. 17. Results of the Virtual Resource performance – Current
State process (/state interface).

Figure 17 presents the results of the second part of Experiment
1. The round-trip time of the get-current-state process (/state
interface) for all Delay series is between 5 ms and 9 ms. In this
case, the Virtual Resource makes the processing locally, thus
the delay times do not affect its performance.

Figure 18 shows the results of the third part of Experiment 1.
The communication performance between the View Virtual
Resource and the database. The database is Elasticsearch. This
graph shows that the delay intervals do not affect the response
times of the database server. For all three delay intervals, the
round-trip time result is between 4.8 ms and 7 ms.
The database is accessed through an HTTP REST API
programmed in Go language.

0

2

4

6

8

10

12

14

16

18

20

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Requests

Communication	between	a	Virtual	Resource	and	Database		

Delay	0 Delay	50 Delay	100

Fig. 18. Results of the Communication between the Virtual
Resource and the Database.

6.1.2. Evaluation of the Communication among Virtual
Resources

Experiment 2

The following experiment tests the communication
performance among two Virtual Resources.
Figure 19 shows the setup of this experiment. The setup
includes two Edison Arduino boards connected to the
university Wi-Fi. The Edison boards is a System on a Chip
(SoC) with the following characteristics: 500 MHz dual-core,
dual threaded Intel Atom and a 100 MHz 32-bit Intel Quark
microcontroller.

The first Edison board hosts an Atomic Virtual Resource that
responds to all requests with an Acknowledgment CoAP
message. The second Edison board hosts 10 Stateless View
Virtual Resources that send CoAP POST requests to the
Atomic Virtual Resource.

The payload sizes are 8 bytes and 512 bytes. All View Virtual
Resources must wait for the Acknowledgment message before
sending the next one.

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

9

Security is mandatory for data transmission in the IoT Cloud.
Due to the limited resources of the Edison board, the payload
is encrypted using Advanced Encryption Standard (AES) [49]
with a key of 16 bytes. Hence the total size of the payload is
8/512 bytes + 18 bytes of AES encryption.

Fig. 19. Setup for Experiment 2. Two Edison Arduino boards
communicating via CoAP protocol [9]

Fig. 20. Results of the communication between 2 Virtual
Resources with different payload size.

Fig. 21. Results of the concurrent communication between 2
Virtual Resources with a delay time of 300 ms.

Figure 20 shows the results of the first part of Experiment 2. In
this part of the experiment, the second Edison Arduino board
hosts 1 Stateless View Virtual Resource that sends 100 of
CoAP requests to the Atomic Virtual Resource.

The graph shows that the payload influences the Atomic
Virtual Resource behavior. With a payload of 8 bytes + 16
bytes of AES, the round-trip time is between 4 ms and 12 ms.
The average round-trip time is 6.45 ms. With a payload of 512
bytes + 16 bytes of AES, the round-trip time is between 4 ms
and 14 ms. The average round-trip time is 7.54 ms.
There are some picks in the graph that can be attributed to the
noise of the Wi-Fi network and the background processes of
the device.

Figure 21 presents the results of the second part of Experiment
2. In this part of the experiment, the second Edison Arduino
board hosts 10 Stateless View Virtual Resources that send 100
of concurrent CoAP requests to the Atomic Virtual Resource.
In this case, the payload is static, 8 bytes. A delay interval of
300 ms was introduced.

The graph shows many fluctuations in the round-trip time
responses. This is because the Virtual Resource is sending the
requests asynchronously. From the graph, we can comment
that all requests were responded. The round-trip time for all
requests is between 4 ms and 60 ms with picks up to 145 ms.

The concurrency introduced affects the response times of the
Atomic Virtual Resource. However, the response times are
acceptable as it is a constrained device the one that is facing
concurrency.

6.2. Evaluation of Permission-Based Blockchain

6.2.1. Evaluation of a Blockchain as a Service

Experiment 3

This experiment evaluates the communication performance
between a Virtual Resource and the Blockchain as a Service
IBM Bluemix [50].
Figure 22 shows the setup for this experiment. The experiment
involves a free Bluemix account and an Edison Arduino board
that communicate via HTTP protocol.

Fig. 22. Setup of Experiment 3. One Edison Arduino board is
communicating with a free account of IBM Bluemix Blockchain as

a Service. [9]

The API deployed in Bluemix to handle the communication
with the blockchain cluster is programmed in Go language.
The Edison board hosts 10 View Virtual Resources that send
100 HTTP POST requests to the blockchain service

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

10

asynchronously. Each request is a means to write a block in the
blockchain. The payload is 712 bytes. In the payload, it is
included 256 bytes of encrypted data using AES with a key of
16 bytes.

Figures 23 and 24 show the results of Experiment 1 with 0 ms
and 300 ms delay time introduced respectively. Having the
blockchain as a service in the Cloud means a significant impact
on the communication performance with the Edison Arduino
board. The two graphs show that the variation in the arrival
rate of the requests does not lead to a better communication
performance. The round-trip time for the requests with no
delay time is between 100 ms and 2200 ms. The round-trip
time for the requests with 300 ms delay time is between 100
ms and 1900 ms.

0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400

1 11 21 31 41 51 61 71 81 91

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Communication	between	a	Virtual	Resource	and	Bluemix	Blockchain	Service	

VR	1 VR	2 VR	3 VR	4 VR	5 VR	6 VR	7 VR	8 VR	9 VR	10

Fig. 23. Results of the communication between a View Virtual
Resource and IBM Bluemix as a Service. No delay time introduced

[9].

0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	resources'	requests	with	300	ms	delay	time

Bluemix	Blockchain	Writing	Round-Trip	Time	(ms)

VR	1 VR	2 VR	3 VR	4 VR	5 VR	6 VR	7 VR	8 VR	9 VR	10

Fig. 24. Results of the communication between a View Virtual
Resource and IBM Bluemix as a Service. 300 ms delay time

introduced [9].

6.2.2. Evaluation of a Blockchain Cluster hosted in a Fog
network

Experiment 4

This experiment evaluates the communication performance
between a Virtual Resource and a Multichain [40] Blockchain
cluster hosted in a Fog network.
Figure 25 shows the setup for this experiment. The setup
includes an Edison Arduino board and a Fog network of 3
machines running Multichain software. The characteristics of
these machines are:

• Operating System: Linux Debian 8.5 (Jessie)
• CPU: Intel Core i7-6700 CPU @ 3.40GHz
• RAM: 14 GB

One of the Multichain nodes includes a python API that
handles the communication with the cluster. The Edison board
hosts 10 View Virtual Resources that send 100 HTTP POST
requests each to the Multichain cluster asynchronously. The
payload is 712 bytes. The POST requests ask permission to
write in the blockchain.

Fig. 25. Setup of Experiment 4. One Edison Arduino board is
connected to a Multichain Blockchain cluster in a Fog network [9]

Fig. 26. Results of the communication between a View Virtual
Resource and a Multichain Blockchain cluster in the Fog. No delay

time introduced [9].

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

11

Figures 26 and 27 show the results of Experiment 4 with 0 ms
and 300 ms delay intervals respectively. The graphs show that
hosting the blockchain closer to the IoT cloud network means
better response times. However, with a delay interval of 300
ms, the Fog Multichain blockchain performs better. The round-
trip time for the requests with no delay is between 20 ms and
80 ms. Some picks are observed in the graph, but we can
attribute them to the fact of sending the requests concurrently
and asynchronously. The round-trip time for the requests with
300 ms delay is between 20 ms and 60 ms. From the graph, we
can comment that intervals introduced, affect the performance
of the Multichain cluster. The scenario with 300 ms delay
interval demonstrated a better performance.

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	resources'	requests	with	300ms	delay	time

Communication	between	a	Virtual	Resource	and	a	Fog	Multichain	Blockchain	Cluster

VR	1 VR	2 VR	3 VR	4 VR	5 VR	6 VR	7 VR	8 VR	9 VR	10

Fig. 27. Results of the communication between a View Virtual
Resource and a Multichain Blockchain cluster in the Fog. 300 ms

delay time introduced [9].

7. Conclusions and Future Work

This work discussed the use of Virtual Resources and
permission-based Blockchain to build an architecture to handle
the configuration management in IoT networks.

The proposed architecture encapsulates the complexity of the
configuration of IoT components into a Fog layer, which is
accessed via Constrained Application Protocol (CoAP). The
CoAP-based interfaces fulfill the performance requirements
and reduce the complexity of configurations mapping CoAP
requests to CRUD operations.

Hosting Virtual Resources in a Fog layer results in an
economic solution regarding latency and bandwidth
consumption because only meaningful information is
transferred to the Cloud. Additionally, the evaluation of the
data is done at the edge of the IoT network, which makes the
decision-making process time-effective.

Overall, the virtualization of components performes in an
expected manner, responding to all requests no matter the
concurrency level it faced.

Permission-Based Blockchain adds security to the
configuration management of the IoT network as only
registered users can access to the blocks in the chain to write
and read configurations. Storing these configurations in the

form of blocks makes the access to IoT components dynamic
and concurrent [51] as each user uses their own configurations
to access to a specific physical device. Additionally, as the
blocks in the chain are encrypted, only the user with the correct
key can read the blocks and store new ones. Multichain cluster
obviously performed better than the IBM Bluemix service in
the Cloud due to the location in a Fog network, closer to the
IoT network. However, Bluemix as a Service can be used to
store Virtual Resources of higher hierarchy that are accessed
by third parties in the Cloud.

The architecture composed by Virtual Resources and
permission-based Blockchain fulfills the two challenges stated
by this work, managing the configuration of IoT components
and provisioning those configurations in the IoT network.

The experiments presented in this work consider a small
number of devices. Future work will consider testing the
definition of Virtual Resources in a larger scenario integrating
other constrained devices. Additionally, other Blockchain
protocols will be evaluated, such as Hyperledger and
Ethereum.

References

[1] S. Nastic, S. Sehic, D. H. Le, H. L. Truong, and S.
Dustdar, “Provisioning software-defined IoT cloud
systems,” Proc. - 2014 Int. Conf. Futur. Internet
Things Cloud, FiCloud 2014, pp. 288–295, 2014.
https://doi.org/10.1109/ficloud.2014.52

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog
Computing and Its Role in the Internet of Things,”
Proc. first Ed. MCC Work. Mob. cloud Comput., pp.
13–16, 2012.
https://doi.org/10.1145/2342509.2342513

[3] S. Bandyopadhyay and A. Bhattacharyya,
“Lightweight Internet protocols for web enablement
of sensors using constrained gateway devices,” 2013
Int. Conf. Comput. Netw. Commun. ICNC 2013, pp.
334–340, 2013.
https://doi.org/10.1109/iccnc.2013.6504105

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M.
Aledhari, and M. Ayyash, “Internet of Things: A
Survey on Enabling Technologies, Protocols and
Applications,” IEEE Commun. Surv. Tutorials, vol.
PP, no. 99, pp. 1–1, 2015.

[5] Cisco Systems, “Fog Computing and the Internet of
Things: Extend the Cloud to Where the Things Are,”
2015.

[6] L. Tan, “Future internet: The Internet of Things,”
2010 3rd Int. Conf. Adv. Comput. Theory Eng., pp.
V5-376-V5-380, 2010.

[7] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
“Internet of Things (IoT): A vision, architectural
elements, and future directions,” Futur. Gener.
Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.
https://doi.org/10.1016/j.future.2013.01.010

[8] R. Cortés, X. Bonnaire, O. Marin, and P. Sens,
“Stream Processing of Healthcare Sensor Data:
Studying User Traces to Identify Challenges from a
Big Data Perspective,” Procedia Comput. Sci., vol.
52, pp. 1004–1009, 2015.
https://doi.org/10.1016/j.procs.2015.05.093

[9] M. A. Samaniego Pallaroso, “Virtual Rsources &
Management in IoT,” University of Saskatchewan,

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

12

2016.
[10] H. Shi, N. Chen, and R. Deters, “Combining Mobile

and Fog Computing: Using CoAP to Link Mobile
Device Clouds with Fog Computing,” Proc. - 2015
IEEE Int. Conf. Data Sci. Data Intensive Syst. 8th
IEEE Int. Conf. Cyber, Phys. Soc. Comput. 11th IEEE
Int. Conf. Green Comput. Commun. 8th IEEE Inte, pp.
564–571, 2016.

[11] “About the Object Management Group.” [Online].
Available:
http://www.omg.org/gettingstarted/gettingstartedindex
.htm. [Accessed: 16-Nov-2016].

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec, “The many faces of publish/subscribe,”
ACM Comput. Surv., vol. 35, no. 2, pp. 114–131,
2003. https://doi.org/10.1145/857076.857078

[13] “Data Distribution Service (DDS).” [Online].
Available: http://www.omg.org/omg-dds-portal/.
[Accessed: 28-Oct-2016].

[14] “What is DDS?” [Online]. Available:
http://portals.omg.org/dds/what-is-dds-3/. [Accessed:
28-Oct-2016].

[15] A. Ghosh, “Message Queuing Telemetry Transport
(MQTT) Protocol,” 2014. [Online]. Available:
https://thecustomizewindows.com/2014/07/message-
queuing-telemetry-transport-mqtt-protocol/.
[Accessed: 31-Oct-2016].

[16] OASIS, “MQTT Version 3.1.1,” OASIS Standard,
2014. [Online]. Available: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.
[Accessed: 09-Aug-2016].

[17] V. Lampkin, “What is MQTT and how does it work
with WebSphere MQ? (Application Integration
Middleware Support Blog),” 2012. [Online].
Available:
https://www.ibm.com/developerworks/community/blo
gs/aimsupport/entry/what_is_mqtt_and_how_does_it_
work_with_websphere_mq?lang=en. [Accessed: 23-
Nov-2016].

[18] U. Hunkeler, H. L. Truong, and A. Stanford-Clark,
“MQTT-S — A publish/subscribe protocol for
Wireless Sensor Networks,” 2008 3rd Int. Conf.
Commun. Syst. Softw. Middlew. Work. (COMSWARE
’08), pp. 791–798, 2008.
https://doi.org/10.1109/comswa.2008.4554519

[19] P. Spiess et al., “Soa-based integration of the internet
of things in enterprise services,” 2009 IEEE Int. Conf.
Web Serv. ICWS 2009, pp. 968–975, 2009.

[20] V. Lampkin, W. T. Leong, L. Olivera, S. Rawat, N.
Subrahmanyam, and R. Xiang, “Building Smarter
Planet Solutions with MQTT and IBM WebSphere
MQ Telemetry,” IBM Redbooks, p. 270, 2012.

[21] “How the AWS IoT Platform Works - Amazon Web
Services.” [Online]. Available:
https://aws.amazon.com/iot-platform/how-it-works/.
[Accessed: 17-Jan-2017].

[22] Z. Shelby, K. Hartke, and C. Bormann, “The
Constrained Application Protocol (CoAP),” The
Constrained Application Protocol (CoAP), 2014.
[Online]. Available:
https://tools.ietf.org/html/rfc7252. [Accessed: 27-Oct-
2016].

[23] M. Hemdi and R. Deters, “Data Management in
Mobile Enterprise Applications,” Procedia - Procedia
Comput. Sci., vol. 94, pp. 418–423, 2016.
https://doi.org/10.1016/j.procs.2016.08.064

[24] M. Hemdi, “Using REST based protocol to enable

ABAC within IoT systems,” Inf. Technol. Electron.
Mob. Commun. Conf. (IEMCON), 2016 IEEE 7th
Annu., pp. 1–7, 2016.
https://doi.org/10.1109/iemcon.2016.7746297

[25] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A
low-power CoAP for Contiki,” Proc. - 8th IEEE Int.
Conf. Mob. Ad-hoc Sens. Syst. MASS 2011, pp. 855–
860, 2011. https://doi.org/10.1109/mass.2011.100

[26] A. Ludovici, P. Moreno, and A. Calveras,
“TinyCoAP: A Novel Constrained Application
Protocol (CoAP) Implementation for Embedding
RESTful Web Services in Wireless Sensor Networks
Based on TinyOS,” J. Sens. Actuator Netw, vol. 2, no.
2, pp. 288–315, 2013.
https://doi.org/10.3390/jsan2020288

[27] K. Hartke, “Observing Resources in the Constrained
Application Protocol (CoAP),” 2015. [Online].
Available: https://tools.ietf.org/html/rfc7641.
[Accessed: 27-Nov-2016].

[28] C. Doukas and I. Maglogiannis, “Bringing IoT and
cloud computing towards pervasive healthcare,” Proc.
- 6th Int. Conf. Innov. Mob. Internet Serv. Ubiquitous
Comput. IMIS 2012, pp. 922–926, 2012.
https://doi.org/10.1109/imis.2012.26

[29] A. Botta, W. De Donato, V. Persico, and A. Pescape,
“On the integration of cloud computing and internet
of things,” Proc. - 2014 Int. Conf. Futur. Internet
Things Cloud, FiCloud 2014, pp. 23–30, 2014.
https://doi.org/10.1109/ficloud.2014.14

[30] A. R. Biswas and R. Giaffreda, “IoT and Cloud
Convergence: Opportunities and Challenges,” 2014
IEEE World Forum Internet Things, pp. 375–376,
2014. https://doi.org/10.1109/wf-iot.2014.6803194

[31] N. D. E. La, “T Elecom N Etwork a Rchitectures a N
a Rchitecture for S Oftware D Efined W Ireless N
Etworking,” no. June, pp. 52–61, 2014.

[32] S. Alam, M. M. R. Chowdhury, and J. Noll, “SenaaS:
An event-driven sensor virtualization approach for
internet of things cloud BT - 1st IEEE International
Conference on Networked Embedded Systems for
Enterprise Applications, NESEA 2010, November 25,
2010 - November 26, 2010,” 2010.

[33] D. Yang, T. Ng, and H. Lim, “Demo abstract: A
service-oriented application programming interface
for sensor network virtualization,” … Process. Sens.
Networks, pp. 143–144, 2011.

[34] M. Jutila, “An Adaptive Edge Router Enabling
Internet of Things,” IEEE Internet Things J., vol.
4662, no. c, pp. 1–1, 2016.
https://doi.org/10.1109/jiot.2016.2550561

[35] M. Samaniego and R. Deters, “Hosting Virtual IoT
Resources on Edge-Hosts with Blockchain.”

[36] M. Samaniego and R. Deters, “Using Blockchain to
push Software-Defined IoT Components onto Edge
Hosts,” 2016.

[37] “Concurrency — An Introduction to Programming in
Go | Go Resources.” [Online]. Available:
https://www.golang-book.com/books/intro/10.
[Accessed: 06-Sep-2016].

[38] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic
Cash System.”

[39] “Innovation - Bitcoin.” [Online]. Available:
https://bitcoin.org/en/innovation. [Accessed: 16-Jan-
2017].

[40] “MultiChain | Open source private blockchain
platform.” [Online]. Available:
http://www.multichain.com/. [Accessed: 15-Jan-

Samaniego, M., Deters, R. / Journal of Ubiquitous Systems & Pervasive Networks, 9 (2017) 01-13

13

2017].
[41] “Hyperledger Fabric,” 2016. [Online]. Available:

http://hyperledger-fabric.readthedocs.io/en/latest/.
[Accessed: 22-Nov-2016].

[42] A. Lewis, “In a nutshell: MultiChain (Epicenter
Bitcoin interview – Nov 2015) | Bits on blocks,”
2016. [Online]. Available:
https://bitsonblocks.net/2016/03/07/in-a-nutshell-
multichain-epicenter-bitcoin-interview-nov-2015/.
[Accessed: 27-Nov-2016].

[43] “Testing consensus and availability.” [Online].
Available:
https://console.ng.bluemix.net/docs/services/blockchai
n/etn_pbft.html. [Accessed: 27-Nov-2016].

[44] K. Peterson, R. Deeduvanu, P. Kanjamala, and K.
Boles, “A Blockchain-Based Approach to Health
Information Exchange Networks,” no. 1, pp. 1–10.

[45] Ø. Svein, “Beyond Bitcoin Enabling Smart
Government Using Blockchain Technology,” pp.
253–264, 2016.

[46] X. Li, F. Baki, P. Tian, and B. A. Chaouch, “A robust
block-chain based tabu search algorithm for the
dynamic lot sizing problem with product returns and
remanufacturing,” Omega (United Kingdom), vol. 42,
no. 1, pp. 75–87, 2014.
https://doi.org/10.1016/j.omega.2013.03.003

[47] V. Pureswaran, S. Panikkar, S. Nair, and P. Brody,
“Empowering the Edge: Practical Insights on a
Decentralized Internet of Things,” 2015. [Online].
Available: https://www-
935.ibm.com/services/multimedia/GBE03662USEN.p
df. [Accessed: 22-Nov-2016].

[48] “Elasticsearch.” .
[49] “AES encryption.” [Online]. Available:

http://aesencryption.net/. [Accessed: 22-Nov-2016].
[50] “IBM Bluemix - Cloud infrastructure, platform

services, Watson, & more PaaS solutions.”
[Online]. Available: https://www.ibm.com/cloud-
computing/bluemix/?S_PKG=&cm_mmc=Search_Go
ogle-_-IBM Cloud_Bluemix Program-_-WW_CA-_-
bluemix
ibm_Exact_&cm_mmca1=000002FP&cm_mmca2=1
0001882&mkwid=6af31007-4324-45da-aac1-
ab29662f1bc1%7C401%7C236774&cvosrc=ppc.goog
le.bluemix. [Accessed: 15-Jan-2017].

[51] M. Zhu, P. Grogono, O. Ormandjieva, and H. Kuang,
“A Categorical Approach to Verifying Concurrency
between Design and Implementation,” vol. 8, no. 1,
pp. 7–13, 2017.

