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Abstract 

Until now, most systems for Internet of Things (IoT) management, have been designed in a Cloud-centric manner, 
getting benefits from the unified platform that the Cloud offers. However, a Cloud-centric infrastructure mainly achieves 
static sensor and data streaming systems, which do not support the direct configuration management of IoT components. 
To address this issue, a virtualization of IoT components (Virtual Resources) is introduced at the edge of the IoT 
network. This research also introduces permission-based Blockchain protocols to handle the provisioning of Virtual 
Resources directly onto edge devices. The architecture presented by this research focuses on the use of Virtual 
Resources and Blockchain protocols as management tools to distribute configuration tasks towards the edge of the IoT 
network. Results from lab experiments demonstrate the successful deployment and communication performance 
(response time in milliseconds) of Virtual Resources on two edge platforms, Raspberry Pi and Edison board. This work 
also provides performance evaluations of two permission-based blockchain protocol approaches. The first blockchain 
approach is a Blockchain as a Service (BaaS) in the Cloud, Bluemix. The second blockchain approach is a private cluster 
hosted in a Fog network, Multichain.  
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1. Introduction 

The Internet of Things (IoT) connects physical devices 
(Things) to the web.  From this connection, new and varied 
interactions between things, services, and users emerge. 
Traditional network configuration management assumes [1]: 
 

• perennial on-site location 
• deliberated device login 
• specific understanding of the devices’ characteristics, 

and so forth.  
 
However, IoT networks have distinctive characteristics [2], 
e.g.: 
 

• dynamic positioning,  
• heterogeneity,  
• energy constraints,  
• geographical distribution.   

 
These characteristics make traditional network management 
techniques hardly feasible in practice in IoT. Besides, the  
 
 

 
 
 
performance demand and configuration management are 
different in the IoT space. Most research, to a significant 
extent, focus on IoT management from a Cloud-centric 
perspective. Cloud-centric systems mostly rely on static 
virtualizations such as data streaming and batch processes.  The 
main goal of these systems is to obtain reliable data in an 
efficient and secure manner, from constrained networks [3][4]. 
 
With the emergence of Fog Computing [5], the management 
focus shifts away from a static one-direction communication 
towards a dynamic multi-directional interaction over the IoT 
components. Configuration and processing tasks can be 
distributed among of the edge of the IoT network.  However, 
the following questions emerge:  

 
• How to manage the configuration of the large and 

heterogeneous set of devices in the IoT network? 
 

• How to guarantee the provisioning of the correct 
configurations in the IoT network? 
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This work introduces virtualization of IoT components 
(referred to as Virtual Resources) and permission-based 
Blockchain protocols in a Fog network to address the 
mentioned questions. The remainder of this paper is organized 
as follows. Section 2 introduces Configuration Management & 
IoT. The communication patterns in IoT are explained in 
Section 3. Section 4 introduces virtualization in IoT.  Section 5 
introduces Blockchain technology. The evaluations of Virtual 
Resources and Blockchain protocols are presented in Section 6.  
Finally, a conclusion is presented in Section 7.  

2. Configuration Management & IoT 

The Internet of Things (IoT) vision aims connectivity with the 
world, anytime, anywhere [6]. This vision has been analyzed 
by Gubbi et al. [7] from two perspectives. First, object-centric, 
which highlights the features of IoT devices and supports direct 
interactions among them. This perspective accomplishes a 
richer user-experience as users can change the configuration of 
devices; however, only one user configuration is supported at a 
time in a specific device. Second, Cloud-centric, which centers 
around services and implementations that process large data 
streams contributed by constrained devices.  The Cloud-centric 
view identifies three layers of abstractions: Things, Services, 
and Applications (Figure 1).  The Things layer is the lowest 
level of abstraction and represents constrained devices [3] (e.g. 
sensor and actuator networks).  The Application layer is the 
higher-level of abstraction and hosts final solutions such as 
monitoring, managing, and other processes.  The Service layer 
is the link between the Applications and Things.  This layer 
virtualizes IoT components either as data streaming processes 
or as virtualized resources (e.g. proxies). The Cloud-centric 
perspective supports multiple user configurations 
simultaneously. However, the configurations use the 
virtualizations hosted in the Service layer, which means that 
the interaction is a static one-direction communication that 
focuses on sensor data.  Besides, the price for moving 
computation away from the edge into the Cloud is a significant 
latency when engaging the constrained devices. 
 
In the IoT space, it is essential to have low latency when 
engaging the geographically distributed devices to perform 
configuration management in an efficient manner. A study in 
the healthcare industry presented by Cortés et al. [8] showed 
that the centralized Cloud storage cannot handle the velocity of 
the data flow generated by the IoT Cloud in real-time.  

Services

Application

Things	Network

IoT	Components
Sensors	&	Actuators	

Cloud	Network

 

Fig. 1. Typical system design pattern in IoT [9] 
 

The Fog Computing paradigm emerges as a solution to engage 
networks geographically closer than from the Cloud. Cisco 
describes Fog as an extension of the Cloud where computing, 
storage, and networking are the main pieces of both [5].    The 
characteristics of a Fog network are: 
 

• edge location  
• geographical distribution 
• large -scale networks 
• a considerable number of nodes 
• mobility support 
• real-time interactions 
• wireless connectivity supremacy 

 
Fog Computing benefits IoT in the following aspects [5]: 
 

• location awareness rather than location ignorance, 
typical of Cloud computing 

• geographical distribution of a vast number of nodes 
rather than centralized clusters 

• wireless mobility 
• real-time things engagement rather than 

streaming/batch processes 
• resource heterogeneity rather than static features 

 
With Fog Computing capabilities at the edge of the IoT 
network, more efficient real-time configuration and analytics 
can be handled as the latency and bandwidth consumption to 
engage the IoT network components is reduced (see Table for a 
comparison between the Fog and the Cloud). Additionally, 
dynamic interactions over IoT components can be supported. 
 

Table 1. Fog vs. Cloud Nodes [5] 
 

 
Fog nodes closest 

to IoT devices 

Fog 
aggregation 

nodes 
Cloud 

Response time Milliseconds to 
sub seconds 

Seconds to 
minutes 

Minutes, 
days, 
weeks 

Application 
examples 

M2M 
communication  

Virtualization 
Simple 
analytics 

Big data 
analytics 
Graphical 
dashboard 

How long IoT 
data remains 
stored 

Transient Short 
Duration: 
perhaps 
hours, days 

Months 
or years 

Geographic 
coverage 

Very local: for 
example, one city 
block 

Wider Global 

 
 

3. Communication & IoT 
 
Communication is the primary concern when working in the 
IoT space. Reliable management systems require effective 
communication among all parties in the IoT network e.g.: 
sensors, actuators, back-end services, and so forth. The 
communication patterns in IoT can be divided into three groups 
[10]: 
 

• Data Centric 
• Message Centric 
• Resource Centric 
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3.1. Data-Centric Communication 
 
The Data-Centric communication pattern focuses on the 
reliability and transmission of data. 
The Data Distribution Service (DDS) is an Object Management 
Group’s (OMG) [11] standard. DDS is a data-centric publish-
subscribe [12] model for distributed application 
communication and integration [13]:   
 

• DDS is data-centric because it has a central data 
space where the data and the rules to access to that 
data are structured.   
 

• DDS is publish-subscribe because it has a 
middleware where the communication is performed 
through publications and subscriptions of topics.  
[14].   

 
Figure 2 shows the DDS service diagram. The data-centric 
publish-subscribe middleware guarantees time-effective and 
reliable delivery from data writers to data readers. Topics 
enable the publishing and subscribing.  DDS Domains are kept 
completely isolated from each other. There is no data-sharing 
across DDS domains [14].  Following the publish/subscribe 
pattern, writers and readers work in a decoupled environment 
regarding synchronization and time: 
 

• Time: It is not necessary that both actors be active at 
the same time 
 

• Synchronization: It is not necessary that any of the 
actors have information about each other. 

 
The DDS standard highlights that its main goal is the “Efficient 
and Robust Delivery of the Right Information to the Right 
Place at the Right Time” [13].  The key features of DDS are:  
 

• Dynamic discovery of participants  
• Recovery of data for subscribers 
• Quality of Service support 
• Publish/subscribe service in real-time 
• Peer-to-peer communication between publishers and 

subscribers 
• Scalability 

 
 

 
 

Fig. 2. Data Distribution Service (DDS) Diagram [14] 

 
 

3.2. Message-Centric Communication 
 
The Message-Centric communication pattern focuses 
exclusively in the delivery of reliable messages from writers to 
readers.  
The Message Queuing Telemetry Transport (MQTT) [15] is a 
lightweight message-centric protocol based on the 
publish/subscribe pattern [16]. 
Figure 3 shows the MQTT architecture. In MQTT, there is a 
central broker [17] that supports the communication between 
writers and readers. The message-orientation feature of MQTT 
makes it content agnostic and only focuses on the delivery of 
messages. 
 
MQTT uses TCP for communicating with the message broker. 
Using TCP, in turn, can lead to high communication costs.  
Consequently, a UDP-based MQTT for sensors (MQTT-S) 
[18] was developed. 
In the IoT space, MQTT is the most used protocol (e.g.: 
[19][20]) due to its low overhead, easy implementation, and 
support from all leading vendors. The common design in 
systems that implement MQTT is integrating sensors and 
actuators in constrained nodes and connecting those nodes to 
the central broker [17], e.g.: the AWS IoT platform [21].  
MQTT offers to decouple in time, space, and synchronization.   
 
 

 
Fig. 3. Message Queue Telemetry Transport Protocol (MQTT) 

IBM [17] 
 

3.3. Resource-Centric Communication 
 

The focus of the Resource-Centric communication pattern is 
the resources. 
The Constrained Application Protocol (CoAP) [22] is a 
machine-to-machine (M2M) resource-based protocol whose 
features work very well in constrained networks.  CoAP 
follows the REST architectural design (Figure 4). The method 
definitions in CoAP are like the ones in HTPP: GET, POST, 
PUT, DELETE.  Figure 5 shows an interaction between a client 
and a server using CoAP. The REST pattern of CoAP enforces 
a resource-oriented view on IoT components [23] [24], e.g. 
edge devices.  CoAP uses UDP as the default method for 
transmission of data, but TCP can be employed as well.  The 
CoAP package size varies from the minimum 4 bytes (simple 
GET requests) to a maximum of 1024 bytes. 
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Even though CoAP does not follow the publish/subscribe 
pattern, it emulates a publish/subscribe behavior through the 
observe feature.  Figure 6 shows the interaction between an 
observer and a subject.  The observer registers into a subject 
asking permission to observe a specific resource.  The observer 
will receive the update from the observed resource any time it 
changes. 
Contiki [25] and TinyCoAP [26] are implementation of CoAP 
in the context of IoT. 
Additionally, the use of CoAP provides a unified way to 
abstract and engage IoT components. 
 
 
 

Application

Request/Response

Messages

UDP

C
O
A
P

 
 

Fig. 4. CoAP Abstraction Layer [22] 
 
 
 

 
 

Fig. 5. Example of a CoAP GET acknowledges interaction [22] 
 
 

 

 
 

Fig. 6. Observer design pattern [27] 
 
 

4. Virtualization & IoT 

 
Virtualization in IoT has emerged from the success of common 
management techniques such as Software Defined Networking 
(SDN) [28], [29]. SDN abstracts and decouples the control 
plane (determine destinations of traffic) from data plane 
(forwarding traffic). The characteristics of the IoT space have 
led to the rise of Software-defined IoT (SD-IoT) [30] [31]. SD-
IoT is a type of virtualization that uses abstractions to simplify 
provisioning and customization of the network components.  
Virtualizing components is a typical approach to managing IoT 
networks, e.g.: virtualized sensors  [32] or interface services 
[33].  However, these virtualization techniques use the Cloud 
as the processing unit, which means they are not scalable and 
introduce significant latency and bandwidth consumption. 
Besides, this kind of virtualizations focus on abstracting 
individual components but neither defining an effective 
communication between them nor allowing richer interactions 
over them. 
The development of Fog Computing gives IoT the possibility 
to introduce management techniques closer to the constrained 
environment reducing costs and being location and context 
aware. Implementing configuration management in a Fog 
network instead of the Cloud would represent a more realistic 
scenario to engage the IoT components. Solutions at the edge 
of the IoT network have been proposed to handle the traffic 
and provisioning tasks [34]. 
 
Botta et al. [29] present specific management considerations for 
IoT and Cloud networks: 
 

• While IoT systems interact with real Things to be the 
data providers, Cloud systems interact with 
virtualization of Things to be the service providers. 
 

• While IoT networks focus on a pervasive service 
using constrained devices and limited storage and 
energy, cloud networks focus on a ubiquitous service 
available from everywhere using virtually unlimited 
computational capabilities. 

 

Definition of Virtual Resources 
 
Because a Virtual Resource is a software artifact, there can be 
many definitions of Virtual Resources for different purposes 
and scenarios. This paper uses the definition of Virtual 
Resources proposed by Samaniego [35][36]. For configuration 
management, Virtual Resources are grouped into two levels of 
abstraction. Figure 7 illustrates this virtual architecture: first, 
the Atomic Abstraction Layer (A2L) that faces the IoT 
physical components (sensors, actuators) and manage a one-to-
one configuration relation; second, the View Abstraction Layer 
(VAL) that is built on top of the A2L and handles the 
configuration of complex views that use the data from the A2L 
resulting in a one-to-many relation. Both layers are hosted in a 
Fog network. 
For both layers, Virtual Resources are defined as RESTful 
micro services [36].  These services are programmed using the 
features of Go language [37]: 
 

• routines 
• channels  
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Routines allow to deploy multiple Virtual Resources 
simultaneously (see Figure 8. An Example of Virtual 
Resources programmed in Go language). Channels are the 
communication media among Virtual Resources (see Figure 9. 
An example of a Virtual Resource listening to a channel in Go 
language). 
Virtual Resources in the Atomic and View layers communicate 
via the Constrained Application Protocol (CoAP). Also, both 
layers transmit data in a JSON format (see Figure 10. An 
example of JSON data transmitted by Virtual Resources). 
Figure 11 shows the architecture of the Atomic Layer. The 
Atomic layer is the lowest level of abstraction. Atomic Virtual 
Resources engage IoT components directly. One Atomic 
Virtual Resource corresponds to a one physical IoT 
component, which leads to a one-to-one relation. An Atomic 
Virtual Resource exposes the CoAP method definitions:  GET, 
POST, PUT, DELETE (Figure 12). By doing this, the simple 
CRUD operations can be mapped to the CoAP methods. 
Atomic Virtual Resources can share the current state of the 
physical component they represent, change their configuration, 
interact with other Atomic Virtual Resources, and make the 
physical component stop working. 
 
Figure 13 shows the architecture of the View Abstraction 
Layer. View Virtual Resources have a higher hierarchy. One 
View Virtual Resource can engage one or more Atomic Virtual 
Resources, which leads to a one-to-many relation. 
This work applies the Constrained RESTful Environment 
(CoRE) Link Format to CoAP to manage the two main services 
in the IoT space:  
 

• the discovery of services 
• the retrieving of state 

 
The discovery of services process is exposed in a “/.well-
known/core” interface, which returns a list of all available 

components with their URI’s. The retrieving of state process is 
exposed in a “/state” interface, which returns the value of the 
IoT component by the time it was requested. View Virtual 
Resources expose these two interfaces. 
A View Virtual Resource can engage not only Atomic 
resources but also another View Resources as well, in this case, 
the View becomes a Composite View Virtual Resource with a 
many-to-many relation.  
In the View layer, Virtual Resources are divided into two 
groups, stateless and state-full. Stateless Virtual Resources use 
the CoAP REST pattern to pull the states each time a request is 
received. State-full Virtual Resources use the CoAP observe 
pattern to receive updates of the resources they are observing. 
State-full Virtual Resources use caching techniques to keep the 
state of their linked atomic resources while it is valid. The 
purpose of making View Virtual Resources state-full is to 
reduce the traffic load in the IoT network.    
The View Layer also works as a processing unit in which the 
row data is evaluated and stored.  
 
 
Please see Samaniego M. [9] for additional information about 
the definition and implementation of Virtual Resources. 
 
 
 
By integrating Virtual Resources at different levels of 
abstraction, we can build a structure to facilitate the 
configuration management of the IoT network. Hence, users 
can interact with the virtualization of devices in real time and 
manage a specific virtual configuration without affecting other 
processes. 
 
 

 
 

 

 
 

Fig. 7. Virtual Resource Architecture [9] 
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Fig. 8. Virtual Resources programmed as routines in Go 
language [9] 

 
 

 

 
 

Fig. 9. Function of a Virtual Resource listening to a channel [9] 
 

 
 

 
 

Fig. 10. Example of JSON data transmitted by Virtual 
Resources [9] 

 
 
 

 

IoT	Components
Sensors	&	Actuators	

CoAP	Method	Definitions
GET							POST
PUT							DELETE

Fog	Network

Atomic	Layer	(AL)

Atomic	Virtual	Resource

 
Fig. 11. Atomic Abstraction Layer [9] 

 
 

Fig. 12. Definition of a CoAP method in Go language [9] 
 
 
 

View	Layer	(VAL)

View	Virtual	Resource

Atomic	Virtual	Resource

Fog	Network

CoAP	Interfaces
/.well-known/core
/state

 
Fig. 13. View Abstraction Layer [9] 

 
 

5. Blockchain & IoT 

The conceptualization of Blockchain is attributed to Satoshi 
Nakamoto in 2008 [38]. Blockchain is a distributed ledger that 
stores transactions in the form of connected blocks. A 
blockchain starts with an initial or genesis block (Figure 14). 
Any change in any block is immediately visible to all 
participants. Each subsequent block is related to the previous 
one through a hash value.  
 
 

ID:	0
Block	Hash:	327…77A

Parent	Hash:NIL
Trans.	Hash:	01b…46b
List	of	Transactions:

{}

ID:	1
Block	Hash:	00A…CD2
Parent	Hash:	327	..77A
Trans.	Hash:	333	…	B27
List	of	Transactions:
{T1,T2,T3	…	T159}

ID:	45
Block	Hash:	003…882
Parent	Hash:	0AA	..B67
Trans.	Hash:	AA7	…	27F
List	of	Transactions:
{T92345,T92346,…}

 
 

Fig. 14. Sample Blockchain [36] 
 
 
Blockchain was of public domain when it was initially 
designed to work as the distributed transaction ledger for the 
Bitcoin project [39], but nowadays there are few options to 
install it privatively, e.g.: Multichain [40] or Hyperledger [41].  
Multichain is free to use, but it is not open source; Hyperledger 
is free to use and open source as well.   
Each Blockchain technology uses a different mechanism to 
write only valid transactions, e.g.: Multichain validates 
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transactions using the round-robin method [42], IBM Bluemix 
uses the consensus methods [43]. 
The use of Blockchain has extended to different areas such as 
health [44], government [45], and manufacturing [46].  In the 
IoT space, IBM presented the ADEPT system [47] as part of 
the Bluemix Solution. ADEPT can store the configuration of 
IoT devices and as a mechanism for pushing code onto 
devices. 
Permission based blockchain works based on a set of registered 
users. This blockchain technology has the advantage of 
limiting the participation in the consensus processes as well as 
who can perform transactions. 
 

6. Evaluation 

For testing the definition of Virtual Resources, we deployed 
them in two IoT platforms: Raspberry Pi and Edison Arduino 
board.  
 
For testing the Permission-Based Blockchain protocols as a 
provisioning mechanism, we used IBM Bluemix Blockchain as 
a Service and a Fog Multichain Blockchain cluster. 
 
Overall, some picks have been observed in the experiments. As 
the difference between results is minuscule, those picks are 
attributed to the noise of the network (university wireless 
connection), memory allocation or background processes of 
the device.   
 
 
Please see Samaniego et al. [9][35][36] for more experiments 
and evaluations. 
 

6.1. Evaluation of Virtual Resources 
 

6.1.1. Evaluation of the Performance of Virtual Resources 
 
Experiment 1 
 
This experiment tests the performance of the definition of 
Virtual Resources being accessed by a third party.   
 
Figure 15 illustrates the setup of this experiment. The setup 
includes a Raspberry Pi to deploy a Virtual Resource, a Linux 
machine to run Elasticsearch database, and a Mac computer to 
run the clients.  
 
The Raspberry Pi and the Database are part of a Fog network.   
 
The Raspberry Pi hosts a state-full View Virtual Resource. 
This View goes to the database to read the current state of the 
Atomic Virtual Resources linked to it. The View Virtual 
Resource responses with an Acknowledgment CoAP message 
to all requests. The response includes the state of the resource 
in the payload.  
 
The database server hosts Elasticsearch, which is a RESTful 
search engine for analytics [48]. The “query time” and “index 
time” features of Elasticsearch support the heterogeneity nature 
of the data generated in the IoT Cloud.  
 
The client computer hosts two clients programmed in Go 
language.  The clients send 500 CoAP GET requests each to 
the virtual resource.  The client waits for the Acknowledgment 
of the current request before sending the next one.  

The communication between the client and the Virtual 
Resource is performed via CoAP protocol.  The client, the 
Virtual Resource, and the Database are connected to the 
university Wi-Fi. 
 
 

 
 

Fig. 15. Setup of Experiment 1.  A Fog network formed by an 
Edison Arduino board that connects to an Elasticsearch 

database [9] 
 
 
 
Table 2 shows the specification of the hardware for this 
experiment. 
 

Table 2. Specification of the hardware used in experiment 1 
 

Client 

 
Mac OS X 
2.5 GHz Intel Core i7 
16 GB RAM 
 

Virtual 
Resource 

 
Raspberry Pi Model B 
Raspbian. Linux kernel 3.18 
900 MHz ARM Cortex-A7 
1GB LPDDR2 SDRAM 
 

Database 

 
Linux Ubuntu 
Intel Core i7-6700 CPU @ 3.40GHz 
14 GB RAM 
Elasticsearch DB 
 

 
 
This experiment considers three processes to evaluate the 
Virtual Resource definition:  
 

1. the Core Link Format (RFC6690) discovery of 
services through a /.well-known interface 

2. the retrieving of the current state of the Virtual 
Resource through a /state interface  

3. the communication performance with the database 
 
Figures 16 to 18 show the results of the above-mentioned 
processes. In the figures the x axis represents the requests of 
each client. The first 500 requests belong to Client 1 and the 
other 500 requests belong to Client 2. The y axis represents the 
response time in milliseconds. 
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This experiment introduces delay intervals of 0, 50 and 100 ms 
to test the response time of the Virtual Resource under 
different request loads.  
 
The results were measured from the client side.   
 
Figure 16 shows the results of the first part of Experiment 1. 
The round-trip time of the Discovery-of-Services process 
(/.well-known/core interface) for the 50-Delay series is 
between 0.2 ms and 0.6 ms, for the 50-Delay series the round-
trip time is between 0.4 ms and 1.4 ms, for the 100-Delay 
series the round-trip time is between 0.6 ms and 1.6 ms. 
From these results, we can argue that the delay intervals 
directly affect the performance of the virtual resource. The 
response times are higher as the virtual resource goes to the 
database to get the current state of the Atomic Virtual 
Resources. The higher the interval, the higher the response 
time.  
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Fig. 16. Results of the Virtual Resource performance – 
Discovery-of-Services process (/.well-known/core interface). 
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Fig. 17. Results of the Virtual Resource performance – Current 
State process (/state interface). 

 
 
 
 

Figure 17 presents the results of the second part of Experiment 
1. The round-trip time of the get-current-state process (/state 
interface) for all Delay series is between 5 ms and 9 ms. In this 
case, the Virtual Resource makes the processing locally, thus 
the delay times do not affect its performance. 
 
Figure 18 shows the results of the third part of Experiment 1. 
The communication performance between the View Virtual 
Resource and the database.  The database is Elasticsearch. This 
graph shows that the delay intervals do not affect the response 
times of the database server.  For all three delay intervals, the 
round-trip time result is between 4.8 ms and 7 ms. 
The database is accessed through an HTTP REST API 
programmed in Go language. 
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Fig. 18. Results of the Communication between the Virtual 
Resource and the Database. 

 
 

 
6.1.2. Evaluation of the Communication among Virtual 
Resources 
 
Experiment 2 
 
The following experiment tests the communication 
performance among two Virtual Resources.  
Figure 19 shows the setup of this experiment. The setup 
includes two Edison Arduino boards connected to the 
university Wi-Fi.  The Edison boards is a System on a Chip 
(SoC) with the following characteristics: 500 MHz dual-core, 
dual threaded Intel Atom and a 100 MHz 32-bit Intel Quark 
microcontroller.  
 
The first Edison board hosts an Atomic Virtual Resource that 
responds to all requests with an Acknowledgment CoAP 
message.  The second Edison board hosts 10 Stateless View 
Virtual Resources that send CoAP POST requests to the 
Atomic Virtual Resource.  
 
The payload sizes are 8 bytes and 512 bytes.  All View Virtual 
Resources must wait for the Acknowledgment message before 
sending the next one. 
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Security is mandatory for data transmission in the IoT Cloud.  
Due to the limited resources of the Edison board, the payload 
is encrypted using Advanced Encryption Standard (AES) [49] 
with a key of 16 bytes. Hence the total size of the payload is 
8/512 bytes + 18 bytes of AES encryption. 
 
 

       
 

Fig. 19. Setup for Experiment 2.  Two Edison Arduino boards 
communicating via CoAP protocol [9] 

 
 
 
 

 
 

Fig. 20. Results of the communication between 2 Virtual 
Resources with different payload size. 

 
 
 
 

 
 

Fig. 21. Results of the concurrent communication between 2 
Virtual Resources with a delay time of 300 ms. 

 
 
 
Figure 20 shows the results of the first part of Experiment 2. In 
this part of the experiment, the second Edison Arduino board 
hosts 1 Stateless View Virtual Resource that sends 100 of 
CoAP requests to the Atomic Virtual Resource.  

The graph shows that the payload influences the Atomic 
Virtual Resource behavior. With a payload of 8 bytes + 16 
bytes of AES, the round-trip time is between 4 ms and 12 ms.  
The average round-trip time is 6.45 ms. With a payload of 512 
bytes + 16 bytes of AES, the round-trip time is between 4 ms 
and 14 ms.  The average round-trip time is 7.54 ms. 
There are some picks in the graph that can be attributed to the 
noise of the Wi-Fi network and the background processes of 
the device. 
 
Figure 21 presents the results of the second part of Experiment 
2. In this part of the experiment, the second Edison Arduino 
board hosts 10 Stateless View Virtual Resources that send 100 
of concurrent CoAP requests to the Atomic Virtual Resource.  
In this case, the payload is static, 8 bytes. A delay interval of 
300 ms was introduced. 
 
The graph shows many fluctuations in the round-trip time 
responses.  This is because the Virtual Resource is sending the 
requests asynchronously. From the graph, we can comment 
that all requests were responded. The round-trip time for all 
requests is between 4 ms and 60 ms with picks up to 145 ms. 
 
The concurrency introduced affects the response times of the 
Atomic Virtual Resource. However, the response times are 
acceptable as it is a constrained device the one that is facing 
concurrency. 
 

6.2. Evaluation of Permission-Based Blockchain 
 
6.2.1. Evaluation of a Blockchain as a Service 
 
Experiment 3 
 
This experiment evaluates the communication performance 
between a Virtual Resource and the Blockchain as a Service 
IBM Bluemix [50].  
Figure 22 shows the setup for this experiment. The experiment 
involves a free Bluemix account and an Edison Arduino board 
that communicate via HTTP protocol.   
 
 
 

 
 

Fig. 22. Setup of Experiment 3.  One Edison Arduino board is 
communicating with a free account of IBM Bluemix Blockchain as 

a Service. [9] 
 
 
The API deployed in Bluemix to handle the communication 
with the blockchain cluster is programmed in Go language.  
The Edison board hosts 10 View Virtual Resources that send 
100 HTTP POST requests to the blockchain service 
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asynchronously. Each request is a means to write a block in the 
blockchain. The payload is 712 bytes.   In the payload, it is 
included 256 bytes of encrypted data using AES with a key of 
16 bytes. 
 
Figures 23 and 24 show the results of Experiment 1 with 0 ms 
and 300 ms delay time introduced respectively. Having the 
blockchain as a service in the Cloud means a significant impact 
on the communication performance with the Edison Arduino 
board.   The two graphs show that the variation in the arrival 
rate of the requests does not lead to a better communication 
performance.  The round-trip time for the requests with no 
delay time is between 100 ms and 2200 ms.  The round-trip 
time for the requests with 300 ms delay time is between 100 
ms and 1900 ms. 
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Fig. 23. Results of the communication between a View Virtual 
Resource and IBM Bluemix as a Service. No delay time introduced 

[9]. 
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Fig. 24. Results of the communication between a View Virtual 
Resource and IBM Bluemix as a Service. 300 ms delay time 

introduced [9]. 
 
 
 
 

6.2.2. Evaluation of a Blockchain Cluster hosted in a Fog 
network  
 
Experiment 4 
 
This experiment evaluates the communication performance 
between a Virtual Resource and a Multichain [40] Blockchain 
cluster hosted in a Fog network. 
Figure 25 shows the setup for this experiment. The setup 
includes an Edison Arduino board and a Fog network of 3 
machines running Multichain software.  The characteristics of 
these machines are: 
 

• Operating System: Linux Debian 8.5 (Jessie)  
• CPU: Intel Core i7-6700 CPU @ 3.40GHz 
• RAM: 14 GB 

 
One of the Multichain nodes includes a python API that 
handles the communication with the cluster. The Edison board 
hosts 10 View Virtual Resources that send 100 HTTP POST 
requests each to the Multichain cluster asynchronously. The 
payload is 712 bytes.  The POST requests ask permission to 
write in the blockchain. 
 
 

 
 

Fig. 25. Setup of Experiment 4. One Edison Arduino board is 
connected to a Multichain Blockchain cluster in a Fog network [9] 
 
 
 

 
 

Fig. 26. Results of the communication between a View Virtual 
Resource and a Multichain Blockchain cluster in the Fog. No delay 

time introduced [9]. 
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Figures 26 and 27 show the results of Experiment 4 with 0 ms 
and 300 ms delay intervals respectively.  The graphs show that 
hosting the blockchain closer to the IoT cloud network means 
better response times. However, with a delay interval of 300 
ms, the Fog Multichain blockchain performs better. The round-
trip time for the requests with no delay is between 20 ms and 
80 ms. Some picks are observed in the graph, but we can 
attribute them to the fact of sending the requests concurrently 
and asynchronously. The round-trip time for the requests with 
300 ms delay is between 20 ms and 60 ms. From the graph, we 
can comment that intervals introduced, affect the performance 
of the Multichain cluster. The scenario with 300 ms delay 
interval demonstrated a better performance. 
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Fig. 27. Results of the communication between a View Virtual 
Resource and a Multichain Blockchain cluster in the Fog. 300 ms 

delay time introduced [9]. 
 

7. Conclusions and Future Work  

This work discussed the use of Virtual Resources and 
permission-based Blockchain to build an architecture to handle 
the configuration management in IoT networks.  
 
The proposed architecture encapsulates the complexity of the 
configuration of IoT components into a Fog layer, which is 
accessed via Constrained Application Protocol (CoAP). The 
CoAP-based interfaces fulfill the performance requirements 
and reduce the complexity of configurations mapping CoAP 
requests to CRUD operations.   
 
Hosting Virtual Resources in a Fog layer results in an 
economic solution regarding latency and bandwidth 
consumption because only meaningful information is 
transferred to the Cloud. Additionally, the evaluation of the 
data is done at the edge of the IoT network, which makes the 
decision-making process time-effective.  
 
Overall, the virtualization of components performes in an 
expected manner, responding to all requests no matter the 
concurrency level it faced. 
 
Permission-Based Blockchain adds security to the 
configuration management of the IoT network as only 
registered users can access to the blocks in the chain to write 
and read configurations. Storing these configurations in the 

form of blocks makes the access to IoT components dynamic 
and concurrent [51] as each user uses their own configurations 
to access to a specific physical device.   Additionally, as the 
blocks in the chain are encrypted, only the user with the correct 
key can read the blocks and store new ones. Multichain cluster 
obviously performed better than the IBM Bluemix service in 
the Cloud due to the location in a Fog network, closer to the 
IoT network. However, Bluemix as a Service can be used to 
store Virtual Resources of higher hierarchy that are accessed 
by third parties in the Cloud.  
 
The architecture composed by Virtual Resources and 
permission-based Blockchain fulfills the two challenges stated 
by this work, managing the configuration of IoT components 
and provisioning those configurations in the IoT network. 
 
The experiments presented in this work consider a small 
number of devices. Future work will consider testing the 
definition of Virtual Resources in a larger scenario integrating 
other constrained devices.  Additionally, other Blockchain 
protocols will be evaluated, such as Hyperledger and 
Ethereum.   
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