
 Journal of Ubiquitous Systems & Pervasive Networks
Volume 8, No. 1 (2017) pp. 07-13

* Olga Ormandjieva. Tel.: +1-514-848-2424 (ext.7810)
Fax: +1-514-848-2830; E-mail: ormandj@cse.concordia.ca
© 2017 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.08.02.002

7

A Categorical Approach to Verifying Concurrency between Design and
Implementation

Ming Zhua, Peter Grogono b, Olga Ormandjieva b, Heng Kuang c

aCollege of Computer Science and Technology, Shandong University of Technology, Zibo, China, 255049

bDepartment of Computer Science and Software Engineering, Concordia University, Montreal, Canada, H3G 1M8
cHuawei Canada, Markham, Canada, L3R 5B4

Abstract
The process-oriented design and implementation of concurrent systems have important advantages. However, it is
challenging to verify the consistency of process communications between the design and the implementation. To deal
with such a challenge, we construct a formal framework for designing, implementing and verifying the consistency of
process communications. In this framework, we use Failures in Communicating Sequential Processes (CSP), Erasmus
and Category Theory as the foundation. The framework is illustrated by using a running example. Several algorithms are
designed for constructing categorical structures in the framework.

Keywords: Concurrent System, Verification, Category Theory, Failures, CSP, Process-Oriented Programming.

1. Introduction

Process-oriented approach is a necessary concept for designing
and implementing concurrent systems [1]. However, design
and implementation are usually at different levels of
abstraction in software development process. It is challenging
to incorporate knowledge and experience to control the
consistency between those phases [2]. To deal with this,
verification plays a critical role in checking the consistency
between design and implementation of a concurrent system [3].
Research [4] and [5] used category theory, dataflow and traces
of processes to explore approaches that may address that
challenge. According to research [1], traces can be used to
analyze safety of process, while failures can be used to analyze
both safety and liveness of process. As a continuation of [4]
and [5], this paper uses failures to verify the consistency of
process communications between design and implementation
of concurrent systems.

The rest of this paper is organized as follows: Section 2
provides background knowledge and related work on the
Communicating Sequential Processes (CSP), the process-
oriented programming language Erasmus, and category theory.
In Section 3, the categorical framework is introduced for
formally designing, implementing, and verifying concurrent
systems. In section 4, each step in that framework is applied to
a running example. Section 5 provides algorithms for

constructing categories and functors for verification. Section 6
concludes our paper and suggests directions for future research.

2. Background and Related Work

In this section, the background and related work on our
research are introduced.

2.1. Communicating Sequential Processes

Process algebra has been developed to model concurrent
systems by describing algebras of communicating processes.
CSP is a process algebra that formally models concurrent
systems by events [6], [7]. It has been widely used to specify,
design and implement concurrent systems. In CSP, a process is
defined as (alphabet, failures, divergences) [6], [7]. If a process
is assumed not to become divergences, (alphabet, failures) and
(alphabet, failures, divergences) are the same [1]. In this
research, (alphabet, failures) is used to describe a process,
which is enough to describe safety and liveness of the process
[1]. Failures of a process is defined as a set of pairs:
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃 = {(𝑠,𝑋)|𝑠 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ∧ 𝑋 ∈ 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/s)} .
In each pair, (𝑠,𝑋), of failures, 𝑠 is a trace of 𝑃, which is a
finite sequence of symbols recording the events in which the
process has engaged [6]; 𝑋 is a refusal of 𝑃, which is a set of
events offered by the environment, and it is possible for 𝑃 to
deadlock when placed in this environment [6]. Several
operators are defined to describe the relationships between
processes. Given two processes P and Q, CSP can calculate

Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 07-13

 8

sequence P;Q, deterministic choice P □ Q, non-deterministic
choice P ⊓ Q, parallel execution P || Q, and iteration, using the
recursion operator µP : A · F(P). Detailed definitions of
process, and operations on process can refer to research [6] and
[7].

2.2. Erasmus

Process-oriented programming is predicted to be the next
programming paradigm [1], [8]. It is considered that process-
oriented programming languages satisfy several requirements,
such as safe concurrency, scalability, evolvability, and weak
coupling between components [8]. The foundation of process-
oriented programming is process algebra that is used to build
software systems by composing concurrent processes [9].
Erasmus is a process-oriented programming language based on
CSP but with more features [8]. An Erasmus program consists
of cells, processes, ports, protocols and channels. A cell,
containing a collection of one or more processes or cells,
provides the structuring mechanism for an Erasmus program. A
process is a self-contained entity which performs computations,
and communicates with other processes through its ports. A
port, which is of a type of protocol, serves as an interface of a
process for sending and receiving messages. A protocol
specifies the type and the orderings of messages that can be
sent and received by the ports of the type of this protocol. A
channel, which is of a type of protocol, links two ports and so
enables two processes to communicate. Detailed syntax and
semantics of Erasmus can refer to research [10]. In Erasmus,
communication is as important as method invocation in object-
oriented languages. Besides, communications based on
messages are well-suited for in Wireless Sensor/Actuator
Networks and Internet of Things [11], [12]. These inspire our
research on analyzing and verifying consistency of
communications. Some research is proposed to study the
communications, which includes constructing a fair protocol
that allows arbitrary, nondeterministic communication between
processes [13], and building a static analyzer to detect
communication [14]. As Erasmus is still in working progress,
and it provides a possibility to adapting the results of the
research, we choose Erasmus as the programming language to
implement concurrent systems in this research.

2.3. Category Theory

Due to its abstractness and generality, category theory has led
to its use as a conceptual framework in many areas of computer
science [15] and software engineering [16]. It is suggested that
category theory is helpful towards discovering and verifying
connections in different areas, while preserving structures in
those areas [17]. In software engineering, category theory is
proposed as an approach to formalizing refinement from design
to implementation [18]. Specifically, for modeling
concurrency, category theory is used to model, analyze, and
compare Transition Systems, Trace Languages, Event

Structures, Petri nets, and other classical models of
concurrency [19]. However, to the best of our knowledge, there
is no approach for verifying the consistency between process-
oriented design and implementation. The aim of this paper is to
work on the categorical framework based on research [4], [5].
In this paper, we use the constructs category and functor from
category theory for the verification.

3. The Categorical Framework

For concurrent systems developed by process-oriented
programming languages, this research focuses on verifying
consistency between design and implementation. We propose a
category theory approach to model concurrent systems with the
purpose of exploring answers for the following research
questions:
RQ 1) How do we model communications between

processes in design of concurrent systems with category
theory?

RQ 2) How do we model communications between
processes in implementation of concurrent systems with
category theory?

RQ 3) How can category theory be used to determine
whether or not the implementation is consistent with the
designed communications of concurrent processes?

To solve the research problems, our goal is to build the
categorical framework for concurrent systems (see Fig. 1). This
framework can be used to verify the consistency of process
communications between design and implementation. It
consists of the following steps
Step 1 Designing: design concurrent systems in CSP, and

analyze failures of processes together with
communications.

Step 2 Implementing: implement concurrent systems in
Erasmus with the design refinement.

Step 3 Analyzing Abstraction: abstract processes and
communications out of the implementation, and analyze
failures of abstracted processes as well as
communications.

Step 4 Categorizing Design: construct categorical models
for the design with preserving structures of
communications.

Step 5 Categorizing Abstraction of Implementation:
construct categorical models for the abstraction of
implementation with preserving structures of
communications.

Step 6 Verifying: construct functors to verify the categorical
models of the design and the abstraction.

Specifically, step 1 and step 4 aim to answer research question
RQ1, step2, step3 and step5 aim to answer research question
RQ2, and step 6 aim to answer research question RQ3. Each of
these steps is discussed in the following sections.

Fig. 1 The categorical framework

Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 07-13

 9

4. Illustrating the Framework by a Running Example

A vending machine example is given to illustrate the
framework. In the example, a customer orders a drink from a
vending machine. The vending machine offers tea as well as
coffee, and it operates according to the following process: 1) it
accepts a coin from the customer, and 2) it accepts a choice of
drink from the customer before dispensing the drink. The
vending machine can repeat this process indefinitely. The
customer can use the vending machine only once to order tea
or coffee.
In the design stage, a simple version of the vending machine is
created by using CSP. In the implementation stage, an
enhanced vending machine from the design is implemented in
Erasmus. Category theory is used to verify the consistency of
process communications between the design and the
implementation.

4.1. Designing the Example

In the design stage, the vending machine and the customer are
modeled as processes VendingMachine and Customer
respectively. Both processes communicate two messages: one
is coin, and the other is tea or coffee. A drink is randomly
chosen by Customer. The drink offered by VendingMachine is
based on the choice of Customer. According to the failures in
CSP, communications between Customer and VendingMachine
are modeled and analyzed as follows:

𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟||𝑉𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒)

= {𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒}

𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟| 𝑉𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒
= { ,𝑋 𝑋 ⊆ 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 , 𝑐𝑜𝑖𝑛 ,𝑋 𝑋 ⊆ 𝑐𝑜𝑖𝑛 ,
 (𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 ,
 (𝑐𝑜𝑖𝑛, 𝑐𝑜𝑓𝑓𝑒𝑒 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 }

4.2. Implementing the Example

The implemented vending machine and customer can do more
than the design requires: the customer can ask the vending
machine to refund the coin instead of ordering a drink. The
Erasmus code for the implementation is as follows:
Drinks = protocol {coin;
refund|coffee|tea; stop}

VendingMachine = process order: +Drinks{
 loop{
 order.coin;
 select{
 ||order.refund
 ||order.tea
 ||order.coffee
 }
 }
}

Customer = process get: -Drinks{
 get.coin;
 case{
 ||get.refund
 ||get.tea
 ||get.coffee
 }
}

Main = cell{chnl: Channel Drinks;
VendingMachine(chnl); Customer(chnl)}

4.3. Analyzing Abstraction of the Example

According to our former research [5], the implementation of
the vending machine example is abstracted as follows:
person = coin; case{ refund| tea| coffee }

vendingMachine = loop{ coin; select{
refund| tea| coffee }}

According to the failures in CSP and our former research [5],
communications between Customer and VendingMachine in
the implementation are modeled and analyzed as follows:

𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟||𝑉𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒)

= {𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎, 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑐𝑜𝑓𝑓𝑒𝑒}

𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟| 𝑉𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒
= { ,𝑋 𝑋 ⊆ 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 ,
 (𝑐𝑜𝑖𝑛 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛 ,
 (𝑐𝑜𝑖𝑛, 𝑟𝑒𝑓𝑢𝑛𝑑 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 ,
 (𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 ,
 (𝑐𝑜𝑖𝑛, 𝑐𝑜𝑓𝑓𝑒𝑒 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 }

4.4. Categorizing Failures of Communications in the Design
and the Abstraction of Implementation

In this research, we focus on the consistency of process
communications between design and implementation, which is
defined as follows:

Definition 1. Consistency of Process Communications: Given
a sequence of communications with failures in the design to
represent the progress of communications, 𝐷𝐹: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 →
 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!) → ⋯ → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) , and a
sequence of communications with failures in the
implementation to represent the progress of communications,
𝐼𝐹: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!) → ⋯ →
 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) . 𝑑𝑒𝑣𝑡(𝑖) represents the ith event in
the designed communications. 𝑖𝑒𝑣𝑡(𝑖) represents the ith event
in the implemented communications. 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!)
represents all the failures of the designed communications from
the trace to the trace 𝑑𝑒𝑣𝑡(1),… ,𝑑𝑒𝑣𝑡(𝑖) .
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) represents all the failures of the
implemented communications from the trace to the trace
𝑖𝑒𝑣𝑡(1),… , 𝑖𝑒𝑣𝑡(𝑖) . If there exists a mapping from DF to IF

with structure preserved between failures, which can map each
trace of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) to the same trace of
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) with the refusals of the trace of
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) being a subset of the refusals of the
corresponding trace of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) , and can map
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!!!) to
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!!!) , then
IF is consistent with DF. If all sequences in the design have
corresponding mapping sequences in the implementation, the
communications in the implementation are consistent with the
communications in the design.

As functor can be used to check structure reserving between
two categories, in this research, functors are used to verify
consistency of communications between design and

Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 07-13

 10

implementation [4] and [5]. Successful construction of such
functor means the process communications in the
implementation is consistent with the process communications
in the design. Failing to construct such functor could indicate
an inconsistency between the design and the implementation.

In this research, categories for communications in the design
and the implementation are constructed based on proposition 1
(See Fig. 2).

Proposition 1. Category of Failures: Each object indicates a

process represented by failures. A Morphism 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! means the process with the failures from trace
to the trace a evolves to the process with the failures from trace

 to the trace b, where 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!.

Proof.
Objects: Each object is a process represented by failures.
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#(!),…,!"#(!) represents all the failures from the trace

 to the trace 𝑒𝑣𝑡(1),… , 𝑒𝑣𝑡(𝑖) . For example, given a
process P with the traces 𝑎𝑛𝑑 𝑒𝑣𝑡(1) , there are two
objects 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = ,𝑋 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ∧ 𝑋 ∈
𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/)} and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#(!) = { ,𝑋 ∈
𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ∧ 𝑋 ∈ 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/)}, 𝑒𝑣𝑡 1 ,𝑋 𝑒𝑣𝑡 1
∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ∧ 𝑋 ∈ 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/ 𝑒𝑣𝑡 1)}.

Morphisms: Let 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! be objects. If
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , there is a morphism 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!. It means the process of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! evolves to the
process of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! . For example, a morphism
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#(!) indicates the process with
empty trace evolves to the process with trace 𝑒𝑣𝑡(1) .

Identities: For each object, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , there is an identity
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , which indicates 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆
 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!. For example, there is a morphism 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 .

Composition: Given any morphisms 𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! and 𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , with
codomain of 𝑚𝑜𝑝ℎ!,! = domain of 𝑚𝑜𝑝ℎ!,! , there is
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! . Thus, there is a
composition morphism: 𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!.

Associativity: For all morphisms 𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , 𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! and
𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!, with codomain of 𝑚𝑜𝑝ℎ!,!
= domain of 𝑚𝑜𝑝ℎ!,! and codomain 𝑚𝑜𝑝ℎ!,! = domain of
𝑚𝑜𝑝ℎ!,! , there is 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! to represent the subset relationships between
failures. Thus, there are 𝑚𝑜𝑝ℎ!,! ∘ (𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!) =
𝑚𝑜𝑝ℎ!,! ∘ (𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!) = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , and
(𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!) ∘𝑚𝑜𝑝ℎ!,! = (𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!)

 ∘𝑚𝑜𝑝ℎ!,! = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! So, 𝑚𝑜𝑝ℎ!,! ∘
(𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!) = (𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!) ∘𝑚𝑜𝑝ℎ!,!.

4.5. Verifying the Design against the Implementation

In the implementation, not only can the custom order tea or
coffee, but the vending machine can refund the coin.
According to research [5], the construction of a functor in
proposition 2 can be used to check whether the approach of
ordering tea or coffee in Implementation conforms to the
approach of ordering tea or coffee in design (See Fig. 2).

Proposition 2. design → implementation is a functor. This
functor maps objects and morphisms in design to the
corresponding objects and morphisms in implementation
respectively as follows:
1) For each object, 𝑜𝑐𝑑 , in design, there must be a

corresponding object, 𝑜𝑐𝑖, in implementation, such that
𝑜𝑐𝑑 can be mapped to 𝑜𝑐𝑖 when each trace in 𝑜𝑐𝑑 have
the same trace in 𝑜𝑐𝑖, and the corresponding refusal in
𝑜𝑐𝑑 is a subset of the corresponding refusal in 𝑜𝑐𝑖.

2) For each morphism 𝑚𝑑: 𝑜𝑐𝑑! → 𝑜𝑐𝑑! in design, there
must be a corresponding morphism 𝑚𝑖: 𝑜𝑐𝑖! → 𝑜𝑐𝑖! in
implementation, such that md can be mapped to mi when
𝑜𝑐𝑑! and 𝑜𝑐𝑑! can be mapped to 𝑜𝑐𝑖! and 𝑜𝑐𝑖!
respectively.

Proof.
Objects Mapping: let 𝑜𝑐𝑑 be an object in design, and let 𝑜𝑐𝑖 be
an object in implementation. As 𝑜𝑐𝑑 and 𝑜𝑐𝑖 represent
communications with failures, each element in ocd or oci is a
failure with the form 𝑡𝑟𝑎𝑐𝑒𝑠, 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠 . When each element
𝑡𝑟𝑎𝑐𝑒! , 𝑋! 𝑡𝑟𝑎𝑐𝑒! ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑑𝑒𝑠𝑖𝑔𝑛 ∧ 𝑋! ∈ 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠

(𝑑𝑒𝑠𝑖𝑔𝑛/𝑡𝑟𝑎𝑐𝑒!)} in 𝑜𝑐𝑑 has a corresponding element
𝑡𝑟𝑎𝑐𝑒! , 𝑋! 𝑡𝑟𝑎𝑐𝑒! ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ∧ 𝑋! ∈

(𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛/𝑡𝑟𝑎𝑐𝑒!)} in 𝑜𝑐𝑖 with 𝑡𝑟𝑎𝑐𝑒! = 𝑡𝑟𝑎𝑐𝑒! and

Fig. 2 The functor and categories

Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 07-13

 11

𝑋! ⊆ 𝑋! , there exists a mapping from 𝑜𝑐𝑑 to 𝑜𝑐𝑖 . This
indicates that all the communications in design are captured in
implementation. For example, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$,!"# in the
category of design can be mapped to 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$,!"# in the
category of implementation.

Morphisms Mapping: For every morphism 𝑚𝑐𝑑: 𝑜𝑐𝑑! → 𝑜𝑐𝑑!
in the category of design, there must exist one corresponding
morphism 𝑚𝑐𝑎: 𝑜𝑐𝑖! → 𝑜𝑐𝑖!, such that there exists a mapping
from 𝑚𝑐𝑑 to 𝑚𝑐𝑎 when 𝑜𝑐𝑑! and 𝑜𝑐𝑑! can be mapped to 𝑜𝑐𝑖!
and 𝑜𝑐𝑖! respectively. These mappings indicate that all the
progresses of communications in design are captured in
implementation. For example, there exist a mapping from
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$ → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$,!"# in the category of design
to 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$ → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$,!"# in the category of
implementation.

Identities Mapping: By following the objects mapping and
morphisms mapping, identities mapping are preserved from the
category of design to the category of implementation.

Composition Morphisms Mapping: By following the objects
mapping and morphisms mapping, compositions of morphisms
mapping are preserved from the category of design to the
category of implementation.

5. Algorithms for Constructing Categories and

Functors

To automate the verification of communications, data
structures and algorithms are developed for constructing
categories and functors.

5.1. Data Structures

As we analyze failures and categories, several notions related
to failures and categories are defined with the following data
structures:
1) An Alphabet is a set of all events of a process. It is

represented by a Set of String.
2) A Trace is a sequence of events. It is represented by a

List of String.
3) A Refusal of a trace is a set that contains sets of events. It

is represented by a Set that contains Sets of String.
4) A Failure is a pair (Trace, Refusal) that contains a trace

and a refusal of the trace. It is represented by the data
structure of Trace and the data structure of Refusal.

5) A Failures is a set, and each element of the set is a
failure. It is represented by a Set of Failure.

6) A Process is a pair (Alphabet, Failures) that contains an
Alphabet and Failures to represent a process. It is
represented by the data structure of Alphabet and the data
structure of Failures.

7) An Object is a pair (Data, EvolvingObjects) to represent
a process. It consists of two parts: 1) Data contains the
information of a process. It is represented by failures of
the process, 2) EvolvingObjects consists of a list of
Objects to which this Object evolves.

8) A Category is a category of failures. Each Object in the
Category describes failures of a process. Each morphism
between Objects indicates an evolution from one process
to another. The Object may have Objects as its
EvolvingObjects. Always, there is a Root Object to
describe failures of the process with the empty trace.

5.2. Algorithms for Building Categories

Based on proposition 1, we propose algorithm 1 and algorithm
2 to construct categories as follows. In algorithm 1, a category
can be built for a process to represent its evolution progress.
The category is a tree-like structure with root to represent the
process with the empty trace. Each morphism between objects
indicates an evolution from one process to another. Algorithm
1 first builds the root, and then uses algorithm 2 to build
evolving objects evolved from the root.

Algorithm 1: buildCategoryFromProcess
Input: process p
Output: category c
1: create an empty category c
2: for each failure f in failures of p do
3: if trace of f = empty trace then
4: data of root of R ← (data of root of c) + f
5: end if
6: end for
7: evolving objects of root of c ←buildEvolvingObjects
(root of c, p)
8: return c

Fig. 3 Build category from process

Algorithm 2: buildEvolvingObjects
Input: object obj, process p
Output: list of objects chs
1: create an empty list of object chs
2: create a trace tr ← the longest trace in data of obj
3: for each failure f in failures of p do
4: if tr is the subtrace of the trace t of f and size of tr + 1
= size of t then
5: create an empty object next
6: data of next← data of obj + f
7: evolving objects of next←buildEvolvingObjects
(next , p)
8: chs ← chs + next
9: end if
10: end for
11: return chs

Fig. 4 Build evolving objects

In line 2 of algorithm 1, there is a for loop to build the root
object for the process with empty trace. In lines 3 and 7 of
algorithm 2, there are a for loop and a recursive call to
calculate the evolving objects that are connected by
morphisms. The complexity of algorithm 2 is O(n2). As
algorithm 1 uses algorithm 2, the complexity of algorithm 1 is
O(n2).

5.3. Algorithms for Building Functors

Based on proposition 2, we propose algorithms for constructing
functors as follows. In algorithm 3, it uses algorithm 4 and
algorithm 5 to compare root objects and evolving objects in
two categories. In algorithm 4, we can compare traces and
refusals of the object in the category of design to traces and
refusals of the object in the category of implementation by
following proposition 2. In algorithm 5, each evolving object in

Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 07-13

 12

the category of design is compared with corresponding object
in the category of implementation.

Algorithm 3: buildFunctor
Input: category ds, category im
Output: boolean
1: if compareTwoObjects(root of ds, root of im) then
2: if compareEvolvingObjects(root of ds, root of im)
then
3: return true
4: end if
5: end if
6: return false

Fig. 5 Build functor

Algorithm 4: compareTwoObjects
Input: object dso , object imo
Output: boolean
1: create failures dsp ← data of dso
2: create failures imp ← data of imo
3: create boolean flag
4: for each failure dsf in dsp do
5: flag ← false
6: for each failure imf in imp do
7: if trace of dsf = trace of imf and refusal of dsf ⊆
refusal of imf then
8: flag ← true
9: break
10: end if
11: end for
12: if flag = false then
13: return false
14: end if
15: end for
16: return true

Fig. 6 Compare two objects

Algorithm 5: compareEvolvingObjects
Input: object dso , object imo
Output: boolean
1: create a list of objects dscs ← evolving objects of dso
2: create a list of objects imcs ← evolving objects of imo
3: create boolean flag
4: for each object dsc in dscs do
5: flag ← false
6: for each object imc in imcs do
7: if compareTwoObjects(dsc,imc) then
8: flag ← true
9: if size of evolving of dsc > 0 then
10: flag ← compareEvolvingObjects(dsc,
imc)
11: break
12: end if
13: end if
14: end for
15: if flag = false then
16: return false
17: end if
18: end for
19: return true

Fig. 7 Compare evolving objects

In lines 4 and 6 of algorithm 4, for loops are used to compare
two objects. The complexity of algorithm 4 is O(n2). To
compare evolving objects in two categories, algorithm 5 uses
for loops in lines 4 and 6, calls algorithm 4 in line 7, and
recursively calls itself in line 10. The complexity of algorithm
5 is O(n4). As algorithm 3 uses algorithm 4 and algorithm 5,
the complexity of algorithm 3 is O(n4).

6. Conclusion and Future Work

As the continuation of our former research [4] and [5], this
paper proposes an innovative categorical framework using
failures to formally verify consistency of process
communications between design and implementation of
concurrent systems.
In this framework, Communicating Sequential Processes (CSP)
and Erasmus are used for design and implementation. In
addition, abstract interpretation is employed to extract process
communications from implementation. Furthermore, failures of
process communications in design and in abstraction of
implementation are modeled and analyzed. Finally, categories
and functors are utilized as a novel means to model and verify
consistency of process communications with failures.
The framework is illustrated by using a vending machine
example. According to results of analyzing the example, the
framework is able to be used to verify consistency of process
communications between design and implementation of
concurrent systems. Moreover, with the algorithms designed in
the research, verification progress, such as constructing
categories and functors, can be performed automatically.
However, research on verifying consistency of
communications design and implementation with category
theory is still in development. The work presented in this paper
is preliminary and has some limitations. For instance, the
vending machine example studied in this paper is not a scaling-
up concurrent system in the reality. Only functors and
categories are used for verification, while other categorical
structures are not explored.
In future, more running examples with categorical structures,
such as monoidal category, will be studied and analyzed based
on our categorical framework. Also, the implementation of the
algorithms for in this paper and comparison with other
algorithms will be introduced. Moreover, performance of the
framework with applying to concurrent systems in reality will
be examined.

References

[1] P. Welch. Life of occam-pi. Proceedings of
Communicating Process Architectures 2013. Edinburgh,
United Kingdom, 2013.

[2] J. R. Kiniry and F. Fairmichael. Ensuring consistency
between designs, documentation, formal specifications,
and implementations. Proceedings of 12th International
Symposium on Component-Based Software Engineering.
East Stroudsburg, United States, 2009.

https://doi.org/10.1007/978-3-642-02414-6_15

[3] P. Godefroid. Partial-order methods for the verification of
concurrent systems: an approach to the state-explosion
problem. Springer, 1996.

https://doi.org/10.1007/3-540-60761-7

Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 07-13

 13

[4] M. Zhu, P. Grogono, O. Ormandjieva, and P. Kamthan.
Using category theory and data flow analysis for
modeling and verifying properties of communications in
the process-oriented language erasmus. Proceedings of
the Seventh C* Conference on Computer Science and
Software Engineering. Montreal, Canada, 2014.

[5] M. Zhu, P. Grogono, and O. Ormandjieva. Using category
theory to verify implementation against design in
concurrent systems. Proceedings of the 6th International
Conference on Ambient Systems, Networks and
Technologies. London, United Kingdom, 2015.

https://doi.org/10.1016/j.procs.2015.05.030

[6] C. A. R. Hoare. Communicating sequential processes.
Prentice-Hall, Englewood Cliffs, United States, 1985.

[7] A. W. Roscoe. Understanding concurrent systems.
Springer, London, United Kingdom, 2010.

https://doi.org/10.1007/978-1-84882-258-0

[8] P. Grogono and B. Shearing. Concurrent software
engineering: Preparing for paradigm shift. Proceedings of
the First C* Conference on Computer Science and
Software Engineering. Montreal, Canada, 2008.

[9] A. T. Sampson. Process-oriented patterns for concurrent
software engineering. PhD thesis, University of Kent,
2008.

[10] P. Grogono. The erasmus project: Process oriented
programming [online]. Available from:
http://users.encs.concordia.ca/˜grogono/Erasmus/erasmus.
html [cited 10/11/16].

[11] M. Mahyoub, A. Al-Roubaiey, and G. Ahmed. Content-
based Filter Publish Subscribe Model for Real-time WSN
Applications. Journal of Ubiquitous Systems & Pervasive
Networks, Vol.3, No.1,pp. 19-27, 2016.

[12] A. Samani, H. H.Ghenniwa, and A. Wahaishi. Privacy
Aware Smart Objects in Internet of Things. Journal of
Ubiquitous Systems & Pervasive Networks, Vol. 6, No.2,
pp. 01-10, 2015.

[13] P. Grogono and N. Jafroodi. A fair protocol for non-
deterministic message passing. Proceedings of the Third
C* Conference on Computer Science and Software
Engineering. Montreal, Canada, 2010.

https://doi.org/10.1145/1822327.1822334

[14] M. Zakeryfar and P. Grogono. Static analysis of
concurrent programs by adapted vector clock.
Proceedings of the Sixth International C* Conference on
Computer Science and Software Engineering. Porto,
Portugal, 2013.

https://doi.org/10.1145/2494444.2494476

[15] M. Barr and C. Wells. Category theory for computing
science. Prentice-Hall, 2012.

[16] J. L. Fiadeiro. Categories for software engineering.
Springer Berlin Heidelberg, 2005.

[17] S. Awodey. Category theory. The Clarendon Press
Oxford University Press, 2006.

https://doi.org/10.1093/acprof:oso/9780198568612.001.0
001

[18] C. A. R. Hoare. Notes on an approach to category theory
for computer scientists. In: Constructive Methods in
Computing Science, 1989, pp. 245–305.

https://doi.org/10.1007/978-3-642-74884-4_9

[19] G. Winskel and M. Nielsen. Models for concurrency. In:
Handbook of Logic in Computer Science, 1995, pp. 1–
148.

Glossary of Symbols

Notation Meaning

 𝑃 ∧ 𝑄 𝑃 and 𝑄

 𝑃 ∨ 𝑄 𝑃 or 𝑄

 𝑎 ∈ 𝑆 𝑎 is a member of 𝑆

𝐴 ⊆ 𝐵 𝐴 is contained in 𝐵

{ } the empty set

{𝑎} the singleton set of 𝑎

𝑥 𝑃(𝑥)} the set of all 𝑥 such that 𝑃(𝑥)

𝑓 ∘ 𝑔 𝑓 composed with 𝑔

 the empty trace

𝑎 the trace containing only 𝑎

𝑠; 𝑡 𝑠 successfully followed by 𝑡

µ𝑃 : A · F(𝑃) the process P with alphabet A such
that P = F(P)

𝑃 □ 𝑄 𝑃 choice 𝑄

𝑃 ⊓ 𝑄 𝑃 or 𝑄 (non-deterministic)

𝑃 / 𝑠 𝑃 after (events of trace) 𝑠

𝑃 || 𝑄 𝑃 in parallel with 𝑄

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) all failures from the trace to
the trace 𝑒𝑣𝑡(1),… , 𝑒𝑣𝑡(𝑖)

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! the process of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! evolves
to the process of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!

𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 a set of traces of process 𝑃

𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃) a set of refusal of process 𝑃

