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Abstract 
The process-oriented design and implementation of concurrent systems have important advantages. However, it is 
challenging to verify the consistency of process communications between the design and the implementation. To deal 
with such a challenge, we construct a formal framework for designing, implementing and verifying the consistency of 
process communications. In this framework, we use Failures in Communicating Sequential Processes (CSP), Erasmus 
and Category Theory as the foundation. The framework is illustrated by using a running example. Several algorithms are 
designed for constructing categorical structures in the framework. 
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1. Introduction 

Process-oriented approach is a necessary concept for designing 
and implementing concurrent systems [1]. However, design 
and implementation are usually at different levels of 
abstraction in software development process. It is challenging 
to incorporate knowledge and experience to control the 
consistency between those phases [2]. To deal with this, 
verification plays a critical role in checking the consistency 
between design and implementation of a concurrent system [3]. 
Research [4] and [5] used category theory, dataflow and traces 
of processes to explore approaches that may address that 
challenge. According to research [1], traces can be used to 
analyze safety of process, while failures can be used to analyze 
both safety and liveness of process. As a continuation of [4] 
and [5], this paper uses failures to verify the consistency of 
process communications between design and implementation 
of concurrent systems.  
 
The rest of this paper is organized as follows: Section 2 
provides background knowledge and related work on the 
Communicating Sequential Processes (CSP), the process-
oriented programming language Erasmus, and category theory. 
In Section 3, the categorical framework is introduced for 
formally designing, implementing, and verifying concurrent 
systems. In section 4, each step in that framework is applied to 
a running example. Section 5 provides algorithms for 

constructing categories and functors for verification. Section 6 
concludes our paper and suggests directions for future research. 

2. Background and Related Work 

In this section, the background and related work on our 
research are introduced. 

2.1. Communicating Sequential Processes 
 

Process algebra has been developed to model concurrent 
systems by describing algebras of communicating processes. 
CSP is a process algebra that formally models concurrent 
systems by events [6], [7]. It has been widely used to specify, 
design and implement concurrent systems. In CSP, a process is 
defined as (alphabet, failures, divergences) [6], [7]. If a process 
is assumed not to become divergences, (alphabet, failures) and 
(alphabet, failures, divergences) are the same [1]. In this 
research, (alphabet, failures) is used to describe a process, 
which is enough to describe safety and liveness of the process 
[1]. Failures of a process is defined as a set of pairs: 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃 = {(𝑠,𝑋)|𝑠 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ∧ 𝑋 ∈ 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/s)} . 
In each pair, (𝑠,𝑋), of failures,  𝑠 is a trace of 𝑃, which is a 
finite sequence of symbols recording the events in which the 
process has engaged [6]; 𝑋 is a refusal of 𝑃, which is a set of 
events offered by the environment, and it is possible for 𝑃 to 
deadlock when placed in this environment  [6]. Several 
operators are defined to describe the relationships between 
processes. Given two processes P and Q, CSP can calculate 
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sequence P;Q, deterministic choice P □ Q, non-deterministic 
choice P ⊓ Q, parallel execution P || Q, and iteration, using the 
recursion operator µP : A · F(P). Detailed definitions of 
process, and operations on process can refer to research [6] and 
[7]. 

2.2. Erasmus 
 

Process-oriented programming is predicted to be the next 
programming paradigm [1], [8]. It is considered that process-
oriented programming languages satisfy several requirements, 
such as safe concurrency, scalability, evolvability, and weak 
coupling between components [8]. The foundation of process-
oriented programming is process algebra that is used to build 
software systems by composing concurrent processes [9]. 
Erasmus is a process-oriented programming language based on 
CSP but with more features [8]. An Erasmus program consists 
of cells, processes, ports, protocols and channels. A cell, 
containing a collection of one or more processes or cells, 
provides the structuring mechanism for an Erasmus program. A 
process is a self-contained entity which performs computations, 
and communicates with other processes through its ports. A 
port, which is of a type of protocol, serves as an interface of a 
process for sending and receiving messages. A protocol 
specifies the type and the orderings of messages that can be 
sent and received by the ports of the type of this protocol. A 
channel, which is of a type of protocol, links two ports and so 
enables two processes to communicate. Detailed syntax and 
semantics of Erasmus can refer to research [10]. In Erasmus, 
communication is as important as method invocation in object-
oriented languages. Besides, communications based on 
messages are well-suited for in Wireless Sensor/Actuator 
Networks and Internet of Things [11], [12].  These inspire our 
research on analyzing and verifying consistency of 
communications. Some research is proposed to study the 
communications, which includes constructing a fair protocol 
that allows arbitrary, nondeterministic communication between 
processes [13], and building a static analyzer to detect 
communication [14]. As Erasmus is still in working progress, 
and it provides a possibility to adapting the results of the 
research, we choose Erasmus as the programming language to 
implement concurrent systems in this research. 

2.3. Category Theory 
 

Due to its abstractness and generality, category theory has led 
to its use as a conceptual framework in many areas of computer 
science [15] and software engineering [16]. It is suggested that 
category theory is helpful towards discovering and verifying 
connections in different areas, while preserving structures in 
those areas [17]. In software engineering, category theory is 
proposed as an approach to formalizing refinement from design 
to implementation [18]. Specifically, for modeling 
concurrency, category theory is used to model, analyze, and 
compare Transition Systems, Trace Languages, Event 

Structures, Petri nets, and other classical models of 
concurrency [19]. However, to the best of our knowledge, there 
is no approach for verifying the consistency between process-
oriented design and implementation. The aim of this paper is to 
work on the categorical framework based on research [4], [5]. 
In this paper, we use the constructs category and functor from 
category theory for the verification.  

3. The Categorical Framework 

For concurrent systems developed by process-oriented 
programming languages, this research focuses on verifying 
consistency between design and implementation. We propose a 
category theory approach to model concurrent systems with the 
purpose of exploring answers for the following research 
questions: 
RQ 1) How do we model communications between 

processes in design of concurrent systems with category 
theory? 

RQ 2) How do we model communications between 
processes in implementation of concurrent systems with 
category theory? 

RQ 3) How can category theory be used to determine 
whether or not the implementation is consistent with the 
designed communications of concurrent processes? 

To solve the research problems, our goal is to build the 
categorical framework for concurrent systems (see Fig. 1). This 
framework can be used to verify the consistency of process 
communications between design and implementation. It 
consists of the following steps  
Step 1 Designing: design concurrent systems in CSP, and 

analyze failures of processes together with 
communications. 

Step 2 Implementing: implement concurrent systems in 
Erasmus with the design refinement. 

Step 3 Analyzing Abstraction: abstract processes and 
communications out of the implementation, and analyze 
failures of abstracted processes as well as 
communications. 

Step 4 Categorizing Design: construct categorical models 
for the design with preserving structures of 
communications. 

Step 5 Categorizing Abstraction of Implementation: 
construct categorical models for the abstraction of 
implementation with preserving structures of 
communications. 

Step 6 Verifying: construct functors to verify the categorical 
models of the design and the abstraction. 

Specifically, step 1 and step 4 aim to answer research question 
RQ1, step2, step3 and step5 aim to answer research question 
RQ2, and step 6 aim to answer research question RQ3. Each of 
these steps is discussed in the following sections. 

Fig. 1 The categorical framework 
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4. Illustrating the Framework by a Running Example 

A vending machine example is given to illustrate the 
framework. In the example, a customer orders a drink from a 
vending machine. The vending machine offers tea as well as 
coffee, and it operates according to the following process: 1) it 
accepts a coin from the customer, and 2) it accepts a choice of 
drink from the customer before dispensing the drink. The 
vending machine can repeat this process indefinitely. The 
customer can use the vending machine only once to order tea 
or coffee.  
In the design stage, a simple version of the vending machine is 
created by using CSP. In the implementation stage, an 
enhanced vending machine from the design is implemented in 
Erasmus. Category theory is used to verify the consistency of 
process communications between the design and the 
implementation. 

4.1. Designing the Example 
 
In the design stage, the vending machine and the customer are 
modeled as processes VendingMachine and Customer 
respectively. Both processes communicate two messages: one 
is coin, and the other is tea or coffee. A drink is randomly 
chosen by Customer. The drink offered by VendingMachine is 
based on the choice of Customer. According to the failures in 
CSP, communications between Customer and VendingMachine 
are modeled and analyzed as follows: 
 
𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟||𝑉𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒)

= {𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒} 
 
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟| 𝑉𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒
= { ,𝑋 𝑋 ⊆ 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 , 𝑐𝑜𝑖𝑛 ,𝑋 𝑋 ⊆ 𝑐𝑜𝑖𝑛 , 
               ( 𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 ,  
               ( 𝑐𝑜𝑖𝑛, 𝑐𝑜𝑓𝑓𝑒𝑒 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 }  

4.2. Implementing the Example 
 

The implemented vending machine and customer can do more 
than the design requires: the customer can ask the vending 
machine to refund the coin instead of ordering a drink. The 
Erasmus code for the implementation is as follows: 
Drinks = protocol {coin; 
refund|coffee|tea; stop} 
 
VendingMachine = process order: +Drinks{ 
    loop{ 
            order.coin; 
            select{ 
                    ||order.refund 
                    ||order.tea 
                    ||order.coffee 
                  } 
        } 
} 
 
Customer = process get: -Drinks{ 
 get.coin; 
 case{ 
        ||get.refund 
        ||get.tea 
        ||get.coffee 
     } 
} 
 

Main = cell{chnl: Channel Drinks; 
VendingMachine(chnl); Customer(chnl)} 

4.3. Analyzing Abstraction of the Example 
 
According to our former research [5], the implementation of 
the vending machine example is abstracted as follows: 
person = coin; case{ refund| tea| coffee } 
 
vendingMachine = loop{ coin; select{ 
refund| tea| coffee }} 
 
According to the failures in CSP and our former research [5], 
communications between Customer and VendingMachine in 
the implementation are modeled and analyzed as follows: 
 
𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟||𝑉𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒)

= {𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎, 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑐𝑜𝑓𝑓𝑒𝑒} 
 
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟| 𝑉𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒
= { ,𝑋 𝑋 ⊆ 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 , 
             ( 𝑐𝑜𝑖𝑛 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛 , 
             ( 𝑐𝑜𝑖𝑛, 𝑟𝑒𝑓𝑢𝑛𝑑 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 ,  
             ( 𝑐𝑜𝑖𝑛, 𝑡𝑒𝑎 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 ,  
             ( 𝑐𝑜𝑖𝑛, 𝑐𝑜𝑓𝑓𝑒𝑒 ,𝑋) 𝑋 ⊆ 𝑐𝑜𝑖𝑛, 𝑟𝑒𝑓𝑢𝑛𝑑, 𝑡𝑒𝑎, 𝑐𝑜𝑓𝑓𝑒𝑒 }  

4.4. Categorizing Failures of Communications in the Design 
and the Abstraction of Implementation 
 
In this research, we focus on the consistency of process 
communications between design and implementation, which is 
defined as follows: 
 
Definition 1. Consistency of Process Communications: Given 
a sequence of communications with failures in the design to 
represent the progress of communications, 𝐷𝐹: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 →
  𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!) → ⋯ →   𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) , and a 
sequence of communications with failures in the 
implementation to represent the progress of communications, 
𝐼𝐹: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 →   𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!) → ⋯ →
  𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) . 𝑑𝑒𝑣𝑡(𝑖) represents the ith event in 
the designed communications. 𝑖𝑒𝑣𝑡(𝑖) represents the ith event 
in the implemented communications. 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!)  
represents all the failures of the designed communications from 
the trace  to the trace 𝑑𝑒𝑣𝑡(1),… ,𝑑𝑒𝑣𝑡(𝑖) . 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!)  represents all the failures of the 
implemented communications from the trace  to the trace 
𝑖𝑒𝑣𝑡(1),… , 𝑖𝑒𝑣𝑡(𝑖) . If there exists a mapping from DF to IF 

with structure preserved between failures, which can map each 
trace of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!)  to the same trace of 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!)  with the refusals of the trace of 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!)  being a subset of the refusals of the 
corresponding trace of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) , and can map 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) →   𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!!!) to 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!) →   𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!!!) , then 
IF is consistent with DF. If all sequences in the design have 
corresponding mapping sequences in the implementation, the 
communications in the implementation are consistent with the 
communications in the design.  
 
As functor can be used to check structure reserving between 
two categories, in this research, functors are used to verify 
consistency of communications between design and 
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implementation [4] and [5]. Successful construction of such 
functor means the process communications in the 
implementation is consistent with the process communications 
in the design. Failing to construct such functor could indicate 
an inconsistency between the design and the implementation. 
 
In this research, categories for communications in the design 
and the implementation are constructed based on proposition 1 
(See Fig. 2). 
 
Proposition 1. Category of Failures: Each object indicates a 

process represented by failures. A Morphism 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! means the process with the failures from trace  
to the trace a evolves to the process with the failures from trace 

 to the trace b, where 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!. 
 
Proof. 
Objects: Each object is a process represented by failures. 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#(!),…,!"#(!)  represents all the failures from the trace 

 to the trace 𝑒𝑣𝑡(1),… , 𝑒𝑣𝑡(𝑖) . For example, given a 
process P with the traces     𝑎𝑛𝑑   𝑒𝑣𝑡(1) , there are two 
objects 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = ,𝑋 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ∧ 𝑋 ∈
𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/ )}  and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#(!) = { ,𝑋 ∈
𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ∧ 𝑋 ∈ 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/ )},    𝑒𝑣𝑡 1 ,𝑋 𝑒𝑣𝑡 1  
∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ∧ 𝑋 ∈ 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/ 𝑒𝑣𝑡 1 )}. 
 
Morphisms: Let 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!  and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! be objects. If 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆   𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , there is a morphism 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!. It means the process of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! evolves to the 
process of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! . For example, a morphism 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#(!)  indicates the process with 
empty trace   evolves to the process with trace 𝑒𝑣𝑡(1) .   
 
Identities: For each object, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , there is an identity 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , which indicates 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆
  𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!. For example, there is a morphism 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 .   
 
Composition: Given any morphisms 𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!  and 𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , with 
codomain of 𝑚𝑜𝑝ℎ!,! = domain of 𝑚𝑜𝑝ℎ!,!  , there is 
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! . Thus, there is a 
composition morphism: 𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!. 
 

Associativity: For all morphisms 𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , 𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!  and 
𝑚𝑜𝑝ℎ!,!: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!, with codomain of 𝑚𝑜𝑝ℎ!,! 
= domain of 𝑚𝑜𝑝ℎ!,!  and codomain 𝑚𝑜𝑝ℎ!,!  = domain of 
𝑚𝑜𝑝ℎ!,!  , there is 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! ⊆
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!  to represent the subset relationships between 
failures. Thus, there are 𝑚𝑜𝑝ℎ!,! ∘ (𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!) =
𝑚𝑜𝑝ℎ!,! ∘ (𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!) = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! , and 
(𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!) ∘𝑚𝑜𝑝ℎ!,! = (𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!)  

 ∘𝑚𝑜𝑝ℎ!,! = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! So, 𝑚𝑜𝑝ℎ!,! ∘
(𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!) =    (𝑚𝑜𝑝ℎ!,! ∘𝑚𝑜𝑝ℎ!,!) ∘𝑚𝑜𝑝ℎ!,!.  

4.5. Verifying the Design against the Implementation 
 
In the implementation, not only can the custom order tea or 
coffee, but the vending machine can refund the coin. 
According to research [5], the construction of a functor in 
proposition 2 can be used to check whether the approach of 
ordering tea or coffee in Implementation conforms to the 
approach of ordering tea or coffee in design (See Fig. 2). 
 
Proposition 2. design → implementation is a functor. This 
functor maps objects and morphisms in design to the 
corresponding objects and morphisms in implementation 
respectively as follows: 
1) For each object, 𝑜𝑐𝑑 , in design, there must be a 

corresponding object, 𝑜𝑐𝑖, in implementation, such that 
𝑜𝑐𝑑 can be mapped to 𝑜𝑐𝑖 when each trace in 𝑜𝑐𝑑 have 
the same trace in 𝑜𝑐𝑖, and the corresponding refusal in 
𝑜𝑐𝑑 is a subset of the corresponding refusal in 𝑜𝑐𝑖. 

2) For each morphism 𝑚𝑑: 𝑜𝑐𝑑! →   𝑜𝑐𝑑!  in design, there 
must be a corresponding morphism 𝑚𝑖: 𝑜𝑐𝑖! →   𝑜𝑐𝑖! in 
implementation, such that md can be mapped to mi when 
𝑜𝑐𝑑!  and 𝑜𝑐𝑑!  can be mapped to 𝑜𝑐𝑖! and 𝑜𝑐𝑖! 
respectively. 

 
Proof. 
Objects Mapping: let 𝑜𝑐𝑑 be an object in design, and let 𝑜𝑐𝑖 be 
an object in implementation. As 𝑜𝑐𝑑  and 𝑜𝑐𝑖  represent 
communications with failures, each element in ocd or oci is a 
failure with the form 𝑡𝑟𝑎𝑐𝑒𝑠, 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠 .  When each element 
𝑡𝑟𝑎𝑐𝑒! ,   𝑋!      𝑡𝑟𝑎𝑐𝑒! ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑑𝑒𝑠𝑖𝑔𝑛   ∧   𝑋! ∈   𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠 

(𝑑𝑒𝑠𝑖𝑔𝑛/𝑡𝑟𝑎𝑐𝑒!)}  in 𝑜𝑐𝑑  has a corresponding element 
𝑡𝑟𝑎𝑐𝑒! ,   𝑋!      𝑡𝑟𝑎𝑐𝑒!   ∈   𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛     ∧   𝑋!     ∈

(𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛/𝑡𝑟𝑎𝑐𝑒!)}  in 𝑜𝑐𝑖  with 𝑡𝑟𝑎𝑐𝑒! = 𝑡𝑟𝑎𝑐𝑒!  and  

Fig. 2 The functor and categories 
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𝑋! ⊆ 𝑋!  , there exists a mapping from 𝑜𝑐𝑑  to 𝑜𝑐𝑖 . This 
indicates that all the communications in design are captured in 
implementation. For example, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$,!"#  in the 
category of design can be mapped to 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$,!"#  in the 
category of implementation. 
 
Morphisms Mapping: For every morphism 𝑚𝑐𝑑: 𝑜𝑐𝑑! →   𝑜𝑐𝑑! 
in the category of design, there must exist one corresponding  
morphism 𝑚𝑐𝑎: 𝑜𝑐𝑖! →   𝑜𝑐𝑖!, such that there exists a mapping 
from 𝑚𝑐𝑑 to 𝑚𝑐𝑎 when 𝑜𝑐𝑑! and 𝑜𝑐𝑑! can be mapped to 𝑜𝑐𝑖! 
and 𝑜𝑐𝑖!  respectively. These mappings indicate that all the 
progresses of communications in design are captured in 
implementation. For example, there exist a mapping from  
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$ →   𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$,!"#  in the category of design 
to 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$ →   𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$,!"#  in the category of 
implementation. 

 
Identities Mapping: By following the objects mapping and 
morphisms mapping, identities mapping are preserved from the 
category of design to the category of implementation. 
 
Composition Morphisms Mapping: By following the objects 
mapping and morphisms mapping, compositions of morphisms 
mapping are preserved from the category of design to the 
category of implementation. 

5. Algorithms for Constructing Categories and 

Functors 

To automate the verification of communications, data 
structures and algorithms are developed for constructing 
categories and functors. 

5.1. Data Structures 
 
As we analyze failures and categories, several notions related 
to failures and categories are defined with the following data 
structures: 
1) An Alphabet is a set of all events of a process. It is 

represented by a Set of String. 
2) A Trace is a sequence of events. It is represented by a 

List of String. 
3) A Refusal of a trace is a set that contains sets of events. It 

is represented by a Set that contains Sets of String. 
4) A Failure is a pair (Trace, Refusal) that contains a trace 

and a refusal of the trace. It is represented by the data 
structure of Trace and the data structure of Refusal. 

5) A Failures is a set, and each element of the set is a 
failure. It is represented by a Set of Failure. 

6) A Process is a pair (Alphabet, Failures) that contains an 
Alphabet and Failures to represent a process. It is 
represented by the data structure of Alphabet and the data 
structure of Failures. 

7) An Object is a pair (Data, EvolvingObjects) to represent 
a process. It consists of two parts: 1) Data contains the 
information of a process. It is represented by failures of 
the process, 2) EvolvingObjects consists of a list of 
Objects to which this Object evolves. 

8) A Category is a category of failures. Each Object in the 
Category describes failures of a process. Each morphism 
between Objects indicates an evolution from one process 
to another. The Object may have Objects as its 
EvolvingObjects. Always, there is a Root Object to 
describe failures of the process with the empty trace. 

5.2. Algorithms for Building Categories 
 
Based on proposition 1, we propose algorithm 1 and algorithm 
2 to construct categories as follows. In algorithm 1, a category 
can be built for a process to represent its evolution progress. 
The category is a tree-like structure with root to represent the 
process with the empty trace. Each morphism between objects 
indicates an evolution from one process to another. Algorithm 
1 first builds the root, and then uses algorithm 2 to build 
evolving objects evolved from the root. 
 
Algorithm 1: buildCategoryFromProcess 
Input: process p 
Output: category c 
1: create an empty category c 
2: for each failure f in failures of p do 
3:       if trace of f  = empty trace   then 
4:             data of root of R ←  (data of root of c) + f 
5:       end if 
6: end for 
7: evolving objects of root of c  ←buildEvolvingObjects 
(root of c, p) 
8: return c 
 
Fig. 3 Build category from process 
 
 
Algorithm 2: buildEvolvingObjects 
Input: object obj, process p 
Output: list of objects chs 
1: create an empty list of object chs 
2: create a trace tr  ← the longest trace in data of obj 
3: for each failure f in failures of p do 
4:       if tr is the subtrace of the trace t of f and size of tr + 1 
= size of t then 
5:             create an empty object next 
6:             data of next← data of obj + f 
7:             evolving objects of next←buildEvolvingObjects 
(next , p) 
8:             chs ← chs + next 
9:       end if 
10: end for 
11: return chs 
 
Fig. 4 Build evolving objects 
 
 
In line 2 of algorithm 1, there is a for loop to build the root 
object for the process with empty trace. In lines 3 and 7 of 
algorithm 2, there are a for loop and a recursive call to 
calculate the evolving objects that are connected by 
morphisms. The complexity of algorithm 2 is O(n2). As 
algorithm 1 uses algorithm 2, the complexity of algorithm 1 is 
O(n2). 
 

5.3. Algorithms for Building Functors 
 
Based on proposition 2, we propose algorithms for constructing 
functors as follows. In algorithm 3, it uses algorithm 4 and 
algorithm 5 to compare root objects and evolving objects in 
two categories. In algorithm 4, we can compare traces and 
refusals of the object in the category of design to traces and 
refusals of the object in the category of implementation by 
following proposition 2. In algorithm 5, each evolving object in 
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the category of design is compared with corresponding object 
in the category of implementation. 
 
Algorithm 3: buildFunctor 
Input: category ds, category im 
Output: boolean 
1: if compareTwoObjects(root of ds, root of im)  then 
2:       if compareEvolvingObjects(root of ds, root of im) 
then 
3:             return true 
4:       end if 
5: end if 
6: return false 
 
Fig. 5 Build functor 
 
 
Algorithm 4: compareTwoObjects 
Input: object dso , object imo 
Output: boolean 
1: create failures dsp ← data of dso 
2: create failures imp ←  data of imo 
3: create boolean flag 
4: for each failure dsf in dsp do 
5:       flag ← false 
6:       for each failure imf in imp do 
7:             if trace of dsf = trace of imf and refusal of dsf ⊆ 
refusal of imf then 
8:                   flag ←  true 
9:                   break 
10:             end if 
11:       end for 
12:       if flag = false then 
13:             return false 
14:       end if 
15: end for 
16: return true 
 
Fig. 6 Compare two objects 
 
 
Algorithm 5: compareEvolvingObjects 
Input: object dso , object imo 
Output: boolean 
1: create a list of objects dscs ←  evolving objects of dso 
2: create a list of objects imcs ←  evolving objects of imo 
3: create boolean flag 
4: for each object dsc in dscs do 
5:       flag ← false 
6:       for each object imc in imcs do 
7:             if compareTwoObjects(dsc,imc) then 
8:                   flag ← true 
9:                   if size of evolving of dsc > 0 then 
10:                        flag ←  compareEvolvingObjects(dsc, 
imc) 
11:                       break 
12:                 end if 
13:           end if 
14:      end for 
15:      if flag = false then 
16:            return false 
17:      end if 
18: end for 
19: return true 
 
Fig. 7 Compare evolving objects 

In lines 4 and 6 of algorithm 4, for loops are used to compare 
two objects. The complexity of algorithm 4 is O(n2). To 
compare evolving objects in two categories, algorithm 5 uses 
for loops in lines 4 and 6, calls algorithm 4 in line 7, and 
recursively calls itself in line 10. The complexity of algorithm 
5 is O(n4). As algorithm 3 uses algorithm 4 and algorithm 5, 
the complexity of algorithm 3 is O(n4). 
 

6. Conclusion and Future Work 

As the continuation of our former research [4] and [5], this 
paper proposes an innovative categorical framework using 
failures to formally verify consistency of process 
communications between design and implementation of 
concurrent systems.  
In this framework, Communicating Sequential Processes (CSP) 
and Erasmus are used for design and implementation. In 
addition, abstract interpretation is employed to extract process 
communications from implementation. Furthermore, failures of 
process communications in design and in abstraction of 
implementation are modeled and analyzed. Finally, categories 
and functors are utilized as a novel means to model and verify 
consistency of process communications with failures.  
The framework is illustrated by using a vending machine 
example. According to results of analyzing the example, the 
framework is able to be used to verify consistency of process 
communications between design and implementation of 
concurrent systems. Moreover, with the algorithms designed in 
the research, verification progress, such as constructing 
categories and functors, can be performed automatically.   
However, research on verifying consistency of 
communications design and implementation with category 
theory is still in development. The work presented in this paper 
is preliminary and has some limitations. For instance, the 
vending machine example studied in this paper is not a scaling-
up concurrent system in the reality.  Only functors and 
categories are used for verification, while other categorical 
structures are not explored. 
In future, more running examples with categorical structures, 
such as monoidal category, will be studied and analyzed based 
on our categorical framework. Also, the implementation of the 
algorithms for in this paper and comparison with other 
algorithms will be introduced. Moreover, performance of the 
framework with applying to concurrent systems in reality will 
be examined. 
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Glossary of Symbols 
 
Notation                              Meaning                    

 𝑃 ∧   𝑄                            𝑃 and 𝑄               

  𝑃 ∨ 𝑄                              𝑃  or  𝑄 

  𝑎 ∈ 𝑆                                   𝑎 is a member of 𝑆  

𝐴 ⊆ 𝐵                                  𝐴 is contained in 𝐵 

{  }                                         the empty set 

{𝑎}                                        the singleton set of 𝑎 

𝑥     𝑃(𝑥)}                             the set of all 𝑥 such that 𝑃(𝑥) 

𝑓 ∘ 𝑔                                     𝑓 composed with 𝑔 

                                       the empty trace 

𝑎                                         the trace containing only 𝑎 

𝑠; 𝑡                                        𝑠 successfully followed by 𝑡 

µ𝑃 : A · F(𝑃)                         the process P with alphabet A such 
that P = F(P) 

𝑃 □  𝑄                                     𝑃 choice 𝑄 

𝑃 ⊓ 𝑄                                   𝑃 or 𝑄 (non-deterministic) 

𝑃  /  𝑠                                     𝑃 after (events of trace) 𝑠 

𝑃  ||  𝑄                                    𝑃 in parallel with 𝑄 

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 !"#$(!),…,!"#$(!)        all failures from the trace  to 
the trace 𝑒𝑣𝑡(1),… , 𝑒𝑣𝑡(𝑖)  

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠!       the process of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! evolves  
to the process of 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠! 

𝑡𝑟𝑎𝑐𝑒𝑠 𝑃                               a set of traces of process 𝑃 

𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃)                          a set of refusal of process 𝑃 


