
 Journal of Ubiquitous Systems & Pervasive Networks
Volume 8, No. 1 (2017) pp. 01-09

* Corresponding author. Tel.: +336.63.76.65.49
Fax: +01.39.25.49.85; E-mail: madjid.kara@lisv.uvsq.fr
© 2017 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.08.01.001

1

Software Quality Assessment Algorithm Based on Fuzzy Logic

Madjid Karaa, Olfa Lamouchib, Amar Ramdane-Cherif a,*
a LISV Laboratory, University of Versailles St-Quentin-en-Yveline, 10-12 avenue de l’Europe, 78140 Velizy, France

b Engineers National School of Carthage, 45 Rue des entrepreneurs, 2035, Tunisia

Abstract
In this paper an attempt has been made to provide a new global evaluation approach of a specified software quality
model extracted from a generic software quality model using an instantiation procedure. The evaluation is based on data
extracted from an ambient distributed system composed of fusion and fission agents connected to input/output services.
These data are linked to the appropriate metrics of our software quality model and we use quality factors stated in ISO
standards and different models of researchers represented under an ontology. We use equivalent relations to link criteria
that have the same meaning and fuzzy logic approach to evaluate the entire software quality model. Our work presents
the following contributions: (i) creating a generic software quality model based on several existing software quality
standards and formalized under ontology concepts (ii) proposing an instantiation algorithm to extract specified software
quality model from a generic software quality models (iii) proposing a new global evaluation approach of the specified
software quality model using two processes, the first one executes metrics related to sensors data and the second one
uses the result of the first process using fuzzy logic approach evaluating the entire specified software quality model and
end up with a final numerical result (iv) adding the variability of metric variables algorithm to determine the impact of a
possible variation of one criterion on others and avoid their penalization. This can help to conduct a trade-off-analysis in
the proposed quality evaluation approach.

Keywords: quality models, quality evaluation, quality measurement, metrics

1. Introduction

Software quality model is a very useful instrument for software
quality evaluation, which represents an important step in
ensuring sufficiency of software product quality. Reliable
software quality model is based on precise, objective and
calculable metrics, defined without any ambiguity to provide
an incontestable evaluation of quality [1]. The choice of data’s
appropriate representation is one of the most crucial tasks in
the entire system development process [2]. The existing
software quality models are generally hierarchical, grouping a
set of factors, criteria and sub-criteria [3]. Several research
works on software quality models have been completed and
many classifications have been developed but the most
important are: Mc Call and al-1977, Boehm and al-1978,
FURPS Model-1992 and Dromey model-1995 [4]. The first
finding was that: the proposed approaches were limited in their
use fields, each researcher had its own criteria interpretation
which led to having divergence in criterion definition [5], for
example, we have nine different definitions for "completeness".

To group different software quality views, ISO/IEC 9126 [6]
standard was created in 2003. An update was established as
ISO/IEC CD 25010 [7] in 2007. It is used to establish software

quality requirements and perform evaluations [8] using
ISO/IEC 25023 standard [9] that contain a set of software
quality basis measures. ISO/IEC 25010 has also been used as a
reference for its reuse or extension. Among these works we can
mention: Al-Badareen-2011, Dubey-2012, Al-Qutaish-2010
and Samadhiya-2013 [4]. Even if ISO models provide a solid
theoretical basis and a better representation of information,
they still too abstract and have some disadvantages, namely:
lack guide for use in a global evaluation approach [10],
difficulty of implementation, having to adapt it to each scenario
without specific methods, no explicit link between criteria and
metrics [11] to assign a detailed measure to factors, and
Unavailability of some metrics variables does not allow us to
evaluate their respective criteria.
The aim of our study is to present a new global evaluation
approach of a software quality model extracted from an
ambient distributed system. We have proposed a generic
software quality models described in [12], based on several
quality standards as well as models proposed by others
researchers. Equivalence relations will be established between
criteria of these standards. We also propose a global evaluation
approach to evaluate our instantiated software quality model
using two processes; the first one executes metrics related to
sensors data and the second one uses these data to evaluate the
software model using the principle of fuzzy logic [3, 13]. In
addition, the variability of metric variables algorithm was

Kara et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 01-09

2

proposed to determine the impact of a possible variation of one
criterion on others to avoid their penalization. We could apply
our approach in systems like Health Monitoring (SHM),
Human Health Monitoring (HHM), habitat monitoring, and
military surveillance [14]. Evaluation phase is important in the
development of a new software quality models as a result of its
adoption or rejection [15].
The rest of this article is organized as follows. In the next
section, we present the proposed global approach adopted for
our model and its different components. Then we define the
different components of the software quality model and the
algorithms, tools used for both global evaluation and variability
of metric variables algorithms. At the end, we apply these
algorithms to an example of a specified software quality model
then we finish with an analysis results and conclusion.

2. Proposed global approach

The objective of our approach is to evaluate a software quality
model involved in the interaction process following the steps 1
to 6 (see Fig.1), our approach is intended to be generally
applicable to any software quality model. Data are extracted
from an ambient distributed system composed of the fusion and
fission agents connected to input/output services. These data
are parsed, saved in an XML file and used to associate the
sensors resources to the software quality model metrics. The
specified software quality model is instantiated from a generic
software quality models, taking into account the extracted data
and a set of rules to establish an equivalent relationship
between criteria of different standards. We will obtain a
software model that has a tree structure and consists of several
factors, criteria, and sub-criteria represented hierarchically.
Each factor is composed of one or several criteria and each
criterion is composed of one or more sub-criteria until reaching
measurable criteria called leaves. The evaluation approach will
use extracted data to calculate metrics of our specified software
quality model. To quantify criteria, we use two processes; the
first one executes metrics related to sensors data and the second
one uses these data to evaluate the software model using fuzzy
logic approach to evaluating the entire specified model and end
up with a final numerical result.

Specified	 software	
quality	 model	

Data	 extraction
from	 system

Evaluation	

Final	 result

Send	 to	 evaluate

Display	 result

E
va
lu
a
tio

n
	 co

m
p
o
n
e
n
t

Attribute
evaluation

Fuzzy	
engine

Knowledge	
based	 rules

result

Generic	 software	
quality	 modelsInstantiation

1 2

3

4

5

6

A
m
b
ie
n
t	 d

istrib
u
te
d
	 sy

ste
m

Effectors
(Actuators)

E
n
v
ir
o
n
n
m
e
n
t

Perception

Understanding
(Fusion)

Acting	
(Fission)

Sensors

Fig. 1. Quality evaluation approach

3. Composition of software quality model

Composed of four main components (see Fig.2): criteria model,
metric model, interdependence model and equivalence
relations models. To formalize our model, we use an ontology
that becomes a necessary and an important component of
professional language in the computer field and knowledge
representation. It is widely recognized as an appropriate
knowledge representation technology; therefore, research on
ontology is becoming more in demand for developing
knowledge-based information systems [16]. By definition,

ontology is a structure of concepts and relations representing
the meaning of a given domain. It allows the representation of
knowledge and it is used in the semantic web and artificial
intelligence field. In the literature, we can find several
definitions or meanings attributed to this concept. In 1993,
Gruber proposed the definition most cited, it defines ontology
as: "an explicit specification of a conceptualization" [17].
There are various ontology languages, based on different
knowledge representation formalisms, and for our evaluation,
we use the OWL (Web Ontology Language) ontology
language. It is specified by classes, relations, and individuals
[18]. Our software quality allows us to integrate software
quality criteria, interoperate between quality factors and
metrics in various fields and relate the different relations
between these criteria. Users can introduce and modify all
necessary information about software quality model

Fig. 2. Composition of software quality model

3.1. Criteria model
We define a criteria model by a list of factors, criteria, and sub-
criteria, represented under a hierarchical form, each factor is
composed of one or several criteria and each criterion is
composed by one or several sub-criteria until reaching the
lowest level of criteria called leaves criteria. We use the
¨composedBy¨ relationship to link each criterion with its direct
sub-criteria and “equivalentTo” relationship to make links
between criteria of different models. We note that a sub-
criterion can be an intermediate criterion or a leaf criterion.

3.2. Metric model
A metric model is composed of metrics used to quantify the
software quality models. Each metric contains a list of metrics
variables that represent measurement functions or calculation
procedures to attribute numerical values. A metric variable can
be used by more than one metric and a metric can also be
composed of another metric.

3.3. Interdependence model
This model describes the variation of metrics variables that
allow us to satisfy the criteria quality of our model. The metrics
variables variation is represented with the following variation
signs:
Variation sign (+), the more the metric variable value is high,
the more the criterion level is high (critical criterion).
Variation sign (-), the more the metric variable value is low,
the more the criterion level is high (non-critical criterion).
Variation sign (*), the metric variable is neutral; its variation
has no impact on criterion level (neutral criterion).

3.4. Equivalence relations model
This model is composed of equivalence relations between
criteria that compose the generic software quality models.
These relations link criteria that have the same meaning, they

Interdependence model Metric Model

Criteria Model Equivalence Relations model

Use
Use

Use

Kara et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 01-09

3

are used to calculate metrics of a specific criterion that does not
have metric variables. Each equivalence relation contains the
equivalents criteria and an equivalence order, which define the
priority of the chosen criterion when using the instantiation
procedure.

3.5. Example of software quality model
In this example, the software quality model (see Table 1) is
composed of three models (Model-01, Model-02, and Model-
03). This model is based on the four components listed above.
We use equivalence relations between metrics to specify the
relations between criteria of different software quality models
that have the same meaning. Using these equivalence relations

and data coming from the distributed ambient system, we can
instantiate from these models a specified software quality
model related to the target system. In this example, the
specified software quality model in our example is composed
of Fact3, Fact4 and Fact7 factors (see Table 2). These factors
are extracted from software quality models 2 and 3, taking into
account the following equivalence relations Equiv1, Equiv2
and Equiv3 (see Fig. 3): Equiv1 (Ct6 ^ Ct3; 1): equivalence
relation between Ct6 and Ct3 criteria with first order
relationship, Equiv2 (Ct8 ^ Ct2; 1): equivalence relation
between Ct8 and Ct2 criteria with first order relationship and
Equiv3 (Ct8 ^ Ct11; 2): equivalence relation between Ct8 and
Ct11 criteria with second order relationship.

 Table 1. Composition of the generic software quality models
Software quality Criteria model Metrics model Interdependence model Equivalence relations

Model-01

Quality={Fact1;Fact2}.
Fact1={Ct1; Ct2}; Fact2={Ct3}.
Ct1={Ct4; Ct5} .
Leaves list={Ct4;Ct5;Ct2;Ct3}.

M1={Mv2},
M2={Mv3},
M3={Mv1; Mv8},
M4={Mv4; Mv5}.

Ct4={M1;(Mv2,+)},
Ct5={M2; (Mv3,-)},
Ct2={M3;(Mv1,+);(Mv8,-)},
Ct3={M4;(Mv4,+);(Mv5,-)} .

Equiv1 (Ct6 ^ Ct3; 1).
Equiv2 (Ct8 ^ Ct2; 1).

Model-02

Quality ={Fact3;Fact4}.
Fact3={Ct6}; Fact4={Ct7}.
Ct7={Ct8;Ct9}.
Leaves list ={Ct6;Ct8;Ct9}.

M5={Mv5 ; Mv6},
M6={Mv7;Mv8 ; Mv9},
M7={Mv3}.

Ct6={M5; (Mv5,+);(Mv6,-)},
Ct8={M6 ; (Mv7,*);(Mv8,-) ;
(Mv9,+)},
Ct9={M7 ; (Mv3,+)}.

Equiv1 (Ct6 ^ Ct3; 1).
Equiv2 (Ct8 ^ Ct2; 1).
Equiv3 (Ct8 ^ Ct11; 2).

Model-03

Quality ={Fact5;Fact6;Fact7}.
Fact5={Ct10}, Fact6={Ct11},
Fact7={Ct12,Ct13}.
Ct13={Ct14,Ct15}.
Leaves list ={Ct10;Ct 11;
Ct12;Ct14;Ct15}.

M8={Mv11},
M9={Mv9;Mv13},
M10={Mv10, Mv12},
M11={Mv10},
M12={Mv12,
Mv14;Mv15}.

Ct10={M8; (Mv11,+)},
Ct11={M9;(Mv9,+);(Mv13,-)},
Ct12={M10;(Mv10,-);(Mv12,+)},
Ct14={M11;(Mv10,+)},
Ct15={M12;(Mv12,-);(Mv14,-);
(Mv15,+);}.

Equiv3 (Ct8 ^ Ct11; 2).

Model-‐01

Ct1

M1 M2

Fact1

Ct2 Ct3

M3

Mv1

Fact2

Mv2 Mv3 Mv4 Mv5 Mv6 Mv7 Mv8 Mv9 Mv10 Mv11 Mv12 Mv13 Mv14 Mv15

Model-‐02

Ct6

M4

Fact3

Ct7

M5

Fact4

Ct8 Ct9

M6 M7

Ct4 Ct5

Equiv1
Equiv2

Model-‐03

Ct10

M8 M9

Fact5

Ct11

Fact6

Specified software
quality model

Ct6

Fact-3

Ct7

M4

Fact-4

Ct8 Ct9

M3 M7 M10

Mv4 Mv5 Mv1 Mv8 Mv10 Mv12 Mv14 Mv15

M11

Ct12 Ct13

Fact7

Ct14 Ct15

M12

M10 M11

Ct12 Ct13

Fact7

Ct14 Ct15

M12

Equiv3

+	 	 +	 	 -‐ +	 	 -‐ +	 	 -‐
*

-‐ -‐ +	 	 +	 	 +	 	 +	 	 +	 	 -‐ +	 	

+	 	 -‐ + -‐ +	 	 +	 	

Equivalence relation

Equivalence relation

Equivalence
relation

-‐

-‐

Criteria	 Model

Metric	 Model

Interdependence	 Model

Criteria	 Model

Metric	 Model

Interdependence	 Model -‐	 	
+	 	

+	 	 +	 	

-‐ + -‐

Mv3

Instantiation

Application

Generic software
quality model

Using equivalence relations we get the
following result:

• Criteria Ct6: M5 metric is replaced by
M4 metric

• Criteria Ct8: M6 metric is replaced by
M3 metric

Kara et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 01-09

4

Fig .3. Software quality model

Table2. Composition of the specified software quality model

Model Criteria model Metrics model Interdependence model

Specified
software
quality
model

Quality ={Fact3;Fact4;Fact7}.
Fact3={Ct6},Fact4={Ct7},
Fact7={Ct12;Ct13}.
Ct7={Ct8;Ct9},Ct13={Ct14;Ct15}.
Leaves list ={Ct6;Ct8;
Ct9;Ct12;Ct14;Ct15}.

M4={Mv4; Mv5},
M3={Mv1; Mv8},
M7={Mv3},M10={Mv10, Mv12},
M11={Mv10},
M12={Mv12, Mv14, Mv15}.

Ct6={M4;(Mv4,+);(Mv5,-)},
Ct8={M3;(Mv1,+);(Mv8,-)},
Ct9={M7;(Mv3,+)},
Ct12={M10;(Mv10,-);(Mv12,+)},
Ct14={M11 ;(Mv10,+)},
Ct15={M12; (Mv12,-); (Mv14,-); (Mv15,+)}

As mentioned in the interdependence model (3.3), the metric
variables variation is representing by (+), (-) or (*) symbol. We
illustrate these variations by taking the specified software
quality model (see Fig.3) and we will get the result represented
in the interdependence table (see Table3). We get an
interdependent couple (Ct14, Mv10) and (Ct12, Mv10), when
we increase the value of Mv10, the value of Ct14 increase and
when we decrease the value of Mv10, the value of Ct12
increase.

Table3. Interdependence table

 Mv1 Mv3 Mv4 Mv5 Mv8 Mv10 Mv12 Mv14 Mv15

Ct6 + -
Ct8 + -
Ct9 +

Ct12 - +
Ct14 +
Ct15 - - +

4. Instantiation procedure

The specified software quality model will be instantiated from
a generic software quality models, taking into account data
captured from sensors resources and equivalence relations
defined between metrics of different software quality models
applying algorithm 1 and algorithm 2. First, we need to identify
and collect data captured from sensors. These data will be
parsed, saved to an XML file, the extracted data is associated
with generic software quality models to define metrics and
criteria we want to evaluate. Then, we use equivalence
relations between metrics of different software quality models
to disambiguate some criteria of different models that have
different names but the same meaning. They are used to
calculate metrics that do not have complete metrics variables.
We take an example to calculate M6 metric (see Fig. 3). In case
we do not have Mv7 value metric variable, we use Equiv2
equivalence relation between Ct8 and Ct2 criteria. If all metrics
variables (Mv1 and Mv8) are available, we calculate M3 metric
value and return it to M6 metric. But if it is not the case, then
we check for another relation with another order that gives us
Equiv3 in our example and the M9 metric value will be
affected automatically to M6 metric. Following this approach,
M6 metric of Model-02 is replaced by M3 metric of Model-01.
The same procedure was applied using equivalence relation
Equiv1where M5 metric of Model-02 is replaced by M4 metric
of Model-01. We use also default values for some neutral
metrics variables which have no impact on criteria. In case, we
do not have complete metrics variables for a specified metric

and also no equivalence relation; we can use these default
values only for neutral metrics variables.

Algorithm1: Instantiation algorithm

Start Program: Instantiation_algorithm
result=true
Read Ontology,
Extraction_leaves_list,

For each Leaves_list
Do

If verification_ procedure_Mv (leaf) then
Mv (leaf) complete,
Select (list_Mv)
Continue

Else
leaf<- Equiv (leaf, result)
continue

EndIf
End For

End Program
Algorithm2: Verification_procedure_Mv (leaf)

Start Verification_procedure_Mv (leaf)
result=false
list_Mv <- Search_Mv (leaf)
list_Mv_empty <- list_Mv_null (list_Mv)

If number (list_Mv_empty) != 0 then
Default_value <- Search_default_value(list_Mv_empty)

If not (Mv_has_default_value) then
result=false

EndIf
EndIf

return result
End Procedure

5. Global evaluation

To evaluate our software quality model, we propose a global
evaluation approach that evaluates all factors of the specified
software quality model. Once interesting and relevant criteria
are chosen and their metrics defined, we pass to the global
evaluation of our instantiated model. The evaluation approach
is represented in the following figure (see Fig. 4). Using data
captured from sensors, variable metrics, which correspond to
leaves criteria, are defined. The metrics are quantified with
formulas and procedures and the value is stocked in a file. The
result is routed to the part "fuzzy interpreter” that uses
knowledge-based rules to evaluate the rest of criteria and
factors and end up with final numerical values

Kara et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 01-09

5

Calculation	 of	 metrics

Fuzzy	 logic

Evaluation	 attribute Final	 result	 evaluation

Use

Call

Send	 result

Send	 result

Display

Knowledge	 based-‐rules

Fig .4. Global evaluation approach

5.1. Fuzzy Interpreter
Software quality models criteria are not very easily to measure
and to quantify. Many attempts have been made to exactly
quantify software quality parameters using various models. In
this paper, an attempt has been made to provide a tool for
precisely quantifying software quality factors. From which
value, we can consider that criterion is very good, good,
medium or weak? The difficulty is more as this value has an
impact on the final evaluation of quality factors. In order to
counter this difficulty, we propose the use of a fuzzy threshold.
The concept of the fuzzy system was first conceived by Lofti
Zadeh in 1965, who presented it as a way of processing data by
allowing a partial membership.

5.1.1. Fuzzification step
The first step is to determine the degree to which these inputs
belong to each of the appropriate fuzzy sets. The membership
function is a graphical representation of the inputs participation
degree describing the system. In the example (see fig. 5) we
use the same linguistic variables model for Ct14 and Ct15
criteria. Its set of values can be: T = [Very Low, Low, Medium,
High and Very High] where each term T is characterized by a
fuzzy set in an interval U = [0, 1]. We will linguistically
express the validation levels of criteria then project them on [0,
1] interval. Fuzzy logic allows a degree of truth to these
criteria. For this example, Ct14 criterion is medium with a
degree of truth of 0,4 and high with a degree of truth of 0,6; the
Ct15 criterion is very high with a degree of truth of 0,4 and
high with a degree of truth of 0,57.

00 0,250,25

11
Very low Low Medium High Very highVery low Low Medium High Very high

0,50,5 0,750,75 11

0,40,4

0,60,6

0,650,65

Fuzzification of Ct14: medium with a degree of truth =
0,4 and high with a degree of truth = 0,6

Fuzzification of Ct14: medium with a degree of truth =
0,4 and high with a degree of truth = 0,6
11

0,400,40

0,570,57

0,850,85

Fuzzification of Ct15: very high with a degree of truth = 0,4
and high with a degree = truth of 0,57

Fuzzification of Ct15: very high with a degree of truth = 0,4
and high with a degree = truth of 0,57

Very low Low Medium High Very highVery low Low Medium High Very high

00 0,250,25 0,50,5 0,750,75 11

Fig. 5. Membership functions of Ct14 and Ct15 criteria

5.1.2. Inference step
Fuzzy Logic incorporates a simple, rule-based “If X and Y then
Z” approach for solving the problem rather than solving it
mathematically. The set of fuzzy inference rules is the
knowledge base of the fuzzy controller. These rules are made
by experts and we have 13 rules in our example (See fig. 6).

Fig. 6. fuzzy inference rules (Ct14 and Ct15 criteria

Fig. 7. Combination of fuzzified inputs and fuzzy rules

Then we combine the fuzzified inputs according to the fuzzy
rules to get the result. We apply Mandeni’s minimum operator
[19] (See Fig 7) and we aggregate the result using the Min/Max
technique (see Fig. 8).

Fig. 8. Aggregation & Defuzification

5.1.3. Defuzzification step
Defuzzification is the process of converting the fuzzy sets into
real-time data. The Centroid Method [20] has been adopted in
this paper to defuzzify the triangular fuzzy sets. It is
characterized by a red line with a projection on the x-axis (see
Fig.9). In the end, we get a numerical result for Ct13
criterion=79.7.

5.2. Global evaluation algorithm
Our evaluation algorithm (see Algorithm 3), allows us to read
and extract criteria and sub-criteria from the specified software
model. Leaves criteria will be defined and evaluated with their
own metrics or inherited from other standards. We call node
each criterion with its direct sub-criteria. The second part of
our algorithm breaks down the specified software model into
nodes segments with a respected order. Nodes segments
evaluation will use fuzzy logic to have a final numerical result.
The implementation of the fuzzy controller will be performed
using scripts to define Fuzzy Inference System (FIS) file for
each node and get a final numerical result of factors.

Algorithm3: Global evaluation
Start Program Global Evaluation algorithm
 If leaves_list is Not__Empty then

Defuzzification

Aggregation

Kara et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 01-09

6

 For each element of leaves_list do
fatherßsubClass(1ST_element)
sons_list_ßSuperclass(true) (father)

 If sons_list Exists in leaves_list then
Delete sons_list (leaves_list)
Add father(leaves_list), Orderßfile_order

Else Move sons_list to the end of leaves_list
 EndIf
 EndIf

Evaluate_leaves, Create_FIS_files
Fuzzy_evaluation, Display_result

End Programm

6. Variability of metric variables algorithm

It is to be noted that by getting a “high score” in any of the
criteria does not simply mean that a high quality of software
has been achieved. Somme criteria may be important only in
conjunction with others criteria, we could say that they are a
complement to each other. In this algorithm, we will determine
the impact of a possible variation level of one criterion on
other’s and propose a solution to avoid the penalization of the
other criteria. In fact, we seek to optimize a criterion by
modifying its metric variables and by doing this we could
affect and penalize other criteria. In our example (see figure
15), (Ct14, Mv10) and (Ct12, Mv10) are interdependent and by
varying Mv10 metric variable of Ct14 criterion we will affect
M12 criterion. The purpose of this evaluation approach is to
find all metric variables concerned by this variation to maintain
a high-quality level of all criteria without any penalization.
This approach is described by the following algorithms:

Algorithm4. Variability of metric variables (parameter)
Start Program Variability of metric variables (Param)
If not empty (parameter) then
 Read (interdependence_table)
 Extraction (interdependence_parameter(parameter))
 Manage_interdependences (parameter,interdependence_table)
 Sort (result_table)
EndIf
End Program

Algorithm5. Procedure manage interdependences

Start Procedure manage interdependences
 (parameter, interdependence_table)
Line<-Extract_Line(table)
While Not End Processing(table) do
 If Treated_Criterion(line) then

Update_Table(table, line(1), result_table)
Line<-Extract_Line(table)

Else
 If Interdependence_Criterion(parameter,line(2)) then

Result(result_table, Equivalent(line), ’No’)
Treated_line(table.line(3))
Update_Table(table, line(2), result_table)
Line<-Extract_Line(table)

ElseIf Not Dependant_Criterion (table, line(2)) then
 Result(result_table, Equivalent(line), ’Yes’)
 Treated_Line(table.line(3))
 Update(table, line(2), result_table)
 Line<-Extraire_Line(table)

 Else Line<-Extract_Dependant_Criterion(table,line(2))
EndIf

 EndIf
EndIf
End While
 Update_Result(result_table,table)
End Procedure

Algorithm6. Procedure Update result (result_table,table)

Start procedure Update_resul (result_table,table)
While Not End Processing(table) do
 Line<-extract_line(table)
If (Line_Result(line)=’No’) then
 If (Other_Result_Dependent_Criterion(ligne(2))=’Yes’)

then Update_Result(result_table,line)
 EndIf
EndIf
End While
End Procedure

Applying the variability of metric variables algorithm on the
specified software model in the example shown in Figure 3, to
optimize Ct14 criterion at its metric variable Mv10, we will get
the result presented in Table 4.

Table 4. Result of variability of metric variables algorithm

Factor Leaf criterion Criteria metric variables

Fact 7 (Ct14, Mv10, +)
Ct12 (Mv12, +),

Ct15 (Mv14, -)
(Mv15, +)

To update the metric variable Mv10 of Ct14 criterion without
penalizing Ct12 and Ct15, we have two solutions (see Table 4).
The first solution: (Ct14, Mv10) (Ct12, Mv12) (Ct15, Mv14) :
we intervene in Mv12 and Mv14 metric variables and the
second solution: (Ct14, Mv10) (Ct12, Mv12) (Ct15, Mv15): we
intervene in Mv12 and Mv15 metric variables.

7. Case study

This is an example of a specified software quality model to
evaluate a representative Client/Server software architecture
used as a system that receives data from an ambient distributed
system. In this example, we will focus on the evaluation
method without relating the instantiation step from the generic
software quality models. For modeling, we use the ontology
concept [21]; it offers many optional components such as
reasoning and graphical interface. Data extracted will be
adapted to leaves criteria of the specified software quality
model. Our model is composed of Performance, Availability
and Security factors (see Fig. 9). Performance is composed of
Latency, and Jitter, Availability is composed of Software
Availability and Hardware Availability, Security is composed
of Attack Level1, Attack Level2, and Attack Level3, Latency is
composed of Worst latency and Best latency. The leaves list of
our model is composed of Worst latency, Best latency, Jitter,
Attack Level1, Attack Level2, Attack Level3, Software
Availability and Hardware Availability. Each leaf criterion has
one metric variable (See Table 5) From this model we extract
an interdependence table (see Table 6) which describes the
interdependence between criteria using the variable metrics
signs. The relation between two metric variables Mva and Mvb

Kara et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 01-09

7

can be neutral (*: the variation of Mva does not affect the
variation of Mvb), direct (+: a positive variation of Mva causes

a positive variation of Mvb) or inverse (-): a positive variation
of Mva causes a negative variation of Mvb.

Specific software quality model

Performance

Latency Jitter

AvailabilitySecurity

Hardware	
Availability

Software	
Availability

Attack
Level1

Attack
Level3

Attack
Level2

Worst
Latency

Best
Latency

A

B C D

Dsf

NbrClt NbrServ	 Tnet Tdq TrsNbrTabl ARate	 PSpoof-‐Ip FPanne AExpW PKill-‐
Connection

PKill-‐
Server FPanneh FReph FReps FPannes

WCRL BCRL Jit ESpoof-‐
failure

PServer-‐
failure

ESpoof-‐
Kill

ESpoof-‐Kill-‐
Connection Dhf

NbrServd	
Fig. 9. Specific software quality model

Table 5. Composition of metric model

Metrics model Description of the used metrics variables
WCRL={NbrClt; NbrServ; NbrTabl;Tnet; Tdq; TRs},
BCRL={Tnet; Tdq; TRs},
Dhf={NbrServ, Fpanneh, FReph, NbrServd}
Dsf={NbrServ, Fpannes, FReps}
JiT={ WCRL, BCRL }
PServer-failure={NbrServ, AExpW, FPanne},
ESpoof-failure={PServer-failure, AExpW, ARate, PSpoof-IP},
ESpoof-Kill={AExpW, ARate, PKill-Server, PSpoof-Ip},
ESpoof-Kill-Connection={AExpW, ARate, PKill-Connection, PSpoof-Ip}.

NbrClt: Nbr of client, NbrServ: Nbr of server, NbrServd: Nbr of available
server, Tnet: passage time of a request by the network, Tdq: waiting time
of the request into the input queue, TRs: time to search for the query in the
table, FPanneh: Software fault frequency, FPannes: Equipment failure
frequency, FPanne: Failure frequency, FReph: Software repair frequency,
FReps: Equipment repair frequency, AExpW: time in which the system is
vulnerable to attack, ARate:frequency of piracy attack, NbrTabl: Table
numbers, PSpoof IP: probability of a successful IP spoofing, PKill
Server:probability of inhibiting a server, PKill

Table 6. Interdependence table:

 NbrClt NbrServ NbrTabl Tnet Tdq TRs Fpannes FReps FReph FPanneh ARate PS-Poof-IP FPanne AExpW PKill-
Connection

PKill-
Server NbrServd

Worst latency * + - * * *

Best latency - - -
Jitter * * * * * *
Attack Level1 - * - - -
Attack Level2 * - - -
Attack Level3 * - - -
S- Availability - - -
H- Availability - - - +

To evaluate the specified software quality model we apply the
global evaluation algorithm. First, we calculate metrics of
leaves criteria using formulas (See Table 7).

Table 7. Metric calculation

+ - + - - - - - - - - - - - *

*
*

* * * * * - -
-

-
-

- - - +

Kara et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 01-09

8

Leaves & Metrric=formulas & value
WorstLatency: WCRL= NbrClt / NbrServ * NbrTabl * (2*Tnet +
2*Tdq + Trs) = 71
BestLatency: BCRL= 2*Tnet + 2*Tdq + Trs = 61
H-Availability: Dhf=(NbrServ!(FPanneh/ FReph)NbrServ)/((1+
NbrServerd=1(FPanneh/ FReph)NbrServd) *(NbrServ!/(NbrServ-
NbrServd)!)) =60
S-Availability:Dsf=(NbrServ!(FPannes/
FReps)NbrServ)/((1+NbrServerd=1(FPannes/ FReps)NbrServd)
*(NbrServ!/(NbrServ-NbrServd)!)) = 90.1
Jitter: Jit= WCRL – BCRL = 36.8
AttackLevel1: ESpoof-failure= AExpW * ARate * PServer-
failure*PSpoof-IP=12,PServer-failure=1-exp-FPanne.NbrServ.AExpW
AttackLevel2: ESpoof-Kill = AExpW * ARate * PKill-
Server*PSpoof-Ip = 25
AttackLevel3: ESpoof-Kill-Connection= AExpW * ARate * PKill-
Connection*PSpoof-IP = 36
The node segments evaluation (shown by dotted circles in Fig.
10) and all variants execution order will be established. In our
example, node “A” must be evaluated before “B” because
Latency criterion must be evaluated before Performance factor.

Fig. 10. Final result

To create inference system, we use Matlab TOOLBOX fuzzy
logic. This tool generates Fuzzy Inference System files:
security.fis, availability.fis, latency.fis and performance.fis.
Using the gravity center method, characterized by a red line
with a projection on x-axis, we get the final evaluation result of
the specified software quality model (See Fig.10)
(Security=51.4%, Availability=77,1%, Performance=58,8%)

During the tests we have done, when we increase the number
of servers (NbrServ) the performance increase and the security
decrease but if we decrease the number of servers the security
increase and the performance decrease. Increasing the number
of servers is essential to improve the performance of the
system, by using the variability of metric variables algorithm;
we will determine the impact of a possible variation level of
the metric variable “NbrServ” to avoid the penalization of the
security or the availability of the system. The execution result
of this algorithm is resumed in Table 8. To increase number of
servers without penalizing security and availability factors, we
have to intervene on one of the Hardware Availability metric
variables ((Fpanneh, -) or (Freph, -) or (NbrServd, +)), on one of
the Software Availability metric variables ((Fpannes, -) or
(FReps, -) or (NbrServd, +)) and on one of the Attack Level1
metric variables ((FPanne, -) or (AExpW, -) or (PS_Poof-IP,-)).

Table 8. Result of the variability of metric variables

Factor Leaf criterion Criteria metric variable

Performance (Worst Latency,
NbrServ, +)

Hardware
Availability

(Fpanneh, -)
(Freph, -)

(NbrServd, +)

Software
Availability

(Fpannes, -)
(FReps, -)

(NbrServd, +)

Attack
level1

(FPanne, -)
(AExpW, -)

(PS_Poof-IP,-)

9. Conclusion

Modeling and evaluating software quality model is an
important step of decision making. The main purpose of
software engineering is to find the best solutions to improve
software quality. In this paper, we have proposed a generic
software quality model for an ambient distributed system. A
specified software quality model was extracted from a generic
software quality models. The instantiated model comes out as a
collection of factors, criteria, and sub-criteria until leaves
criteria. The last level of criteria is linked to different software
metrics and measurement procedures. The model is based on
ontology where we can add equivalence relations between
different attributes belonging to several software quality
models. To integrate these models, we have proposed an
instantiation algorithm that allows us to derive a specified
software quality model from the generic software quality
models. To evaluate the rest of criteria starting up from leaves
to factors, we use an evaluation approach based on fuzzy logic.
We have also presented a variability of metric variables
algorithm to determine the impact of a possible variation of
one criterion on others and avoid their penalization. Then we
have shown our approach through a Client/Server architecture.
We plan to study the problem of interaction between models
criteria, enrich evaluation methodology taking into account the
sign of metrics variables.

References

[1] Grubb, P. etTakang, A. A. (2003). Software Maintenance
: Concepts and Practice. World Scientific, 2nd edition.
https://doi.org/10.1142/5318

[2] Moody, D.L., 2003. Measuring the quality of data
models: an empirical evaluation of the use of quality
metrics in practice. ECIS 2003 Proceedings 78.

[3] Lamouchi, O., Cherif, A.R., Lévy, N., 2008. A
framework based measurements for evaluating an IS
quality, in: Proceedings of the Fifth Asia-Pacific
Conference on Conceptual Modelling-Volume 79.
Australian Computer Society, Inc., pp. 39–47.

[4] P. Miguel, J., Mauricio, D., Rodríguez, G., 2014. A
Review of Software Quality Models for the Evaluation of
Software Products. International Journal of Software
Engineering & Applications 5, 31–53.
https://doi.org/10.5121/ijsea.2014.5603

[5] K. Mehmood, A Quality Pattern Based Approach for the
Analysis and Design of Information Systems, Citeseer,
2014.

[6] ISO/IEC IS 9126-1. (2001). Software Engineering -
Product Quality – Part 1: Quality Model. International
Organization for Standarization, Geneva, Switzerland.

Kara et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 01-09

9

[7] ISO/IEC 25010-JTC1/SC7/WG6 Software Engineering
Software product Quality Requirements and Evaluation
(SQuaRE)-Software and quality in use models. 2008.

[8] Lew,P, Olsina,L, Zhang, L,2010. Quality, quality in use,
actual usability and user experience as key drivers for
web application evaluation. Springer.

[9] ISO/IEC DIS 25023 - JTC1/SC7/WG6 Systems and
software engineering -Systems and software Quality
Requirements and E valuation (SQuaRE) - Measurement
of system and software product quality. Date: 14-nov.-
16. https://doi.org/10.1007/978-3-642-13911-6_15

[10] Bouzeghoub, M., Calabretto, S., Denos, N., Harrathi, R.,
Kostadinov, D., Nguyen, A.-T., Peralta, V., 2007. Accès
personnalisé aux informations: approche dirigée par la
qualité., in: INFORSID. pp. 105–120.

[11] Mordal, K., n.d. Analyse et conception d’un modèle de
qualité logiciel.

[12] Madjid Kara, Olfa Lamouchi, Amar Ramdane-Cherif
“Ontology Software Quality Model for Fuzzy Logic
Evaluation Approach”. The 7th International Conference
on Ambient Systems, Networks and Technologies (ANT
2016) / . Volume 83, 2016, Pages 637–641.
https://doi.org/10.1016/j.procs.2016.04.143

[13] Challa J.S., Paul, A., Dada, Y., Nerella, V., Srivastava,
P.R., Singh, A.P., 2011. Integrated Software Quality
Evaluation: A Fuzzy Multi-Criteria Approach. Journal of
Information Processing Systems 7, 473–518.
https://doi.org/10.3745/JIPS.2011.7.3.473

[14] Mahyoub, M., Al-Roubaiey, A., Ahmed, G., 2016.
Content-based Filter Publish Subscribe Model for Real-
time WSN applications. Journal of Ubiquitous Systems
& Pervasive Networks 7, 19–27.

[15] Osman, F.A., 2015. Healthcare Providers’ Attitudes
toward Using the Technology of Smart Health Cards.
Journal of Ubiquitous Systems & Pervasive Networks 6,
11–17.

[16] Liu J.N.K., He, Y.-L., Lim, E.H.Y., Wang, X.-Z., 2013.A
New Method for Knowledge and Information
Management Domain Ontology Graph Model. IEEE
Transactions on Systems, Man, and Cybernetics:
Systems 43, 115–127.
https://doi.org/10.1109/TSMCA.2012.2196431

[17] Boudra, M., Hina, M.D., Ramdane-Cherif, A., Tadj, C.,
2015. Architecture and Ontological Modelling for
Assisted Driving and Interaction. International Journal of
Advanced Computer Research 5, 270.

[18] http://ontogenesis.knowledgeblog.org/514.
[19] Iancu, I., 2012. A Mamdani type fuzzy logic controller.

INTECH Open Access Publisher.
https://doi.org/10.5772/36321

[20] T.J. Ross, Fuzzy Logic with Engineering
Applications,2nd Ed, Wiley India Pvt. Ltd, New Delhi,
India, 2004.

[21] Liu J.N.K., He, Y.-L., Lim, E.H.Y., Wang, X.-Z., 2013.A
New Method for Knowledge and Information
Management Domain Ontology Graph Model. IEEE
Transactions on Systems, Man, and Cybernetics:
Systems 43, 115–127.
https://doi.org/10.1109/TSMCA.2012.2196431

