
 Journal of Ubiquitous Systems & Pervasive Networks  
Volume 6, No. 1 (2015) pp. 27-32 

 
 

* Corresponding author. Tel.: +212-2-22-89-42-87  
Fax: +212-5-22-89-14-98; E-mail: med.tabaa@gmail.com 
© 2015 International Association for Sharing Knowledge and Sustainability. 
DOI: 10.5383/JUSPN.06.01.004 

27 

 
 
 

LOS/NLOS Identification Based on Stable Distribution Feature 
Extraction and SVM Classifier for UWB On-Body 

Communications  
 
 

Mohamed Tabaaa,b,*, Camille Dioub , Rachid Saadanec, Abbas Dandacheb  
 

a Ecole Marocaine des Sciences de l'Ingénieur (EMSI), Département Recherche & Innovation, Casablanca, 
Maroc  

 b Laboratoire de Conception, Optimisation et Modélisation des Systèmes (LCOMS), équipe Architecture des 
systèmes Embarqués et Capteurs intelligents (ASEC), Université de Lorraine, Metz, France 

c Ecole Hassania des Travaux Publics (EHTP), Casablanca, Maroc

 

Abstract 
 
This paper presents a technique for identifying between both Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) propagation 
schemes for UWB on-body context. In the last few years, a great attention has been paid to wireless communications for body area 
networks especially since the IEEE 802.15.6 standard has been released. We focus at first to extract only the pertinent information 
using Stable Distribution compared with statistical techniques, and secondly to classify it using Support Vector Machine (SVM) with 
as main goal to identify between the two LOS and NLOS phenomena. We propose a technique to make the classification easy 
between LOS and NLOS contexts for UWB on-body communications. Our approach gives a good recognition rate of 87.5%, better 
than other methods in the same context.  
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1. Introduction 

Body Area Networks (BANs) have received a considerable 
attention in the last few years. With IEEE 802.15.6 standard, 
BANs use ultra-wideband (UWB) in several domain like 
telemedicine, medical applications and communications for on-
body situations. The UWB technology is adapted to indoor 
localization thanks to a fine delay resolution and obstacle-
penetration capabilities.  

Thus, UWB represents hopeful technology for localization 
applications in harsh environments and critical applications 
[1,8,13,15] in many domains including medical or military 
[2,3,4], notably for wireless personal area networks (WPANs) 
and especially for modern telemedicine systems using the IEEE 
802.15.6 standard. BANs have a great potential for UWB 
medicine systems and channel models have been standardized. 
In this context, this work will only consider CM3 and CM4 

(CM: Channel Model) for LOS/NLOS body surface to body 
surface UWB, and for LOS/NLOS body surface to external 
UWB respectively [18]. The UWB systems consist to transmit a 
very short pulse of few nanoseconds over either a large 
frequency bandwidth from 500 MHz to several GHz, or a 
relative bandwidth larger than 20% of central frequency, 
according to the specification of the Federal Communication 
Commission (FCC). A lot of challenges remain before 
implementation of UWB can be deployed on a large scale. 
These include signal acquisition, multi-user interferences, 
multipath and NLOS propagations [1,2,13,14]. The latter case 
is especially critical for most location-based applications 
because the NLOS propagation introduces positive bias in the 
estimation of distance, which can seriously affect the 
performance of localization. There are several techniques to 
deal with ranging bias in NLOS phenomena, which we classify 
as identification techniques. More details about NLOS 
identification techniques can be found in [1,2,8,15]. In [1] the 
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non-parametric method is tested to distinguish between the 
LOS and NLOS conditions especially for localization using LS-
SVM (Least Square Support Vector Machine). The authors 
evaluate two conditions with two scenarios, parametric and 
non-parametric, and obtain a classification rate of 84% for the 
first scenario and 91% for the second using LS-SVM. In [2], 
with the same aim to localization, an identification and 
mitigation technique is used with the same situations as in [1], 
giving only 60% of identification with an accuracy of less than 
1 meter.  

In this paper, we propose a technique of identification and 
demonstrate the need for LOS and NLOS identification for 
several domains like mitigation and localization for on-body 
communications. Our approach is based on stable distribution 
using SVM technique [5]. These techniques will be detailed in 
the section 3. The objectives are to obtain a better identification 
with a good mitigation or localization. The measurements used 
were collected from a measurement campaign performed by 
Body-centric Wireless Sensor Lab (Body WiSeR) [9,17] with 
low loss coaxial cables to measure the transmission response 
[3]. The rest of this paper is organized as follows. The proposed 
methods are presented in the section 2. The section 3 is devoted 
to global discussion and results, before the conclusion. 

2. Experimental data 

With the aim to study the characteristics of UWB, we worked 
with the data collected by the Antenna & Electromagnetics 
Group (Body WiSeR). All the parameters for the measurement 
are presented in Table 1.  
All the measurements were collected in a room that is 3m high 
and which geometry is described in Fig. 1. More informations 
can be found in [9,17]. 

Table 1: Parameters of Body WiSeR database  
Parameters Values 

Frequency range 
Frequency sampling 
Maximum time delay 

Maximum observable distance 
Frequency span 

Maximum temporal resolution 
Maximum spatial resolution 

Time bin size 
Transmit power 

IF bandwidth 

3-10 GHz 
4,37 MHz 
228.8 ns 
68.6 m 
7 GHz 
0.14 ns 
43mm 
0.14 ns 
0 dBm 

3 KHz / 101 dBm 
 

3. Proposed approach  

In this section, we present our method to identify between the 
classes and specially to distinguish between the LOS and 
NLOS phenomena for UWB on-body communications. We 
begin by testing the statistical method and we describe our 
choice of a method based on stable distribution for feature 
extraction and SVM for identification. In the remainder of this 
paper, we focus on techniques that identify the effects of LOS 
and NLOS phenomena. This identification helps in many 
domains like localization and mitigation, but the aim of this 
approach is to obtain a good rate of signal recognition with a 
better identification. In [1,2,8], NLOS has been used for 

identification, localization and mitigation, with the same 
objectives in all these works: to find a method that facilitates 
the task for a good identification. In the literature, the NLOS 
conditions are presented by a signal more attenuated and that 
has smaller energy and amplitude; in LOS conditions, the 
signal is strong and presents high energy and amplitude. 
Generally, for the on-body communications the information is 
presented by physiological signals, and the rate of such signals 
is much lower compared with other applications of UWB [1,2].  
Fig. 2 shows an obvious difference between LOS and NLOS 
situations. Therefore, it is necessary to choose a good method 
for extraction and classification. 
 

 
Figure 1: Dimensions and geometry of the Body Centric 
Wireless Sensor Lab where the indoor radio propagation 

measurements are performed. The sensor lab height is 3 m 

 

 
Figure 2: Difference between LOS and NLOS  

for on-body communications 
The proposed methods rely on two main phases: learning 

phase and testing phase.  
In the first phase, the raw data are used to extract reliable 

features based on stable distribution, which is then used to learn 
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models in on-line situation. These features are then used to find 
SVM classifier corresponding to different conditions of the 
component.  The method is based on a non-destructive control: 
the acquired signals are processed to extract features in the 
form of stable distribution coefficients (µ, c, α and β) used to 
find the SVM classifier for on-body communications.   

In the second phase we proceed to the identification based 
on the test parameters presented by an off-line phase as shown 
in Fig. 3. For the feature extraction we calculate six statistical 
parameters from the time domain data presented in § 3.1, to 
first prove the choice of our method, and secondly to test the 
results with our approach using SVM classifier as shown below 
in Fig. 3. These feature parameters are kurtosis, entropy 
estimation, mean and variance. In this work, we divide the on-
body data into LOS and NLOS matrices. For better training and 
testing of on-body communications we have only selected six 
features. The selected features are kurtosis, mean, entropy 
estimation, RMS, energy and variance, because they give the 
best separation between the classes. We then compare the 
results with the four parameters obtained from stable 
distribution. 
 

 
Figure 3: Proposed approach 

3.1. Statistical feature selection  

In this part, we describe the statistical features used in literature 
and that are needed to distinguish between the different classes, 
and in this work between the two LOS and NLOS phenomena. 
In [1,2,16], basic statistical methods are used for feature 
extraction to prove others methods. With the same idea and for 
the feature extraction, we are using some statistical methods 
compared with our own but for medical applications. The 
features we will consider are as follows: 

1) Energy of the received signal: 
𝑓 𝑥 = r t ²dt!!

!!  (1) 

2) Mean excess delay: 
𝜏!"# = 𝑡𝜑(𝑡)𝑑𝑡!∞

!∞      (2)  

where 𝜑 𝑡 = 𝑟 𝑡 !/𝜀! 

3) RMS delay spread: 
𝜏!"# = 𝑡 − 𝜏!"# !𝜑(𝑡)𝑑𝑡!!

!!      (3)  

4) Kurtosis: 
𝑘 = !

! ! !
𝑟 𝑡 − 𝜇|!||]
  
! 𝑑𝑡   (4)  

where 𝜇|!| =
!
!

𝑟 𝑡 𝑑𝑡  
!   and    𝜎²|!| =

!
!

[ 𝑟 𝑡 − 𝜇 ! ]²𝑑𝑡  
!   

5) Entropy: 
H(X)  =E[I(X)]=E[-­‐ln(P(X))]   (5)  

Where E is the expected value operator, and I is the 
information content of X. 
6) Variance: 

Var  (x)  = 𝑥!𝑓 𝑥 𝑑𝑥 − 𝜇   (6)  

where 𝜇 is the expected value. 

3.2. Stable distribution   

Although the probability density function for a general 
stable distribution cannot be written analytically, the general 
characteristic function for any probability distribution is 
determined by its φ(t) by: 

F(x)  =   !
!!

𝜑(𝑡)𝑒!!"#∞
!∞ 𝑑𝑡   (7)  

A random variable X is called stable if its characteristic 
function can be written as: 

𝜑 𝑡; µμ, 𝑐,𝛼,𝛽 =   𝑒𝑥𝑝  [𝑖𝑡µμ − 𝑐𝑡 !(1 − 𝑖𝛽𝑠𝑔𝑛(𝑡)𝛷)]  
Where sgn(t) is the sign of t and Φ is given by Φ=tan(πCα/2) 
for all α except α=1 in which case: Φ=-2/π log(t). Such 
distributions form a four-parameter family of continuous 
probability distributions parameterized by location and scale (µμ 
and c), two shape parameters (α and β), β   roughly 
corresponding to the measures of asymmetry and concentration. 
The Alpha-Stable are rich classes of probability distributions 
that include the Gaussian (α=2), Cauchy (α=1) and Lévy 
(α=5) classes; all have the above property: it follows that they 
are special cases of stable distributions (Fig. 4).  

In our approach, we are fitting the data with stable 
distribution based on McCulloch method [12]. With this 
method we obtained four consistent estimators in terms of five 
sample quantiles, and tabulated the values of the four 
estimators. 

3.3. Support Vector Machine  

The support vector machine (SVM) is based on a simple 
idea that originated in statistical learning theory by Vapnik [5]. 
This simplicity comes from the fact that this technique uses a 
simple linear method, but applied in high-dimensional feature 
space non-linearly related to the input space. It represents one 
of the most broadly used classification techniques because of its 
robustness, its performance and its rigorous underpinning 
compared to other techniques like neural networks6.   

For the identification, support vector machines separate the 
different classes of data by a hyper plane7  

(w,φ(x))  +  b  =  0   (8)  
corresponding to the function   

F(x)  =  sign  ((w,φ(x))  +  b)  =  0   (9)  
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where F(x) is a predetermined function, and w   and b are 
unknown parameters of the classifier. 

These parameters are determined based on the training set 
{𝑋!𝑙!}!!!! , where 𝑋!∊ 𝑅! and  𝑙! ∊  {-1,+1} are the inputs and 
labels, respectively. In some cases, the two classes can be 
separated and the SVM determines the separating hyper plane 
that maximizes the margin between the two classes. Generally, 
most practical problems involve classes that are not separable. 
In this case, the SVM is obtained by solving the following 
optimization problem:  

arg𝑚𝑖𝑛!,!,!
!
!
  ||w||²  +  γ 𝜀!!

!!!   with  𝑙!"(𝑋!)≥  1-­‐𝜀! ,∀𝑘  (10) 
where ε!  are slack variables that allow the SVM to tolerate 
misclassifications and γ controls the trade-off between 
minimizing training errors and complexity 2. 

 
Figure 4: Stable distribution 

4. Simulations and results  

All identification methods have been tested with the data 
obtained from Body WiSeR laboratory measurements as 
described in [9,17]. The measurements are based on the 
scenarios for in-body and on-body communications. In this 
work, we are only interested in on-body communications. For 
on-body communications, especially for this database, the LOS 
scenarios are presented in 1 to 56 sensors and the NLOS are 
presented in 57 to 110 sensors (see Fig. 5). We have 
constructed a matrix for the LOS case and another one for the 
NLOS. We start our approach by studying the impact of LOS 
and NLOS in different situations. First, we proceed in the study 
of the impulse response as shown in Fig. 6: the impulse 
response remains constant in the LOS case but falls for the 
NLOS case. Secondly, we study the power delay profile in the 
two conditions; the results are presented in Fig. 7: the 
difference between LOS and NLOS case is due to the 
difference of multipath arrival times. We can see a huge 
difference between the two phenomena in both situations. 

Next, we proceed with three scenarios. In the first scenario 
we begin to classify the raw data LOS and NLOS using SVM 
method. In this case, the recognition rate between LOS and 
NLOS is 50%. In the second scenario, we extract only some 
information from data using statistical methods described in 
section 3. We use kurtosis, mean, entropy, RMS, energy and 
variance to extract only the pertinent information and we use 

the SVM classifier. In this case, we still get the same 
recognition rate of 50%. In the third scenario, we extract the 
pertinent informations from data using stable distribution. 
Information about α, β, γ, c is described in Table 2. After 
having reduced the size, we proceed to the identification using 
SVM. The results of the comparisons between this work and 
those presented in [1,2,16] are shown in Table 3. 

Finally, we have proceeded to fit the data in different 
situations using normal, logistic, t Location-scale, generalized 
extreme value methods, as well as our own. In all fitting 
scenarios for the two LOS and NLOS situations, we found that 
only the stable distribution permits to cover all data: results are 
shown in Fig. 8 and Fig. 9. 

Compared to other techniques, Table 3 shows that our 
approach gives a recognition rate for BAN communications 
very close to those obtained in [1] and [2] for PANs. Our 
approach has been validated for PANs in [16], and this work 
demonstrates that it also gives good results for on-body 
communications compared with statistical methods of 
extraction. 

 
Figure 5: On-body index locations for NLOS and LOS 

 
Table 2: The values of stable distribution parameters 
Data α β γ c 
LOS 0.654 -0.0087 2.41e-005 4.42e-007 

NLOS 0.538 -0.0256 3.62e-0.005 8.21e-007 
 

5. Conclusion  
 
In this paper we described the need for LOS and NLOS 

paths identification for on-body communications and an 
approach to make this identification easier using the stable 
distribution for the features’ extraction and support vector 
machine classifier for the identification. This approach gives 
good results with 87.5% of recognition rate compared to other 
statistical methods: Kurtosis, Mean, energy, RMS, entropy and 
variance. By using both the stable distribution and the SVM 
classifier we developed a technique that is capable of 
distinguishing two critical LOS and NLOS phenomena for on-
body communications. 
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Figure 6: Impulse response for LOS and NLOS phenomena 

 
Figure 7: Power delay profile for LOS and NLOS 

phenomena 
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Table 3: All results of extraction and classification scenarios  

for different identification methods compared with others results 
Others Feature Classification Recognition rate Network type 

 
S.Marano1 RMS, kurtosis, mean excess delay LS-SVM 84% PAN 
S.Marano2 RMS, kurtosis, mean excess delay LS-SVM 91% PAN 
M.Tabaa16 Kurtosis, mean, energy and entropy SVM 86.31% PAN 
M.Tabaa16 Stable distribution SVM 100% PAN 
This work Data raw SVM 50% BAN 
This work RMS, mean, entropy, variance SVM 40.38% BAN 
This work Kurtosis, mean, entropy, variance SVM 50% BAN 
This work RMS, mean, entropy, Energy SVM 50% BAN 
This work RMS, variance, kurtosis, Energy SVM 53.84% BAN 
This work Stable distribution SVM 87.5% BAN 

 
 

 
Figure 8: (a) left, LOS data and stable distribution fitting; (b) right, LOS data and other distribution fitting 

 

 
Figure 9: (a) left, NLOS data and stable distribution fitting; (b) right, NLOS data and other distribution fitting 

 
 


