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Abstract 
Most runners run by themselves and do not have access to a trainer for feedback on their running form. We thus 
investigated the use of a standard smartphone for feedback provision while running, which is available to almost 
everyone. We investigated the use of body-worn sensors for assessing running technique on the example of arm carriage. 
In a pre-study with 10 runners we found that arm carriage can be monitored by a single sensor on the upper arm. We 
developed an Android application to monitor arm carriage in real time. The application was validated in a user study 
with 23 participants. Results from questionnaires revealed high user acceptance.  
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1. Introduction 

Running is one of the most popular sports for the masses. 
Approximately 30 million Americans run in total, including 
recreational and competitive runners [9]. One of the main 
reasons for this popularity might be the simplicity of running: 
just put your shoes on and go. However, not everyone might 
run properly. Improper running technique yields not only a 
decreased efficiency but also increases the risk of sustaining an 
injury [8].  
The majority of runners are ambitioned fitness runners that 
might not have regular access to a trainer. To improve their 
technique they thus often have to rely on self perception. 
Sensor miniaturization and increase in sensing accuracy has 
emerged the use of wearable sensors in sports. GPS trackers 
and heart rate monitors are already well established [2]. 
However, these focus on monitoring the final performance 
rather than performance determining factors such as running 
technique. In previous work, we demonstrated that wearable 
sensors can be worn unobtrusively during a running workout 
and can be used to monitor running technique [17], skill level 
[16], and fatigue [14]. In this work, we aim at investigating real 
time feedback provision on running technique based on our 
analyses. Therefore, we chose to focus exemplarily on arm 
carriage while running. 
A stable core is essential for good running technique [3]. The 
arms function to stabilize and balance the core by 
counterbalancing the opposite leg. It is, thus, essential to drive 
the arms forward and not sideways. A sideways movement not 
only increases the energy consumption but also destabilizes the 
whole movement [3]. Additionally, a poor performance of arm 
swing with too much sideways movement creates stress on the 

pelvic [11].  Running books therefore advise to focus on the 
arms not crossing the symmetry line of the body [11, 3]. We 
aim at detecting this crossing of the symmetry line of the body 
and to provide a feedback subsequently. 
State of the art smartphones provide integrated sensors and 
already are a constant companion of many recreational runners. 
In this work, we aim at investigating the use of a smartphone as 
feedback provider as it is available to a wide range of 
ambitioned fitness runners who don’t have access to a trainer 
but still want to focus on their running technique. We 
performed a preliminary study to identify the most valuable 
sensor positions using dedicated on-body sensors which were 
developed in previous work [7]. Based on our findings we 
developed a smartphone application to detect faulty arm 
carriage and to provide real time feedback [18]. Finally, we 
perform a user study to evaluate our developed application. 
Questionnaires are used to assess the users’ acceptance of such 
a system. We address the following research questions: 
 

• Which sensor position and which modalities can be 
used to monitor arm carriage while running?, 

• Are a smartphone’s internal sensors suitable for this 
task?, 

• What is the users’ perception of such a system? 
 
This paper is an extended version of our previous work [18] 
and is structured as follows: In Section 2 we present related 
work on smartphone applications for runners. Section 3 
presents a preliminary study to assess the feasibility of 
monitoring wrongly performed arm movement while running. 
From the findings of this study, we developed a smartphone 
application, as described in Section 4. The application was 
evaluated within a user study (Section 5). The conclusion is 
presented in Section 6. 
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2. Related Work 

Several smartphone applications are available for track 
provision, motivation of users, social interaction, or workout 
logging. The latter is the most popular with commercially 
available systems including the nike+iPod kit or the adidas 
micoach. Both systems monitor the regular workout with a 
mobile phone or an iPod and additional sensors, e.g. a step 
counter. In [12], the authors presented myHealthAssistant, a 
system which tracked activity levels throughout the day and 
logged running intensity and heart rate. Running was detected 
in real time on an Android smartphone using a state-of-the-art 
activity recognition approach. Authors in [13] presented a 
mobile health and fitness companion, a smartphone application 
that tracked running workouts in terms of distance, duration, 
pace, and heart rate. Interaction with the user is mainly based 
on speech. Authors in [5] developed a digital fitness connector 
that allows for connecting several off the shelf fitness devices 
such as pedometers to a smartphone. This device then allows 
logging workout data from the fitness devices using the 
smartphone. RunWithUs [4] is a smartphone application 
designed to motivate users to participate in sports. It can be 
used for tracking workouts and for keeping personal records of 
exercise. MPTrain is a phone-based system that uses music to 
influence the running exercise [10]. The user can set goals for 
the workout, e.g. alternating 3min at 75% and 2min at 90% of 
the maximal heart rate, similar to a treadmill computer. The 
phone receives heart rate data via bluetooth from a chest strap 
and adapts the played music to match the target heart rate. The 
follow-up of the system with main advances in the user 
interface was presented in [1] and was named TripleBeat. The 
system presented by Takata et al. [19] used wearable sensors 
such as heart rate, temperature, and a step counter to recognize 
a runner’s workout state (warm-up, main workout, cool-down) 
and to provide a track according to the goal of the workout and 
the current state. 
While there are various approaches in using a smartphone as 
feedback provider in running, they focused on providing 
feedback on the workout rather than running technique. In 
related work, we investigated the use of an IMU for real-time 
streaming of motion data to a smartphone [15]. We then used 
the smartphone to provide feedback to the runner. The user 
acceptance of visual over audio feedback was compared. 

3. Preliminary Study   

We performed a preliminary study to investigate feasibility of 
assessing arm carriage while running using body-worn sensors. 
The detection should acquire arm carriage independent of a 
running speed and work across all runners (e.g. gender, age, 
skill level). Additionally, we investigated different sensor 
positions to identify the optimal sensor placement. 
A good upper body form is essential for injury-free and 
efficient running [3]. This includes a strong torso and not too 
much sideways rotation. Too much upper body rotation 
increases the stress on the pelvis, increasing the risk of an 
injury. Additionally, a sideways movement wastes energy. 
Therefore, training books on running in general suggest paying 
attention for the arms to not cross the symmetry line of the 
body [8]. 
We thus defined three classes of arm carriage (depicted in Fig. 
1) to investigate the feasibility of detecting faulty arm carriage 
using wearable sensors. The runner on the left performs proper 
arm movement, driving the arms in forward direction (class 1), 
supporting the propulsion and providing balance. The runner in 
the middle aims with her hands at the symmetry line of the 

body, slightly increasing upper body rotation (class 2). 
Rotation is further increased with the arms crossing the 
symmetry line in the third, rightmost class (class 3), expressing 
a faulty movement. 
 
 

 
 
Fig. 1. Classes of arm carriage performed in the preliminary 

study. Training books advise to not cross the symmetry 
line of the body. 

 

3.1. Measurement Setup 
 

Throughout the preliminary study, each runner wore 3 ETHOS 
units to monitor the upper body and arm movement. The 
measurement setup is depicted in Figure 2. ETHOS is a small 
and unobtrusive inertial measurement unit (IMU) that was 
developed for the measurement of human movement in 
unconstrained environments [7]. ETHOS consists of a 16-bit 
3D accelerometer with a measurement range of ±6g, a 16-bit 
3D gyroscope with a range of ±2000°/s, and a 3D 12-bit digital 
compass. Data was sampled at 100 Hz and stored to a local 
microSD card for later offline analysis. Multiple ETHOS units 
were synchronized with a hub that uses the sensors’ real time 
clocks (RTCs) for synchronization. ETHOS can be used to 
stream data to a smartphone using the ANT+ protocol. 
 

 
 
Fig. 2. Front (a) and back (b) view of the sensor positioning and 

close-up of the round (c) and flat (d) housing type. 

3.2. Experimental Procedure 
 

The preliminary study was performed on a treadmill allowing 
for constant supervision by an assistant and video recording for 
labeling purposes. Participating runners were advised to 
complete two runs at 8 km/h and 10 km/h, respectively. Each 
of these two runs consisted of three 2 min-runs performing the 
following tasks: 1) arms parallel, 2) arms aiming at the 
symmetry line of the body, 3) arms crossing the symmetry line 
of the body. The three tasks are depicted in Figure 1. We chose 
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these tasks to continually monitor arm carriage from proper 
technique (arms driving parallel) to improper technique (arms 
crossing the symmetry line). With this, we wanted to identify 
features that were significant across different runners and 
running speeds rather than monitoring different runners and 
then using annotations to train our system, which would have 
been prone to introducing bias. 
Data were collected at different speeds to identify speed-
independent features. Runners were allowed to pause for as 
long as desired in between runs. 10 runners of different skill 
levels participated in the preliminary study. 
 

3.3. Data Analysis 
 

For the data analysis, we followed the established pattern 
recognition chain of subsequent feature extraction and 
classification. As features, we calculated the mean value, 
standard deviation, and range (max - min) of the signal of each 
axis and modality (acceleration and rate of turn) of the sensor 
data over a 5s sliding window with a 2s overlap. Each window 
was thus averaging over approximately 5 arm swings. This 
yielded an 18-dimensional feature vector. We then used a 
leave-one-subject-out cross validation scheme. The accuracies 
of classifying the arm carriage classes correctly with respect to 
different sensor positions and classifiers using all of the above 
features are provided in Table 1. 
 

 
Table 1. Classification accuracies depending on sensor position 

and classification method. 
 

Sensor position  Naïve Bayes kNN SVM Logistic 
Regression 

Upper arm 65.68% 73.99% 45.31% 80.73% 

Lower arm 67.04% 66.53% 77.83% 72.54% 

Upper back 46.46% 45.28% 78.17% 50.28% 

 
 
The results show that the sensors on the arm (sensors 1 and 2, 
Fig. 2) outperformed the one on the back (sensor 3, Fig. 2) with 
the sensor on the upper arm having performed slightly better 
than the one on the wrist. The confusion matrix (depicted in 
Fig. 3) revealed that mainly classes 1 and 2 were confused. 
This was a promising result, since the faulty arm carriage (class 
3) seems to be reliably detectable by the algorithms. 
Analysis of the video footage provided further explanation for 
the confusion of classes 1 and 2: some subjects performed 
more or less the same arm movement for the first and second 
task, aiming towards the center of the body during both runs. 
However, an accuracy of 94.41% was achieved for the 
detection of the arms crossing the symmetry line.  
To identify most valuable features, we chose a wrapper feature 
selection approach. This approach allows investigating 
different features and combinations of features in terms of their 
performance for the recognition using the algorithm itself [6]. 
 
 

        
 
Fig. 3. Confusion matrix of the three arm carriage classes. 

Mainly classes 1 and 2 were confused. From inspecting 
the video footage we found that some subjects 
performed more or less the same arm movement for 
these classes. 

 
We found that two features represented the differences of the 
classes best while being robust across speed and subjects; 
namely the mean of the z-axis acceleration and the range of the 
x-axis gyroscope. This finding was consistent with our 
observations: During the faulty arm carriage subjects not only 
rotated their arms more (yielding the higher range of x-axis rate 
of turn) but also lifted their elbows higher (yielding the change 
in mean of z-axis acceleration). Fig. 4 depicts a scatter plot of 
these two features calculated from the upper arm sensor for all 
subjects. From the scatter plot we observed a linear relationship 
between the two features and the arm carriage output. Since 
one might not be able to draw sharp lines between the different 
arm movements and to be able to capture small changes of arm 
movement, we decided to use a linear regression for the 
assessment. The regression was trained with all data from the 
preliminary study and the two described features, namely the 
mean of z-axis acceleration and the range of rate of turn 
measured on the x-axis. 
 

 
 
Fig. 4. Scatter plot of two features of the upper arm sensor of the 

different arm movements. The plot reveals that classes are 
not strictly separated. 

 

4. Smartphone Application 

From the preliminary study we found that a single sensor on 
the upper arm can be used to assess arm carriage during 
running. Since most runners wear their smartphone on the 
upper arm during a workout, we decided to use the internal 
sensors of a smartphone instead of an ETHOS unit that would 
stream data to the smartphone. This aimed at our goal of an 
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unobtrusive system. Since the best results were achieved when 
using acceleration and rate of turn data, we used a Samsung 
Galaxy SII phone that provided integrated acceleration and 
gyroscope sensors. The smartphone ran Android 2.3.3. 
To evaluate the suitability of the phone’s integrated sensors, we 
performed the same run as described in the preliminary study 
with a runner wearing both an ETHOS unit and a smartphone. 
The sampling rate of the phone’s acceleration and rate of turn 
sensors was set to the highest available sampling rate 
(”SENSOR DELAY FASTEST”). From the measurements we 
found that this corresponded to a sampling frequency of 98 Hz 
to 99 Hz, similar to that of ETHOS. The phone’s integrated 
accelerometer measured in a range of ±2g, we thus experienced 
clipping during running. However, the mean values of the 5s 
sliding window were still comparable to those measured with 
the ETHOS system. The integrated gyroscope provided a 
sufficient measurement range of 1145°/s. We found that the 
output of the regression (arm carriage measure) of the data 
collected with ETHOS was within a decimal place of the arm 
carriage measure calculated from the integrated sensors’ data. 
We thus rounded the output to the next 0.2. 
The real-time application for arm carriage measure was 
implemented as follows:  

• The application stored sensor values to a buffer for 
5s. 

• Every 5 s, features were calculated from the buffer 
and the arm carriage measure was calculated. 

• When the measure exceeded a value of 2 (2 equals 
“arms aiming at symmetry line”), the smartphone 
provided a vibrotactile feedback. 

Feedback was thus provided every 5 s. The duration of the 
vibration was set to 800 ms. It increased by 500 ms with every 
0:5 increase of arm carriage measure, i.e. arms overcrossing 

symmetry line more. The vibration’s intensity could be set in 
the phone’s settings and was set to the maximum. The 
vibration pattern was the smartphone’s standard vibration 
pattern. The intensity and the duration of the vibration were 
evaluated during short runs wearing the phone with the arm 
strap on bare skin and over a thin long-sleeved shirt. A more 
profound evaluation of the feedback’s intensity, duration, and 
frequency across several subjects was performed during the 
user study, presented in the next section. The smartphone was 
secured to the right upper arm of the runner with a regular 
workout strap. A schematic representation of the application 
and a runner wearing the smartphone are depicted in Fig. 5. 
 

5. User Study 
We performed a user study with 23 beginning runners (4 
female and 19 male, aged between 21 and 30) to evaluate the 
proposed system. Subjects were recruited from university staff 
and students using notices posted on campus. The notice said 
we were looking for beginner runners who were capable of 
running 20 min nonstop. It mentioned that the goal of the study 
was to test a smartphone application for runners but did not 
mention the detailed focus, i.e. monitoring of arm carriage, to 
ensure an unbiased baseline measurement. The user study was 
performed outdoors on a circular-shaped track frequently used 
by runners. Each runner had to complete two 20 min runs with 
a break in between runs. For the first run, subjects were not 
given any instructions and were told that the smartphone would 
calibrate itself to the individual runner. Data were stored on the 
smartphone’s SD-card during this run for later offline analysis. 
The vibrotactile feedback was turned off. For the second run, 
subjects were assigned to test and control group. The test group 

Fig. 5 Runner equipped with the smartphone and a schematic representation of the application. 
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(app) got feedback from the developed application, i.e. 
vibrotactile feedback when arm carriage was performed poorly. 
The control group (human) was instructed by the experiment 
leader to pay attention to their arm movement once before the 
feedback run. No further feedback was provided during the 
run. Subjects completed a visual analogue scale-style 
questionnaire for further evaluation of the developed app 
subsequent to the runs. 

 

 
 

Fig. 5. Overview of the experimental procedure during the user 
study. 

 

5.1. Influence of Feedback on Arm Carriage 
 

Data of five runners were discarded since runners could not run 
for the 20 min and instead kept switching between running and 
walking, which led to high signal noise. Figure 6 depicts the 

mean arm carriage measure over the 20 min of both runs for 
both groups of the remaining 18 subjects. Subject 5 of the app 
group reported that when the app did not vibrate he changed 
his arm movement to check whether it still worked, which 
might explain his increase. With a one-way repeated measures 
ANOVA test we found that runners of both the app (p = 0.04) 
and the trainer (p < 0.01) group improved their arm movement. 
We thus concluded that arm carriage could be modified using 
the feedback from our application. However, in our study 
providing feedback with a smartphone was not more successful 
than a single verbal instruction. 
 
	
  

	
  
Fig. 6. Mean arm carriage measure of both runs. The first run 
was carried out without instructions. For the second run, subjects 
were randomly divided in two feedback groups: vibration feedback 
from the application or a single verbal instruction from the 
experiment leader to pay attention to arm carriage. The dashed 
horizontal line indicates the threshold above which arms cross the 
symmetry line. For the app feedback, vibration set in when this 
threshold was exceeded and increased in duration with further 
increase. 
	
  

Fig.  7 Arm carriage measure of the second (feedback) 20 minute run is depicted in blue. For comparison, the mean value of the 
first run is depicted in black (dashed). The left columns depict the runners from the app feedback group. The runners on the right 
received an oral feedback prior to the second run.  
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We included the course of the arm carriage measure of all 
runners in Figure 7. The runners shown on the left received 
vibration feedback from the app when the arm carriage 
measure exceeded a value of 2 (arms crossing symmetry line). 
Runners on the right were instructed verbally by the 
experiment leader how proper arm carriage is performed and 
were instructed to focus on performing proper arm carriage. 
From the signals of the feedback run (in blue) we observed that 
some runners did not change their arm carriage compared to 
the first run (mean arm carriage measure of the first run is 
depicted in black, dashed). While some runners of the non-app 
group (right) changed their arm carriage in the beginning 
(runners 1,2, and 7), they returned to their regular arm carriage 
later on.  
 
For further investigation, it would be useful to increase the 
number of participants to have more runners with a faulty arm 
carriage and to investigate developments over a longer time 
span, e.g. several weeks. 

 

5.2. User Perception	
  
 
The questionnaires revealed that subjects did not feel restricted 
in their movements wearing the smartphone. They rated on 
average 1.3 of 10 on the visual-analogue scale on the question 
whether wearing the smartphone affected their run. They rated 
the duration and intensity of the vibration as comfortable (8.4 
and 8.3 of 10, respectively). The frequency of feedback was 
rated not to be too often (0.8 of 10). Most did not prefer 
another type of feedback but if they had to choose one human 
voice and music interrupts were mentioned. When asking 
subjects whether or not the application changed their arm 
carriage all except subjects 4 and 7 ticked yes. Subjects of the 
group app rated it easy to be aware of their arm carriage with 
8.3 on average (of 10), whereas the other group rated on 
average 4.03. Overall, subjects thought the app will improve 
their running technique, as they rated with 8 of 10 on that 
question. 
 

 
Table 2. Evaluation of user perception with a questionnaire. 
 
Question  

 
Rating 

(0=no, 10=yes) 

The mobile phone affected me during run 1.3 

Did you notice the vibration easily? 8.3 

Was the duration of the vibration comfortable? 8.4 

Was the intensity of the vibration comfortable? 8.3 

Did the vibration occur too often? 0.8 

Would you prefer a different type of feedback? 1.3 

Did the app help you in becoming aware of your 
arm movement? 8.3 

Do you think the app will help you improve your 
running technique? 7.9 

Would you use the app regularly during training? 8 

 
 
 

6. Discussion and Conclusion 
 
We presented the development of a smartphone application 
targeting on improving arm carriage while running using 
vibrotactile feedback. Within a preliminary study we 
investigated sensing positions, modalities and features to assess 
different arm carriage classes using ETHOS units. We found 
that a single sensor on the upper arm sufficed this task, yielding 
a classification accuracy of 80.73%. Based on the findings 
from the preliminary study a smartphone application was 
developed, which provided vibration feedback when faulty arm 
carriage was detected. The application was designed to run on 
an Android smartphone using the phone’s internal 
accelerometer and gyroscope. 23 runners participated in our 
user study for the application validation. Each runner was 
randomly assigned to the app group or to a control group and 
performed two runs: a baseline run and a feedback run. The 
app group received a vibration feedback from the smartphone 
during the second run.In contrast runners in the control group 
were instructed by the experiment leader how proper arm 
carriage is performed and were asked to pay attention to proper 
arm carriage. We found that runners improved their arm 
carriage in both scenarios similarly. While feedback from a 
smartphone did not outperform the verbal instruction by a 
person, the advantage of using a phone is its availability: 
almost everyone has access to a smartphone while most 
runners (especially regular fitness runners) train on their own 
and do not have access to a trainer. 
This is supported by the high user acceptance of the system 
that we achieved, which was evaluated with questionnaires. 
We thus conclude that feedback provided by a smartphone 
might help runners improve their technique. 
 

7. Outlook 
 
The application could be further improved by investigating the 
detection of other common mistakes in running and could be 
extended to provide features for workout monitoring and track 
provision. Additionally, it would be interesting to perform a 
longitudinal study to investigate if runners forget the verbal 
instruction after several runs and if and how the smartphone-
based approach would help to guard against falling back in the 
wrong arm carriage pattern. 
It would also be beneficial to include different areas of faulty 
technique detection to benefit runners further. 
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