
 Journal of Ubiquitous Systems and Pervasive Networks
Volume 2, No. 1 (2011) pp. 1-13

* Corresponding author. Tel.: +21625631500
Fax: +21673364411; E-mail: anis.benarbia@infcom.rnu.tn

© 2011 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.02.01.001

1

A Generic Autonomic Architecture To Improve Routing In
MANETs

Anis Ben Arbia a* , Habib Youssef b

a PRINCE Research Unit H. Sousse TUNISIA, anis.benarbia@infcom.rnu.tn

b PRINCE Research Unit H. Sousse TUNISIA, Habib.youssef@fsm.rnu.tn

Abstract
Wireless ad-hoc networks are highly dynamic networks for which routing is a challenging task. Existing routing
protocols whether reactive, proactive or hybrid showed limitations in various situations. To optimize the behavior of the
routing nodes, the academic community is recommending the reliance on an autonomic approach that would guarantee
self–adaptation, self–configuration, self–management, self-optimization and self–protection mechanisms of all the
network nodes. In this paper we propose an autonomic architecture geared towards improving the routing performance
within wireless ad-hoc networks. This architecture provides a formal framework where each node has a routing agent
whose role is to monitor routing activities within the network, which are used to tune the routing decisions of the node,
in harmony with other nodes. The architecture is easy to tailor to any routing protocol. Simulation results with
autonomic implementations of AODV and OLSR routing protocols show remarkable performance improvement with
respect to efficiency (Packet Delivery Ratio, overhead, quality of paths and reliability).
Keywords: Wireless Ad-hoc Networks, Routing, Autonomic Architecture, AODV, OLSR.

1. Introduction

Modern networks are highly complex systems, mixing a
variety of communication technologies and offering a wide
myriad of services. Human capabilities are outpaced by
difficulties imposed by the complications of emerging
communications technologies and services. Nowadays
autonomic architectures offer a suitable solution to the
intelligent operations of such networks. An autonomic system
is Self–adaptable, Self–manageable, Self-Configurable and
Self-protectable.
Routing in wireless ad hoc networks presents one of these
tremendous challenges due to the dynamic nature of the
network caused by the lack of a stable routing infrastructure.
Numerous routing protocols have been proposed in the
literature and some of which have been ratified. All exhibit
inefficiencies under certain network conditions. Researchers
started recently to recommend adaptive versions of these
routing protocols [1], [2], [3] (see §. 2).
The novelty of this work consists of proposing an autonomic
architecture geared toward supporting routing activities within
wireless ad-hoc networks. It is a distributed architecture
composed of communicating Routing Learning Agents

(RLAs), one per node. The RLAs listen promiscuously to the
routing traffic (requests, responses, and errors) exchanged by
the nodes. RLAs consider the captured traffic, over the time, as
events and construct an overview of the relationships between
nodes involved in these events. Indeed, based on observed
routing traffic, each RLA scores the nodes using entropy based
approach. Each RLA uses the entropy scores to classify the
nodes behaviors to be either, (1) inhibiting, (2) negligent, (3)
uncooperative, (4) cooperative, (5) diligent, or (6) activator,
listed from the least to the most cooperative. As we shall see,
such classification helps noticeably improve the quality of
established routes. Routing overhead will also be reduced since
better routes result in lower route failures and re-routing
requests. Thus, in our approach, each RLA is capable of
analyzing the behavior of known nodes and to dynamically
adapt its routing decisions. It is able to observe, analyze, and
intelligently intervene on the local node routing table. Routing
activities observed and used by an RLA depend on the routing
protocol employed. For example, for the AODV protocol (Ad-
hoc On demand Distance Vector), nodes can learn useful
network state information (topology and workload) from
observed Route Requests, Route Replies and Route Errors. For
OLSR protocol [4], [16] HELLO messages and TC (Topology
Control) messages are also useful information.

RLAs’ architectural concept consists of three actors:

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

2

Autonomic Manager (AM), Touch Points (TP) and Managed
Resources (MR):

--Autonomic Manager (AM) is the core of the
architecture, as it ensures the system self-managing property.
The AM is composed by four modules: Monitor, Analyzer,
Planner and Executor.

--Touch Points (TP): TP are the interfaces of the AM to
the system environment. It is composed of two components:
effectors and sensors. Sensors offer a set of logical parameters
(metrics) describing a real time state of the current
configuration of the system. Effectors are responsible of
manipulating MR. So all updates (new configurations and
notifications) are applied to the MR through the effectors. We
note that TP (Sensors) can use a tracing technique (gathering
observations from a given execution) to detect problems
involved in the application.

-- Managed Resources (MR): these present a set of
configurable parameters defined on the basis of specific system
needs. These parameters can be attributes, errors, functionality
symptoms, alert degrees, abnormal response time, etc.

Hence, an autonomic manager should be able to observe
(using Sensors), understand observations by using appropriate
metrics (Monitor), analyzes the current state of the system and
proposes specific reactions that resolve the problem
(Analyzer), create or invoke methods to act (Planner), and
finally apply required changes on managed resources. As
shown in Figure 1, the proposed autonomic architecture is
consolidated by a Local Knowledge Base (LKB), which serves
to calibrate decisions of the local Autonomic Manager. In
addition, the LKB provides useful data for the analyzer.

The rest of this paper is organized as follows. First we
describe related work. Second we present the behavioral
model. Then we provide a detailed description of the RLA
architecture. Next the fundamental properties of the proposed
architecture are presented. In the following section we present
and discuss simulation results comparing the performance of
AODV and OLSR routing protocols with that of their
autonomic implementations, namely A2ODV and AOLSR.
Finally we conclude the paper.

Fig. 1. RLA Architecture. L.K.B: Local Knowledge Base, R.E:
Rules Engine, ADM: Alternate Decisional Module

2. Related Works

Many leading wireless routing protocols adopted by IETF,
such as AODV [5] and OLSR [4] exhibit serious performance

degradation due to the characteristics of this type of networks.
For several years, researchers focused on the optimization of
existing protocols by trading off QoS vs. overhead [6], [7], [8];
[9], energy consumption vs. routing quality [10] routing
overhead vs. QoS, etc. Other previous work has proposed a
wireless routing protocol using an adaptive solution, which can
guarantee an adaptive behavior of the protocol. Some of these
works propose adaptive versions which are based on
monitoring processes. The authors in [2] propose that each
node has to monitor the current congestion status. If congestion
is detected then an alternate path has to be proposed. In that
case congestion at the node will be reduced compared to the
originally established path. The overhead caused by the
selection of the alternate path is unacceptable and induces a
large number of control packets. Another work called AntNet
proposed by [11] in which routing operations are performed
based on the gathering of useful information. AntNet operates
with two types of network exploration: forward and backward.
The forward exploration observes changes and the backward
performs required updates in the routing table. The authors of
[12] propose autonomic and decentralized management
architecture for MANETs, which deploys dynamic loading
policies. At each transaction, the autonomic manager updates
required policies and redistributes them, which ensures a
continuous control and enables a dynamic management closely
related to the current state of the network.
IBM was among the first to conduct research on Autonomic
systems by offering a reference autonomic architecture [17].
As shown in Figure 2, the IBM architecture presents general
concepts which transform a given classic system in an
autonomic one. IBM provides three actors: Autonomic
Manager (AM), Touch Points (TP), Managed Resources (MR)
and a Local knowledge Base (L.K.B) linked to all other
modules of an AM. Table. 1 compares our architecture with
that of IBM. With respect to the IBM architecture [13], [17],
we added an Alternate Decisional Module (ADM) permitting
the treatment of urgent cases without the intervention of the
AM. This can be particularly helpful in highly dynamic
environments. Further, we have equipped the Analyzer with a
Rules Engine (RE) enabling the node to intelligently adapt its
behavior to observed routing traffic. The RE relies on six rules,
(see next section) serving to detect nodes attitudes or behaviors
towards each others. Finally, the Local Knowledge Base (LKB)
is linked only to the Analyzer, so that read/write actions can
only be performed by the analyzer.

Fig. 2. IBM Autonomic Architecture reference model

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

3

Table 1. Comparison between the RLA and the IBM
architectures

Module RLA IBM

Sensor Traffic observatory A probe linked to the
system

Effector Routing updates Updates Applicators

Monitor Yes Yes

Analyzer Yes Yes

Planner Yes Yes

Executor Yes Yes

ADM Yes: treatment of
urgent cases

No

LKB Yes: Linked only to
the analyzer

Yes: Linked to all
other modules of the
AM

RE Yes: located and
managed by the
analyzer

No

3. Behavioral Analysis

RLA is based on a Behavioral Analysis (BA) approach. The
BA provides the means of analyzing and understanding
behaviors of entities based on observed events. Several
researchers have reported that behaviors can be learned from
observed interactions between entities themselves and/or their
environment. That is, the behavior of each entity towards
others can be understood based on its past and present
interactions with other entities.
Behavioral Analysis is on the crossroad of several research
fields like Social and Behavioral Sciences (Economics,
Psychology, and Sociology), Artificial Intelligence (Intelligent
Agents, Multi-agent systems), etc. For example, in economics
model, researchers use BA in order to study the behavior of
decisions makers’ attitudes (optimism, pessimism, speculation,
caution, imitation, leadership, etc.)
In the case of ad hoc networks, a mobile node behaves
according to its own needs, its state, and its current perception
of the network. Thus, a node behavior closely depends on the
needs and state of other nodes in the network, since they act as
routers for each others. The quality of established routes can be
noticeably improved if the routing process is behavior aware.
For these reasons, each node in the wireless ad hoc network
(via its RLA) is equipped with the capability of capturing the
behavior of other nodes based on observed routing events
(route requests, responses and errors), which it uses to infer the
attitude of each node towards other nodes.
Numerous simulations with various scenarios have
demonstrated that a node can take one the following routing
attitudes:

1. Inhibitor: a node which always replies with errors to
routing solicitations of all nodes, thus inhibiting
traffic from the network.

2. Negligent: a node which replies negatively to all
routing solicitations issued by this local node.

3. Uncooperative: a node which positively replies to
routing requests only when it is in its own interests to
intervene. That is, the node is helpful only to those
nodes that appear in its currently known active
routes.

4. Cooperative: a node which always positively replies
to routing solicitations from the local node with its
best route.

5. Diligent: a node which always positively replies to
routing solicitations from any node with its best
route.

6. Activator: a node which never replies with errors
and it offers positive responses for all routing needs;
in addition an activator node automatically
propagates all route updates to other nodes that are
activator to him. Note that if a node i is activator to a
node j, then node j must also be activator to node i.

7. Unknown: this is also the initial state of a node. A
node can also be classified as having an unknown
attitude if it keeps rapidly changing its attitude,
which makes it impossible to properly classify it.

Table 2 summarizes simulations based on 20 scenarios which
involve extensive routing interactions between 100 mobile
nodes. These simulations confirm that the above attitude
classification exhaustively cover all possible node routing
behaviors. Indeed, as shown in Table 2, the time distribution of
the various attitude states sum up to 1. Further, a node spends
most of its time in one of the known attitude states and two
nearby states. A close look at Table 2 allows us to conclude the
following:

• If a node has a given attitude, the time percentage it
sojourns at that state is largest compared to sojourn
time percentages at other attitudes (blue box in Table
2).

• The light gray boxes in Table 2 show that the
adjacent attitude states have the next largest sojourn
time percentages.

• The dark gray boxes show that a node in an unknown
attitude sate can change to all other attitude states,
practically with the same percentage (dark gray
boxes in Table 2).

In our proposal, the RLA of each node has the responsibility of
performing a behavioral analysis of other communicating
nodes and classifying their routing attitudes, based on routing
traffic captured by the local node. Routing traffic consists of
routing events which can be a NRE (New Route Event, e.g.
Route Request or Route Reply in AODV protocol) or an RFE
(Route Failure Event, e.g. Route Error in AODV protocol). The
first type presents favorable interactions between nodes while
the second type represents unfavorable ones. For example, a
node J which issues only RFE events to node I will be
considered as Inhibitor for I. By contrast, a node J which
always issues NRE events to I (and vice versa) will be
considered as activator.

To permit a node determine behavioral attitudes of other
interacting nodes, we have defined an events model which is
used by the node RLA agent (Figure 1: Rule Engine). In the
following we present the model rules, whose verifications are
triggered at the occurrence of each routing event.

Let T be a period of time, and e an event which can be NRE or
RFE. Assume that during T, Ni events have occurred at a
particular local node i.

Let Ei = {e, where e is an event received or issued by the local
node i during T}; then Cardinal (Ei) = Ni. We denote by
RFEji (respectively NREji) an RFE event sent by node j to
node i (respectively a NRE event sent by node j to i). Then the
various routing attitudes of a particular node j can be expressed
as follows:

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

4

Table 2. Attitudes variations during simulations

A node j is considered as inhibitor towards a node i if it
satisfies R1:

R1. (e Ei where j is involved then e = RFEji)
A node j is considered as negligent towards a node i if it
satisfies R2:

R2. If e= NREij then e Ei where e = NREji
A node j is considered as uncooperative towards a node i if it
satisfies R3:

R3. (If e= NREij then e Ei where e = NREji)
AND (e Ei, e RFEji)

A node j is considered as cooperative towards a node i if it
satisfies R4:

R4. If e= NREij then e Ei where e = NREji
A node j is considered as diligent towards a node i if it satisfies
R5:

R5. (If e= NREij then e Ei where e = NREji)
AND (e Ei, e RFEji)

A node j is considered as activator towards a node i if it
satisfies R6:

R6. (If e= NREij then e Ei where e = NREji)
AND (If e= NREji then e Ei where e =
NREij) AND (e Ei, e RFEji)

The above six rules are verified by the rule engine of the RLA
at the occurrence of each new routing event.
Now, for a particular node i, and for Ni received events during
a period T, how many times a rule must evaluate to true to
decide the routing attitude of a particular interacting node j
towards node i. This question can be approached by the use of
the Shannon’s entropy theory. The entropy is an evaluation of
uncertainty of a random variable. It can also be considered as a
measure of the complexity of a given system (or a degree of its
randomness). In statistics, the entropy is used to quantify the
value of information of a random variable (quantity which
makes it possible to make a decision). According to entropy
statistics, the value of information is a function of probability,
which takes the following formula:

H(X) = - (1)

Where X is a discrete random variable, X,

and .

Entropy is used to characterize the impurity of a random
collection of events. In our case, entropy is used to measure the
homogeneity of the events that a rule matches. For a given
collection E, containing the events that a certain rule Ri
matches, let Pi be the proportion of events in E where the rule
Ri evaluates to true (P(Ri=true)).
In our case, the RLA of a given local node, after observing N
routing events, must identify the routing attitude of every node
involved in these routing events. This can be achieved with the
help of the entropy function given by Equation (1) as follows.
Recall that each attitude is expressed by one of the rules R1 to
R6. Then, the entropy associated with each rule Ri can be
expressed as follows:

H(Ri) = −

(2)
Where the probability that a rule Ri evaluates to true is given by
the following expression:

 (3)

Where N is the total number of events and ki is the number of
events where .
Figures 3 to 8 show, respectively, the entropies statistics of
rules R1 to R6.

Fig. 3. Entropy for Rule R1; it is minimum for k1 = N/2=50.

↱Changes attitudes to Inhibitor Negligent Uncooperative Cooperative Diligent Activator Unknown

Inhibitor 41% 29% 16% 7% 5% 1% 1%

Negligent 25% 39% 22% 6% 5% 2% 1%

Uncooperative 8% 22% 37% 23% 7% 2% 1%

Cooperative 2% 3% 23% 37% 22% 12% 1%

Diligent 3% 3% 10% 24% 36% 23% 1%

Activator 2% 3% 7% 16% 19% 52% 1%

Unknown 14% 15% 16% 13% 16% 16% 10%

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

5

Fig. 4. Entropy for Rule R2; it is minimum for k2 =N/22 = 25.

Fig. 5. Entropy for Rule R3; it is minimum for k3 =N/23= 12.

Fig. 6. Entropy for Rule R4; it is minimum for k4 =N/24 = 6.

Fig. 7. Entropy for Rule R5; it is minimum for k5 =N/25 = 3.

Fig. 8. Entropy for Rule R6; it is minimum for k6 = N/26 = 1.

Figures 3 to 8 also show, for each rule, the number of events at
which the entropy is minimum. Recall that the entropy is used
to identify the value of information which makes it possible to
make a decision as to the attitude of a node toward another
node: this is when the entropy is at its minimum. So, these
values reflect the number of times where a rule has to be
evaluated at true to conclude the related attitude.

Table 3. Number of events for which a rule must evaluate to true in
order for a node to assume the corresponding attitude

 Attitude

K

Rule 1 Inhibitor N/2
Rule 2 Negligent N/2

2


Rule 3 Uncooperative N/2
3


Rule 4 Cooperative N/2
4


Rule 5 Diligent N/2
5


Rule 6 Activator N/2
6


Therefore, an important question is: How many times a rule
has to evaluate to true if Ni events are received by node i
during a period T, to decide that a node j has a given attitude
towards i? Table 3 tells us that Rule 1 must evaluate to True for
50% of the received events for the corresponding node to be
assumed Inhibitor; It is 25% of the received events for Rule 2;
etc. In general, for a given two nodes i and j, and for Ni
received events, a rule Rp has to evaluate to true at least N/2

p
,

(1≤p≤6) times to decide that the node j has the behavior
attitude stated by Rp towards i. That is, Rule i must be true for
twice the number of events of Rule i+1, i=1,..,5. This can be
explained by the fact that each rule imposes one or more
additional conditions on those of the previous rule. Next, we
describe the RLA architecture.

4. RLA Architecture

An RLA is composed of three parts: Autonomic Manager,
Touch Points, and Managed Resources. In the following we
describe each part.

4.1. RLA Managed Resources
In our case, only one managed resource is considered: the
routing table. Each RLA has to control the local routing table
in order to perform the best possible configuration. The RLA

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

6

uses the two fundamental fields which exist in almost all
routing tables: Destination Address and Next hop. The RLA
has the responsibility of automatically filling these two entries
in the routing. The effector can access and manipulate the
routing table only after receiving an action request from the
AM module.

4.2 RLA Touch Points
The touch points are composed of Sensor and Effector:

• Sensor (Figure 8)
It is the module that implements the observer component. It
captures all requests listened by the local node and transforms
them into events (Events_In). Requests can be: Route requests,
Route responses, Route failures or errors.
The sensor has four interfaces: two IN and two OUT. The two
IN, where the first one serves as a listener of events, while the
second one is connected to the monitor, which can shut off the
sensor using this interface. The two OUT are connected to the
Monitor and to the ADM. Events collected by the sensor are
filtered by ‘’the events filter’’ which decides about the
relevance of each event and sends them to the Monitor or to the
ADM. The following algorithm describes the ‘’Events Filter’’
functionalities:
Algorithm Events_Filter
Ni, Nj : Nodes Id
 Events_In (Ni, Nj) //Reception by Ni of an event involving Nj

1. Begin
2. If Events_In (Ni, Nj) is urgent and requires

ADM
2.1 Then send Events_In (Ni, Nj) through
OUT_2 // To the Alternate Decisional
Module
2.2 Else send Events_In (Ni, Nj) through
OUT_1 // To the Monitor

3. fi
4. End

Fig. 8. Structre of a Sensor.
• Effector (Figure 9)

As aforementioned, after receiving events then the AM has to
decide whether or not an update will be required. If that is the
case, updates have to be applied to the MR using the effector.
The effector has three interfaces (Figure 9): two IN and one
OUT. The two IN are:

a- IN_1 connected to the executor (which is used to
receive ‘’actions’’ from the AM)

b- IN_2 connected to the ADM (which is used to
receive ‘’urgent actions’’ from the ADM).

The two interfaces IN are collected in the Actions Receptor,
which is responsible for actions synchronization. The
synchronization is performed on the basis of the time capture
of each event.
The interface OUT is connected directly to the MR (Managed
Resource). Three actions are possible according to a specific

score attributed to each entry by the analyzer (PS: Pairewise
Score, will be defined later in this paper):

1. Delete the Entry (abbreviation: DEL_ENT): if the
routing entry is no longer needed, then it can be
deleted.

2. Suspend the Entry (abbreviation: SUSP_ENT): if
some routing problems (errors, repeated
disconnections, etc.) are detected in a given entry
then it has to be suspended. In that case, the RLA
provides three actions to apply:
(a) Suspended until a notification from the

analyzer: the entry has to be suspended until
finding a new route.

(b) Suspended until next update: if a new entry
cannot be found then the entry has to be
unsuspended in order to be used at the next
routing operation. In that case, the RLA has
tried to find a new entry, but there is no new
entry available, then it uses the existing one.

(c) Suspended until a next update of that entry: the
entry must remain suspended until a new entry
has to be found.

3. Update the Entry (abbreviation: UPD_ENT): the
entry has to be updated immediately since a new
route is found.

Fig. 9. Structure of an effector.

4.3 RLA Autonomic Manager
The autonomic manager is composed of four modules:

Monitor, Analyzer, Planner and Executor:
• Monitor (Figure 10)

The monitor has one interface IN and two interfaces OUT. The
IN interface is connected to the sensor and used to receive
captured events. The two OUT interfaces are:

(a) OUT_1 connected to the Sensor (which can be used
to send requests to the sensor: On / Off capturing)

(b) OUT_2 connected to the Analyzer (which is used to
send reports achieved by the report Creator).

The Monitor is composed of: (1) a collector of events, which
allows the reception of events from the sensor, (2) an events
filter responsible of the crucial selection of events; it classifies
received events according to their priorities. Indeed, a node
hears on his wireless channel a variety of routing events, many
of which may neither concern him nor his immediate
neighbors.
The highest priority will be given to events in which the local
node is involved such events concern one or more entries in the
routing table, thus the correspondent RLA has to treat these
events with highest priority. As Medium priority, the monitor
distinguishes events which concern immediate neighbors of the
local node since neighbor nodes are used as the first interface
(hop) to the rest of the network. Thus events involving these
nodes have to be considered with a medium priority. Otherwise

IN_1

IN_2

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

7

events can involve nodes which are:
(a) N-hop neighbors of the local node. These events

are treated with low priority since they cannot
directly affect the local routing activity. For the
local node, these events serve to update the PS
score of nodes involved in the events.

(b) Nodes unknown to the local node. In general,
these events are ignored.

To summarize, events received by a node are classified as,
H: High, this corresponds to events where the local node
is involved.
M: Medium, this corresponds to events where the one-hop
neighbors of the local node are involved.
L: Low, this corresponds to events where neither the local
node nor its neighbors are involved.

Fig. 10. Structre of a Sensor.

Finally, (3) the third component of the monitor is the report
creator, which prepares and sends a detailed report to the
Analyzer. Figure 11 shows an example of a report sent by the
monitor to the analyzer. The first column shows the number of
events collected for each operation; the second column shows
the id of the node initiator of the event, concatenated to the
type of the event and to the id of the node receptor of the event.
The third column indicates the type of the operation (receive or
send) concatenated to the time of the capture. Finally, the
fourth column gives the assigned priority for each operation.

Fig. 11. Example of a report sent from the Monitor to the Analyzer

• Analyzer (Figure 12)

The Analyzer consists of:
-- An Events receptor,
-- A Controller which hosts a rules engine and connected
to the Local Knowledge Base (L.K.B),
-- A Report creator connected to the planner.

The ‘’Events receptor’’ receives messages from the Monitor; it
rearranges them following the indicated priorities and sends the
obtained results to the controller. At this stage, the controller
has a crucial role: it determines correlation between new events
(received from the receptor) and old events (stored in the
LKB). This correlation can be obtained by looking for the
tendency of the relationships between nodes involved in the
events list. For this reason, the controller uses the ‘’Rules
Engine’’ to discover interactions between nodes based on
captured routing traffic (errors, replies, requests…). The
‘’Rules Engine’’ classifies events as: NRE (New Route Events)
or RFE (Route Failure Events).
The ‘’Rules Engine’’ operates as defined in ‘’events model’’
section. In addition, at the occurrence of a routing event, the
rule engine re-verifies the veracity of each affected rule and

passes on the results to the controller. Then, the controller
(Figure 13) uses ‘’Tendency Detection Algorithm (TDA)’’
permitting the computation of a score ‘’PS’’ (Pairewise Score)
for each node involved in the events list regarding its attitude
with the local node. In practice, the TDA determines PS scores
based on an incremental counter attached to each known node.
The following algorithm describes how the PS scores are
computed.

1. Algorithm PS_Comp (Rule_at_True, NL, Nj)
2. NL, Nj : Nodes Id
3. NE: total number of times Rule_at_True has been evaluated

until now
4. Begin
//Increment Counter of the rule verified at true
5. For each Rule i (i=1 .. 6)do
6. If Counter_of (Rule_at_True, NL, Nj)≥NE/2i //verifying

Entropy Values
7. Then Counter_of (Rule_at_True, NL, Nj)=Counter_of

(Rule_at_True, NL, Nj)+1
//Updating PS Score of NL, Nj

//NL attitude is related to the rule Ri
8. PS (NL, Nj)= Counter_of (Rule_at_True, NL, Nj)/NE
9. End If
10. End For
11. End

In other words, for a particular node L, PSL,j is a score that
estimates the ratio of the veracity of an attitude between the
node NL and any given node Nj involved in the routing events
observed by node NL, averaged over the period extending from
the first routing event observed at node NL and involving node
Nj until now. As we shall see later, these scores are used by the
node to decide which entries to keep in the node forwarding
table.
Since the RLA functionalities are based on events listened
from the environment, it provides a dynamic size of the LKB
(Local Knowledge Base), which is used in order to maintain a
historical view of old events. A node L can estimate network
stability by monitoring network variability using the rate of
events RL expressed in number of events per second. Then, we
introduce a Stability Indicator (SIL) metric estimated by the
variance of the rate of events, observed over a fixed interval of
time, dictated by the LKB size. The SIL is computed using
Equation (4) where n is the number of measurements made by
node L of RL. As a result, if the RLA detects a considerable
increase (respectively decrease) of the SIL then it increases
(respectively decreases) the size of the LKB proportionally. If
not, the size is left as it is.

SIL= , where = (4)

The controller has a PS Table which is used to maintain PS
scores of all nodes known to the local node. At a final step, the
controller sends a notification to the report creator which
consults the PS table, and sends a message to the planner
containing node identifiers concatenated to the associated PS
score.

• Planner
It is responsible for the generation of action plans by using
received information from the analyzer. It uses a coefficient
called PST (Pairewise Score Threshold) in order to decide
which action to do. Actions are decided as follows:

IN

OUT_1 OUT_2

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

8

Fig. 12. Structure of an analyzer

1. Let NL :the Local node Id
2. Let Nj : a node known by NL
3. Let PSNL, Nj: Pairewise Score associated by NL to Nj
4. For each Nj Routing table
// delete all routing table entries that are no longer needed
5. if PS (NL, Nj)≈0 then DEL_ENT (Nj)
// suspend all routing tabl entries which present temporary problems
6. if (0<<PS (NL, Nj))<PST then SUSP_ENT(Nj)
// update all entries
7. if (PST≤PS (NL, Nj)≤1 then ((UPD_ENT(Nj) OR exit))
8. if (PST≤PS (NL, Nj)≤1 then ((UPD_ENT(Nj) OR exit))
9. End of each

As a last step, the planner sends actions to the executor.

• Executor

The executor verifies plans proposed by the planner
(synchronization in time, possible errors, etc.) and then it sends
actions to the effector.

4.4 RLA Alternate Decision Module
As previously indicated, the RLA architecture exhibits general
concepts of an autonomic architecture. Furthermore it
integrates an Alternate Decisional Module (ADM) permitting
the treatment of urgent cases (when immediate action must be
taken and switching to the AM is not required). The ADM is
crucial in highly dynamic networks such as wireless ad hoc
networks. We can distinguish two such situations:

(1) A link is broken while that link is in use (events

X: Updating the size of the LKB
1: Loading data from LKB
2: uploading data to the Rules Engine
3: Suggestions received from the Rules Engine
4: Computing PSs scores
5: Updating the LKB
6: Updating PSs in the PS table

PS Table Fig. 13. Tasks achieved by the controller

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

9

received indicating an error involving nodes which
serve as relays of an active route). The corresponding
routing entry in the routing table has to be suspended
until a next update.

(2) A destination node which is no more reachable
(events received involving errors about a destination
node in use, the transfer has to be stopped). The
corresponding entry has to be deleted. Another entry
to that destination can then be determined if it
reappears.

The ADM intervenes with two types of actions:

 DEL_ENT(Delete_from_routing_table) or
SUSP_ENT(Suspend_in_routing_Table).

The ADM has to use two interfaces (Figure 14): one IN

(connected to the sensor) and one OUT (connected to the
effector).

(3) REFERENCE CITATIONS

References should be numbered consecutively throughout the
paper using Arabic figures in brackets: [1], [2], etc. and
collected together in a section headed "References" at the end
of the paper. Reference to journal articles [1], textbooks [2],
papers innference proceedings [3], chapters in books [4],

Fig. 14. Structure of an ADM

4.5 Communications between RLA agents
As aforementioned, updates performed by an RLA agent affect
the routing behavior of the corresponding node. This change in
behavior will be observed by the RLAs of other nodes based on
monitored routing traffic. Consequently, if one RLA updates its
managed resources (routing table), other RLAs will learn this
from observed traffic and perform similar actions. In particular,
nodes which are considered as cooperative have to be
influenced by each other (if one node changes its behavior, the
others inherit it).

4.6 The dynamic parameters PS & PST
PS should be viewed as a behavioral score, which captures the
degree of positive interactions among pairs of nodes. Indeed,
each time a node L receives a routing event from a node i, it
triggers the verification of the six rules to see whether the
observed event corresponds to a positive or negative interaction
between nodes L and i.
PST (Pair-wise Score Threshold) is a parameter used by each
node L to decide which node entries it should maintain active
in its forwarding table. Only nodes with a PS > PST see their
entries maintained active in node L forwarding table. PST is a
dynamically estimated threshold, which is computed based on
new received events (from the monitor) and recorded ones (in
the LKB). PST is set equal to the ratio of the number of
favorable events (NREs) to the total number of events,
favorable (NRE) and unfavorable (RFEs) (Equation (5)).
Figure 15 illustrates an example of two nodes NL and Ni which
are cooperative, diligent or activator on a periodic basis (100
sec), i.e. collaborate positively (with respect to R4, this
corresponds to an increase of NRE events between the two
nodes). Figure 15 shows how PS closely follows the same
variations occurring among this pair of nodes. During the first
100 sec, NL and Ni are mutually unknown, where PS values are
nearly zero (about 0.001, 0.002). In the next period (100 sec to

200 sec), NL and Ni become intensively cooperative, diligent
and even activator, which explains the increased values of PS.
The same mechanism is repeated periodically until 999sec.
Figure 15 shows the variation of PS and PST over time:

1- In zones where NL and Ni are cooperative (I: thick
Dark gray in Figure 15), PS exceeds PST: entries
containing Ni in the routing table of NL are updated or
left as they are.

2- In zones where NL and Ni are moderately
cooperative (II: uncolored in Figure 15, between 0.1 and
0.7), PS is inferior to PST (but quite different from 0),
entries containing Ni in the routing table of NL are
suspended.

3- In zones where NL and Ni are no more cooperative
(III: light gray in Figure 15), PS ≈0, entries containing Ni
in the routing table of NL are deleted.

PST = (5)

Fig. 15. Variations of PS and. PST over time. Dark gray presents

Zones (I), light gray shows Zones (III), and the rest
(uncolored) presents Zones (II). PST is presented by
‘’thick black Curve’’ and PS by ‘’thin gray curve’’. X-
axis: PS, PST values, Y-axis: Time in seconds.

5. Experimental results

In this section, we describe experimental results showing
how the proposed RLA-based autonomic architecture can help
improve the operations of two well known routing protocols:
the Ad-hoc On demand Distance Vector Routing (AODV)
protocol [5], [15] and the Optimized Link State Routing
(OLSR) protocol [4].

Experiments are conducted using NS2 simulator [14].
Simulations scenarios deploy a network composed of 100
nodes in a 1000m x 1000m field. Nodes are placed randomly
on the surface and move according to the random way point
mobility model with no pause time.

The simulations were run for 900 seconds with a number of
generated connections varying between 15 and 20. For each
connection, sources generate 512-byte data packets with a
constant bit rate. In order to evaluate the proposed model, we
have evaluated the most important performance metrics
regarding the sensitivity to mobility, by varying the speed in
the interval 0 to 20m/s.
-- Efficiency, in terms of delivered packet ratio
-- Overhead load: Control traffic generated compared to the
data traffic delivered (in bits)

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

10

-- Average end-to-end delay: Time needed by a packet to reach
the destination
-- Route stability: number of routes declared down per node.
-- Number of updates applied to the routing table.

a. Autonomic AODV (A²ODV)

AODV is a reactive protocol, where routes are established
only when they are needed. AODV mechanisms are based on
three types of requests: RREQ (Route Request), RREP (Route
Reply) and RERR (Route Error). The route discovery
mechanism uses a local broadcasting process; hence a receptor
of a RREQ has to broadcast it to its neighbors with the
requested destination. A receptor of a RREQ (an intermediate
node or a destination) has to reply to the source only if it has a
fresh route. After establishing a route between the source and
destination, involved nodes are considered as active with
respect to this route. Hence, each one has to make an update in
its own routing table which helps in maintaining the route and
detecting link errors.
For AODV, we have updated the ‘’aodv_routing’’ module
which receives the PDU (Protocol Data Unit) from the
application layer and loads the AODV algorithm. Updates
made are reported in Table 4. For our specific need, a routing
buffer is added at the third layer (serving as LKB), which could
accumulate more than 64 data packets. This buffer allows the
analyzer to treat events waiting for eventual processing.
Figure 16 and Figure 17 show a relatively low efficiency in
terms of packet delivery ratio for both AODV and A²ODV. In
low mobility case, failures and errors are caused by the MAC
layer and not by the mobility. In that case, AODV has a unique
option to apply: maintenance procedure (re-launching RREQ
for new demanded routes and RERR for failures and errors).
AODV drops all arriving packets to those destinations until
new routes are established. However, A²ODV (RLA) uses
storage data in the LKB to update the routing table, which
enables it to retrieve lost destinations. Hence, routes are
quickly recovered and packets will be delivered to their
destinations. When nodes exhibit high mobility, A²ODV
behaves practically like AODV. When failures are caused by
mobility, the two versions converge to the same results.
As illustrated in Figure 18 and Figure 19, A²ODV results in a
lower overhead than AODV. This is also confirmed by Figure
20, where the percentage of routes declared down for AODV is
higher than A²ODV. This is due to:

− The mechanism used by AODV: ‘’using the route
notification in the FIRST RREP received’’,

− The low number of delivered packets, which declare
errors.

− A²ODV automatically adapts the content of its routing
table based on monitored traffic history.

In Figure 21, we have used the term ‘’Mobility percentage’’
which corresponds to 0m/s (0%) and 20m/s (100%), as an
average of speeds of all nodes in the network. Figure 21 clearly
shows that ‘’shortest path routes” are not necessarily the best
routes. A given long path can offer a better route in the long
run than a shortest path. Figure 21 shows that A²ODV
outperforms AODV in terms of average end-to-end delay,
although AODV uses the shortest path (i.e. the first RREP
received).

TABLE 4. COMPARISON BETWEEN A²ODV VS AODV

Fig. 16. Packet Delivery Ratio in Low Mobility

(0m/sec≤speed≤4m/sec)

Fig. 17. Packet Delivery Ratio in high Mobility

(5m/sec≤speed≤20m/sec)

Fig. 18. Overhead (low mobility) (0m/sec≤speed≤4m/sec)

Ra
tio

Ra

tio

O
ve

rh
ea

d

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

11

Fig. 19. Overhead (high mobility) (5m/sec≤speed≤20m/sec)

Fig. 20. Routes declared down, per node

Fig. 21. Average path delay (sec) vs Mobility percentage

b. Autonomic OLSR (AOLSR)

OLSR [4] deploys three essential routing mechanisms: Hello
messages, flooding control traffic using MPRs (Multi-Point
Relays) and shortest path first algorithm. Hello messages are
sent only for one hop and serve to discover neighbors, which
are localized in the range of the local node. Links can be
symmetric or asymmetric; OLSR considers that two nodes
which are two-hop neighbor (via another node) can not behave
as neighbor even if links are symmetric. The HELLO message
contains a list of neighbors and the status of each
corresponding link. For this reason, HELLO messages are
considered as an immediate informative packet which updates
the quality of links of the neighborhood of a given node. In
addition, this information is to be used for a determined period
and refreshed periodically. Thus, we can imagine the number

of flooded HELLO packets across a large size MANET; which
can engenders inacceptable control traffic. For this reason,
OLSR provides MPR concept, where each node uses its two-
hop neighbor list in order to determine a minimal set of MPRs.
This guaranties that all neighbors at two hops remain
reachable. Furthermore, each node has to maintain a list of
nodes qualified as MPRs. MPRs are used in the flooding
mechanism in order to reduce the flooding process and to
periodically maintain the topology. The topology maintenance
is based on TC messages (Topology Control), which contains
the source address of the initiator node and its MPR selector
set. Zach node has a partial view of the rest of the network, but
using the MPRs, all nodes are reachable from each node of the
network. We have to note that the topology Information is
stored only for a given period of time and has to be updated
periodically. For an autonomic implementation of OLSR, when
a node receives a hello message containing a list of neighbors
and the associated links status, it identifies the difference
between the neighborhood information contained in such lists
and the current links in use, and then (1) classifies each node as
initiator of NRE (Positive Hello) or RFE (Negative Hello), (2)
calculates the PS (respectively the PST) for each involved
node, (3) updates the LKB and finally (4) applies the RE for
new updates. Then, using PST threshold, the RLA decides
whether or not the acquired changes have to be applied to the
routing table (Managed Resource). The same mechanism is
deployed after receiving MPRs notifications (via TC
messages).

Fig. 22. Packet Delivery Ratio in Low Mobility

(0m/sec≤speed≤4m/sec)

For OLSR, we have updated the ‘’kernel_routes’’ module in
order to integrate the RLA structure, which has to be exhibited
for each operation. In the current version of AOLSR, the
detection of needed routes is achieved at the application layer,
which simplifies the task of the RLA agent. In addition, the
LKB is modeled as a routing buffer at the third layer, and used
by the two modules: ‘’kernel_routes’’ and ‘’net_olsr’’ and
could accumulate more than 64 data packets. Furthermore,
AOLSR deploys an RLA agent in each node, including the
MPRs. For MPR nodes, simulations show that the number of
updates made in LKB is more important compared to those of a
normal node. This is entirely normal, because the quantity of
the traffic transferred by MPR nodes is higher than the traffic
forwarded by a normal node.

O
ve

rh
ea

d
N

um
be

r o
f r

ou
te

s d
ow

n

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

12

Fig. 23. Packet Delivery Ratio in high Mobility

(5m/sec≤speed≤20m/sec)

Fig. 24. Overhead (low mobility) (0m/sec≤speed≤4m/sec)

Fig. 25. Overhead (high mobility) (5m/sec≤speed≤20m/sec)

Fig. 26. Routes declared down, per node

Fig. 27. Average path delay (sec) vs Mobility percentage

Figures 22 and 23 show that AOLSR performed noticeably
better than OLSR with respect packet delivery ratio (not less
than 83.2%). Note, that in low mobility, AOLSR behaves
better than OLSR, AODV and A²ODV (78.1%). The reason is
that AOLSR uses combined mechanisms: (1) information
stored in the LKB, which involve intelligent decisions and (2)
anticipates routing demands. In the case of high mobility,
AOLSR achieves better results than OLSR. So, since changes
are more frequent, then routing tables are reconfigured
periodically. In that case, information about broken or partially
known links is not considered in the routing tables, thus
avoiding unstable routes. Furthermore, the route recovery
mechanism is always accompanied by a loss of data packets. In
the case of AOLSR, this problem is in a great part resolved,
due to the nodes knowledge bases which allow a local recovery
of routes based on background information filtered by the Rule
Engine of the RLA agent. Figures 24, 25 and 26 show that the
integration RLAs in the OLSR nodes results in less overhead.
This is expected because the proactive properties of OLSR
require periodic updates, in order to maintain topology
structure throughout the entire network, which is avoided in
AOLSR. Indeed, for AOLSR, when a route already exists in
the routing buffer, AOLSR inhibits the rediscovery
mechanism, which reduces significantly the overhead. As can
be seen in Figure 27, AOLSR generates better routes than
OLSR, especially for higher a mobility factor. In the
beginning, the two protocols have nearly the same results until
26 seconds, after that, AOLSR surpasses OLSR.

7. Conclusion

This paper introduced an autonomic architecture, which is
Self–adaptable, Self–manageable, Self-Configurable and Self-
protectable. The architecture is designed to help better
orchestrate node cooperation in carrying their various network
activities (e.g. routing). The architecture is evaluated using the
AODV and OLSR routing protocols as test cases. The
architecture is deployed by an internal agent called RLA
(Routing Learning Agent). Each mobile node has an RLA
installed locally in order to dynamically self-adapt its routing
decisions. An RLA is able to observe routing traffic, analyze it,
and intervene on the local node routing table. Thus, the RLAs
enable the corresponding network nodes self-adjust their
routing decisions to changing network state. Extensive
simulation results show that the proposed autonomic protocols
(A²ODV, AOLSR) noticeably outperform the original AODV
and OLSR with respect to traffic overhead, quality of routes,
and packet delivery ratio.

Arbia et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 2 (2011) 1-13

13

References

[1] Anis Ben arbia, Habib youssef, ‘’Self-Organization in Wireless
Networks using The Autonomic Behavior’’, Second IEEE International
workshop on ITS for ubiquitous ROADS, Hammamet, TUNISIA, May
2009.

[2] Duc A. Tran and Harish Raghavendra, “Congestion Adaptive
Routing in Mobile Ad Hoc Networks”, IEEE Transactions On Parallel
And Distributed Systems, vol. 17, no. 11, NOVEMBER 2006, pp
1294-1305.

[3] S. Ziane and A. Mellouk “A Reinforcement Learning Approach for
Routing and Scheduling Packets in Dynamic Networks”. In proc of 1st
International Conference on Information & Communication
Technologies: from Theory to Applications, April 2004.

[4] T.H. Clausen, G. Hansen, L. Christensen and G.Behrmann “The
Optimized Link State Routing Protocol, Evaluation through
Experiments and Simulation.” IEEE Symposium on "Wireless Personal
Mobile Communications". September 2001.

[5] C. Perkins and E. M. Royer. Adhoc On demand Distance Vecto
(AODV) routing. Draft-ietf-manet-aodv-02.txt, Nov 1998.

[6] A. Laouiti, A. Qayyum and L. Viennot “Multipoint Relaying for
Flooding Broadcast Messages in Mobile Wireless Networks.” 35th
Annual Hawaii International Conference on System Sciences
(HICSS’2002)

[7] A. J´osang and R. Ismail. ‘’The beta reputation system’’. In 15th
Bled Conference on Electronic Commerce, Bled, Slovenia, June 2002.

[8] A. J´osang, S. Hird, and E. Faccer. ‘’Simulating the effect of
reputation systems on e-markets’’. In Proceedings of the First
International Conference on Trust Management, Crete, May 2003.

[9] S. Calomme, “Topologically-aware construction of unstructured
overlays over ad hoc networks”, Doctoral thesis, University of liege,
ftp://ftp.run.montefiore.ulg.ac.be/pub/RUN-BK09-01.pdf

[10] Sungwon Kim, Chul-Ho Lee, Do Young Eun, "Super-Diffusive
Behavior of Mobile Nodes and its Impact on Routing Protocol
Performance," IEEE Transactions on Mobile Computing, 01 Jul. 2009.

[11] G. Di Caro and M. Dorigo, “AntNet: distributed stigmergetic
control for communication networks”. Journal of Artificial Intelligence
Research, vol.9, pp. 317-365, 1998.

[12] Mouna Ayari, Zeinab Movahedi, Guy Pujolle, Farouk Kamoun:
ADMA: autonomous decentralized management architecture for
MANETs: a simple self-configuring case study. IWCMC 2009: pp132-
137. 2009. http.dx.doi.org/10.1145/1582379.1582409

[13] Horn. Autonomic Computing: IBM’s perspective on the State of
Information Technology. (2001). IBM Corporation available at
http://researchweb.watson.ibm.com/autonomic/manifesto/autonomic_c
omputing.pdf

[14] "The network simulator – NS-2". Available online at
http://www.isi.edu/nsnam/ns/ (page accessed on October 2009).

[15] C. Perkins, Nokia Research Center, E. Belding-Royer, University
of California, Santa Barbara, Request For Comments 3561, July 2003.

[16] Wen Yan Wei Guo Jun Liu, ‘’An Implementation and Study of
OLSR Protocol in Linux OS’’, 4th International Conference on
Wireless Communications, Networking and Mobile Computing, 2008.
WiCOM '08: pp 1-4. 2008.

[17] IBM Corporation, An Architectural Blueprint for Autonomic
Computing, available at http://www-
306.ibm.com/autonomic/library.shtml

