
 Journal of Ubiquitous Systems and Pervasive Networks
Volume 1, No. 1 (2010) pp. 39-48

* Corresponding author. Tel.: +96612581974
Fax: +96612591616; E-mail: rouached@coins.csrlab..org

© 2010 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.01.01.005

39

LoWPANs Meet Service-Oriented-Architecture
Mohsen Rouached a*, Shafique Chaudhry a, Anis Koubaaab

a COINS Research Group, Al-Imam Mohamed bin Saud University (CCIS-IMAMU), Riyadh, Saudi Arabia

b CISTER Research Unit, Polytechnic Institute of Porto (ISEP/IPP), Portugal

Abstract
The Low-Power Wireless Personal Area Networks (LoWPANs) have been recognized as a promising technology

for ubiquitous and pervasive computing systems. However, LoWPAN technology is still open to being adapted to
existing interoperability mechanisms defined for the Internet. Service-Oriented-Architecture (SOA) is one of the key
paradigms that enables the deployment of services at large-scale over the Internet domain and its integration with
LoWPANs has opened new pathways for novel applications and research. Despite the need to integrate SOA with
LoWPANs, only handful efforts are underway to achieve the goal. In this paper, we discuss the integration of LoWPANs
with Service-Oriented-Architecture (SOA) for seamless provisioning of services in LoWPANs, especially considering
the future of LoWPANs, i.e., IPv6-enabled LoWPANs (6LoWPANs). We first present an overview about the general
concepts of SOA and its applicability onto low-power devices. Then, we discuss 6LoWPAN, a milestone protocol that
bridged the gap between low-power devices and the IP world and discuss the advantages, challenges and opportunities
for porting SOA over LoWPANs. We also present the main research efforts that contributed to featuring the integration
LoWPANs with SOA and we draw a research roadmap on potential research directions and challenges for achieving an
efficient coupling among LoWPANs and SOA.

Keywords: Wireless Sensor Networks, 6lowpan, Service Oriented Architecture.

1. Introduction

Cyber-Physical Systems (CPS), Cooperating Objects and
Internet-of-Things (IoT) represent, these days, the current
trends of computing philosophy. This new paradigm goes
beyond the traditional vision of considering a network as a
digital data sharing infrastructure decoupled from its
environment to considering a network as a physical
objects/events sharing infrastructure where data is no longer
decoupled from its physical environment. This new vision gave
rise to the concept of ubiquitous and pervasive monitoring (and
control) applications used in different areas such as smart home
automation, industrial monitoring, healthcare, intelligent
transportation systems, surveillance systems, etc. Wireless
Sensor Networks and RFID systems are the key enabling
technologies for these pervasive systems, as they provide an
interface between the physical world (environment) and the
digital and cyber worlds (computing devices and the Internet).
While these technologies have been evolving rather
independently, there is currently increasing trends towards
integrating them all together. The Internet, always known as
the core backbone for large-scale distributed systems, is
considered the main prospective mediator to interconnect all
these heterogenous systems. Though LoWPANs have been
considered as an essential technology for pervasive
environments, the recently emerging IPv6 over Low-Power
Wireless Personal Area Networks, (6LoWPAN) standard has

given rise to the concept of Wireless Embedded Internet [1]. It
gave rise to a new paragon that bridged the gap between low-
power wireless networks and the IP world. 6LoWPANs present
the key advantage of enabling end-users to remotely and
seamlessly access low power embedded devices, such as
wireless sensor nodes, through the Internet using IPv6 as the
underlying network protocol. This new paradigm opens the
door to several new challenges, for adapting/adopting legacy
Internet solution in 6LoWPAN, which are inherited from the
resource-constrained nature of low-power sensing devices.
Arguably, 6LoWPAN considers the fulfillment of two main
requirements namely energy-efficiency and interoperability.
While the energy issue has been carefully and extensively
addressed by several proprietary solutions, interoperability has
been ignored to some extent in earlier design objectives [2].
Interoperability requirement has been addressed through the
adaptation of Internet mechanisms to the requirements of
WSNs. While 6LoWPAN achieve interoperability at Network
Layer, Service-Oriented Architecture (SOA) has been
considered for the same purpose at the application layer. In
fact, Service-Oriented Architecture (SOA) is one of the core
mechanisms for service deployment in the Internet that has
been adapted in WSNs for making easier and more effective
service deployment. It possesses an architectural style
encompassing a set of services for building complex systems
from existing components. As an architectural evolution and a
paradigm shift in systems integration, SOA enables the
discovery, access and sharing of the services, data,
computational and communication resources in the network for

Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48

40

multiple users. It also allows rapid and cost-effective
composition of interoperable and scalable systems based on
reusable services exposed by these systems. SOA inherently
supports two major requirements: heterogeneous
infrastructures and run-time adaptability, which are essential
for large-scale cyber-physical systems in which multiple
applications run over diverse platforms and adopt different
technologies.
Though SOA has become a cornerstone in many recent
research efforts, many of its elegant potentials have not been
sufficiently explored in LoWPANs. In this paper, we tackle
integration of SOA with LoWPANs and discuss the underlying
challenges and benefits. We especially focus
6LoWPANtechnology because it is essential the future of
LoWPANs, envisioned to create an Internet of Things. Our
contributions in this paper are to discuss main research efforts
that contributed to the integration of LoWPANs with SOA, and
drawing a research roadmap on potential research directions
and challenges for achieving an efficient coupling among
(IPv6-enabled) LoWPANs and SOA.
The remainder of this paper is structured as follows. Section2
presents the background materials about Service-Oriented
Architecture and the 6LoWPAN protocol. In Section 3, we
present the main research challenges towards the integration
between SOA and LoWPANs with a case study of SOA
requirements for 6LoWPAN. Section 4 describes a literature
review about the current efforts of related works that proposed
solutions to the SOA/LoWPANs coupling to illustrate how the
raised challenges have been tackled. Finally, Section 5
concludes the paper and presents research roadmap and
promising research areas that pertains to SOA and LoWPAN
integration.

2. Background

2.1. Service Oriented Architecture
The SOA paradigm defines a software architecture that
comprises loosely coupled distributed components cooperating
through a communication conduit, which enables the
construction of composite services. SOA aims to bring about
component reuse, irrespective of implementation language or
host platform, and as such it can be thought of as simply an
extrapolation of good software engineering practices, taking us
from the class reuse concept to service reuse concept. Thus
SOA typically encompasses the following features:

• Component architecture: SOA is based on reusable

software components enabling to build scalable
heterogenous (i.e. platform- and language-independent)
service architecture.

• Loose coupling: The principle of Service Loose Coupling
promotes the independent design and evolution of a
service’s logic and implementation while still
guaranteeing baseline interoperability with consumers that
have come to rely on the service’s capabilities.

• Platform independence: This feature has been achieved
by the adoption of standards, which have been the key
mechanism enabling previously incompatible technologies
work cooperatively across a wide range of different
platforms. Single services can interoperate with other
without depending on specific platforms or programming
languages.

• Transparency: It is ensured by decoupling service
functionalities from their actual implementation.

• Flexibility: SOA must ensure flexibility so as a system
would be able to deal with dynamic changes of its
configuration and behaviour according to varying
requirements.
It results that the use of SOA enables to share, integrate
and cooperate heterogeneous hardware and software
components; Thus, distributed applications can be
achieved with lower cost, better overall system utilization
and performance. This makes it easier and possible for
users to seamlessly access shared data, resources and
functionalities that are not locally available.

2.1.1. SOA: principles
The main elementary concept in SOA is the service. A service
is the mechanism through which entities that offer capabilities
(service providers) and entities with specific needs (service
requester/consumer) can interact. The interaction with services
is regulated by a set of basic mechanisms that allow offering,
discovering, interacting with and using a service. A service is
accessed by means of a service interface, which comprises the
specifications of how to access the underlying capabilities.

SOA uses the Find-Bind-Execute paradigm as shown in
Figure 1.

Fig. 1. The Find-Bind-Execute Paradigm

In this paradigm, service providers register their service in a
public registry. This registry is used by consumers to find
services that match certain criteria. If the registry has such a
service, it provides the consumer with a contract and an
endpoint address for that service. In a typical scenario, a
service provider hosts a network-accessible software module,
which represents an implementation of a given service, and
provides a service description through which a service is
published and made discoverable. A client discovers a service
and retrieves the service description that will be used to bind to
the provider and invoke the service.
For transparency purposes, a service is opaque in the sense that
its implementation is typically hidden from the service
consumer except for (1) the information and behavior models
exposed through the service interface and (2) the information
required by service consumers to determine whether or not a
given service is appropriate for their needs.

2.1.2. Web services
Web Services (WSs) have been emerging as the leading
implementation of SOA upon the Web. WSs have added a new
level of functionality for service description, publication,
discovery, composition and coordination extending the role of
the Web from a support of information interaction to a
middleware for application integration.
The basic Web Service protocol stack typically comprises four
protocols:

Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48

41

• Service Transport Protocol: it is responsible for
transporting messages between network applications. It
includes basic application-layer protocols such as HTTP,
SMTP, FTP, as well as the more recent Blocks Extensible
Exchange Protocol (BEEP).

• XML Messaging Protocol: it is responsible for encoding
messages in a common XML format so that they can be
understood at either end of a network connection.
Currently the commonly used protocols are XMA Remote
Procedure Call (XML-RPC), WS-Addressing, and Simple
Object Access Protocol (SOAP).

• Service Description Protocol: it is used to describe the
public interface to a specific Web Service. The Web
Services Description Language (WSDL) interface format
is typically used for this purpose.

• Service Discovery Protocol: it centralizes services into a
common registry such that network Web Services can
publish their locations and descriptions, and makes it easy
to discover what services are available on the network.
Universal Description Discovery and Integration (UDDI1)
protocol was specified for this purpose.

2.1.3. REST technology
REpresentational State Transfer (REST) [3, 4] was originally
introduced as an architectural style for building large-scale
distributed hypermedia systems. This architectural style is
rather an abstract entity, whose principles have been used to
explain the excellent scalability of the HTTP 1.0 protocol and
have also constrained the design of its following version,
HTTP 1.1. Thus, the term REST is very often used in
conjunction with HTTP. The REST architectural style is based
on four principles:
1) Resource identification through the Uniform Resource

Identifier (URI). A RESTful Web service exposes a set of
resources which identify the targets of the interaction with
its clients. Resources are identified by URIs, which
provide a global addressing space for resource and service
discovery.

2) Uniform interface. Resources are manipulated using a
fixed set of four create, read, update, delete operations:
PUT, GET, POST, and DELETE. PUT creates a new
resource, which can be then deleted using DELETE. GET
retrieves the current state of a resource in some
representation. POST transfers a new state onto a
resource.

3) Self-descriptive messages. Resources are decouple from
their representation so that their content can be accessed
in a variety of formats (e.g., HTML, XML, plain text,
PDF, JPEG, etc.). Metadata about the resource is available
and used, for example, to control caching, detect
transmission errors, negotiate the appropriate
representation format, and perform authentication or
access control.

4) Stateful interactions through hyperlinks. Every interaction
with a resource is stateless, i.e., request messages are self-
contained. Stateful interactions are based on the concept
of explicit state transfer. Several techniques exist to
exchange state, e.g., URI rewriting, cookies, and hidden
form fields. State can be embedded in response messages
to point to valid future states of the interaction.

In [4], authors used architectural principles and decisions as a
comparison method to illustrate the conceptual and
technological differences between RESTful Web services and
WSDL/SOAP based Web services. Authors concluded that: On
the principle level, both two approaches have similar
quantitative characteristics. On the conceptual level, less

architectural decisions must be made when deciding for WS-
Web services, but more alternatives are available. On the
technology level, the same number of decisions must be made,
but fewer alternatives have to be considered when building
RESTful Web services. For more details, the reader is referred
to [4].

2.2 6LoWPAN: The future of LoWPANs
Tailored for low data rate applications on cheap devices, IEEE
802.15.4 standard redefines communication paradigm from
networking (in literal sense) to connectivity in metaphoric
sense. In this regard, IEEE-steered initiative of IEEE 802.15.4
standard befits really well as a candidate for ubiquity. These
devices are poised to offer a broad range of services, such as
smart homes, ubiquitous office environments etc. However, in
order to exploit the full potential of ubiquitous features of these
devices, we must connect them to the Internet.
In fact, the motivation for IP connectivity for LoWPANs is
manifold:
• The pervasive nature of IP networks allows for the use of

existing infrastructure and information resources, i.e. the
Internet.

• IP provides extensive interoperability for other networks,
e.g., sensor networks, and devices on other IP network
links, e.g., WiFi, Ethernet, GPRS, etc., which means that
IP-based devices can be more easily connected to other IP
networks, without the need for translation gateways.

• IP-based technologies, along with their diagnostics,
management and commissioning tools and services, such
as Network Management (SNMP) [5], Neighbor
Discovery (ND), Duplicate Address Detection (DAD),
Router Discovery and Stateless Address Auto-
Configuration (SAA)[6], already exist and are proven to
be working.

• There exist established security mechanisms for
authentication, access control and firewall for IP. It is
worth mentioning that network design and policy
mechanisms determine the access control and not the
technology.

• For IP, it exists established Application Level data models
and services, such as for instance HTTP, HTML, SOAP,
REST etc. Additionally proxies’ architectures for the
higher level services are also available.

• IP supports end-to-end reliability as well as link
reliability.

• IP provides most industrial standards support.
Though the integration of IP with IEEE 802.15.4 brings in
generous convenience for the users, it also presents a plethora
of challenges to 6LoWPAN designers and implementers. These
challenges owe greatly to the fact that both networks and in-
network devices are exorbitantly different.
The most fundamental difference lies in their packet sizes at
the link layer. For IEEE 802.15.4 a packet size of 127 octets is
standardized which, after considering frame header and link
layers security options, could leave only 81 octets for the upper
layers. This is obviously far below the minimum IPv6 packet
size of 1280 octets. An adaptation layer that fragments IP
packets for an IEEE 802.15.4 network into the transmittable
size, and reassembles the packets likewise is essential. On the
device level, IEEE 802.15.4 devices are constrained in form
factor, most of all in battery, when compared against the peer
devices in IP domain [RFC assumptions, challenges].
Extending the ubiquitous theme of IEEE 802.15.4 to include
wider accessibility is the slogan of the 6LoWPAN [7], IPv6
over Low Power Wireless Personal Area Network.
Standardized by IETF [8], 6LoWPAN integrates IEEE

Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48

42

802.15.4 (LoWPAN) with IPv6 with a view to enhance the
connectivity of IEEE 802.15.4 devices from mere locality to
the entire globe through the use of IPv6. The basic protocol
stack for 6LoWPAN is shown in Figure 2.

Fig. 2. The 6LoWPAN Protocol Stack

6LoWPAN’s ability to sense-compute-communicate-and-
(possibly) actuate by tiny devices has set-up a new wave of
applications. Service providers, network operators, and brokers
have all jumped to join the bandwagon of the new phenomenon
that is very promising in terms of opening nice markets for
them. They are convinced to introduce services ranging from
home automation to telematics that are ’ubiquitous’. This
means that these services must be cognizant of their
environments and the devices around them, and must use them
for value-addition. This ubiquitous paragon stems from the
Mark Weiser vision two decades ago, allowing it to come to
reality.

3. Challenges of integrating SOA in Lowpans

3.1. SOA Challenges for LoWPANs
LoWPAN technology has established itself as a vital
constituent for several future applications; however, this usage
shall also present a number of challenges in terms of
interoperability. There are a number of scenarios which can be
presented as test cases for the need of interoperability, for
example, a smart home with a set of services like security,
energy management, assisted living, etc. A home in this case
would have intrusion senors on doors and windows, smoke
sensors in rooms, temperature and light sensors for temperature
control and may be fire sensors connected to fine station.
Traditionally, each sensor shall be running only one application
restricting the generic extensibility of the infrastructure. If we
could access all these sensors (and applications) through a
common interface, not only we can continue to run the existing
applications, but we can also create and run more applications
using the same resources. The necessity, therefore, arises to
espouse an interoperability architecture that is open and
extensible, and allows for dynamic integration of services. The
enabling of an open and extensible architecture requires
interoperability at network as well as at application level.
Network layer interoperability can be best achieved using IP;
therefore, 6LoWPAN is a strong candidate to achieve this
objective. However, the existing protocol stacks for 6LoWPAN
do not define policies for ensuring interoperability at service

(or application) level. The application layer interoperability
poses bigger challenges. Different types of sensors are
available, which generate sensor-specific data. The application
developer must understand and analyze the messages types and
parameters used in the sensor nodes. One solution is to adopt a
common specification (e.g. ZigBee, 6LoWPAN), for all the
sensing devices. This approach may work for a small set of
devices, but is highly impractical.
An alternative approach is to tailor, trim and use existing
standard services in a lightweight fashion. SOA is a promising
candidate middleware platform that closes this interoperability
gap and mediates data exchange between heterogonous sensor
platforms and Web applications and services in a unified way.
The SOA, however, brings with it numerous research and
development challenges for use on low power sensor nodes in
general and for 6LoWPAN in particular. These challenges
range from resource constraints of sensor nodes to the
application space of such networks. In what follows, we
present the most relevant challenges for integrating SOA in
LoWPANs:
Resource constraints. Size and energy consumption are the
foremost constraints exhibited by LoWPAN sensing devices.
Add highly limited bandwidth, processing power and memory
resources and you get the exact picture of resource or lack of
those. These restrictions allow on limited complexity message
processing which makes the porting of traditional web services
and SOA even more challenging.
• Sensor Node’s Duty Cycle. The sensor nodes are

generally battery powered and are expected to operate for
a long duration with minimal duty cycles. It means nodes
are awake for a certain periods while are ’asleep’ for other
intervals. This is in much contrast with typical web
service hosts which are assumed to be always on.

• Data driven services. While traditional SOAs are based on
a request-response message pattern, control applications
running on embedded networks are typically data driven:
data is acquired periodically at the sensors and pushed to
connected services. These services produce new data
based on the received input which is consecutively pushed
to the next service in the processing chain.

• Data Life Cycle. Service instances which abstract
hardware devices, such as sensor services, may be
used by multiple applications simultaneously. If one of
these applications changes the state of the service, this is
visible to other applications. Web service instances on the
other hand are typically not shared and changes to one
instance are not visible to other applications. SOAs for
embedded networks therefore have to provide techniques
to facilitate multi-user access.

• XML. Sensor nodes use a low powered radio which has a
low data rate. The total amount of data sent cannot be very
large to meet battery life and latency constraints whereas
the payload of Web Service messages (i.e., SOAP
messages) is virtually always XML. The grammar of these
XML documents is specified using XML Schema. The
advantages of XML are the vast tool support and its
human-readable format. The downside is that it is very
verbose resulting in large overhead in terms of size, which
renders it unsuitable for the use in WSNs. This limitation
also holds for HTTP as transport protocol for SOAP
messages. The resulting length of network messages
which are comprised of HTTP, TCP/IP and XML data
easily surpasses the maximum packet length and
bandwidth of radio interfaces available on typical sensor
nodes. Apart from message length, also the amount of

Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48

43

code required implementing HTTP, TCP/IP, and an XML
parser exceeds the capabilities of sensor nodes by far.

• Transport. Usually, Web Service messages are conveyed
using standard application-layer Internet protocols such as
SMTP, FTP, o (virtually always) HTTP. Since these
protocols reside on top of TCP/IP, they also inherently
carry the overhead introduced by TCP/IP. To avoid the
overhead of an application-layer protocol, there is also a
transport-layer binding for TCP. The problem is that none
of these protocols is applicable for resource-constrained
devices like sensor nodes. Werner et al. [9], analyze these
protocols in terms of their communication overhead. For a
simple parameter- and return-less Web Service call, they
report an overhead of 560 Bytes for HTTP, 576 Bytes for
FTP, and 2535 Bytes for SMTP, and 538 Bytes for TCP.
The authors present PURE [9] as a lightweight Web
Service transport protocol for resource constrained
devices. PUR is based on UDP (User Datagram Protocol),
but avoids its disadvantages by adding a message flow
control and fragmentation feature. PURE itself has still a
communication overhead of 66 byte. Since PURE does
not provide an addressing scheme for Web Services, WS-
Addressing 2 as transport protocol independent addressing
mechanism has to be used causing additional
communication overhead. The aforementioned values are
strictly for this layer, e.g., for HTTP, TCP/IP overhead is
not included.

3.2. SOA Requirements for 6LoWPANs
There exist a number of contrasting technical

requirements that make the integration of 6LoWPAN with
SOA extremely challenging. On one hand, 6LoWPANs are
IPv6 networks; while at the same time, these are sensor
networks that comprise a large number of nodes with
extremely limited resources. Existing web services solutions
for traditional IP networks cannot be applied directly because
of the resource constraints. For example, a 6LoWPAN node
may run out of energy causing a fault in the network. This node
failure is a design feature of sensor networks as compared to
other networks where it is less expected. As another feature,
the applications, when designed for traditional networks may
have restrictions in terms of performance and response time as
compared to the hardware limitations, when designed for
sensor networks. The traditional networks run a diversity of
applications as compared to LoWPANs where the network is
generally executing a single application in a cooperative
fashion, though there are various proposals to run multiple
applications at the sensor network. Furthermore, as an inherent
WSN characteristic, 6LoWPAN could possibly be a data
centric network which is different than traditional IP network
behavior, however, on the contrary, because of IP support,
there is a possibility that LoWPANs support variety of services
making it further complicated for network management
operations. More interestingly, the sensor nodes may be
deployed in a certain area and because of unpredictable
situations, configuration errors or even environmental
conditions can cause the loss of a partial or entire WSN even
before it starts its operation. This situation is almost impossible
for traditional IP networks operations.

In summary, the porting of SOA over 6LoWPAN could
involve catering of the application level interoperability needs
for the networks of hundreds or thousands of nodes which
show enormous resource limitations yet providing IPv6
support. This situation demands for light-weight (in terms of
both processing and communication) architecture with at least
the following characteristics:

• Be cognizant of the fact that it is to be deployed across its
native network inside a wireless network. Such awareness
at the traditional web services managers would entail
changes (adaptability) to the communication across IPv6
and 6Lowpan networks.

• Take into consideration the fact that extr processing such
as fragmentation/re-assembly may be carried out at the
6LoWPAN Gateway. For instance, the ingress query /
response messages shall be parsed at the gateway and a
corresponding query / message is generated inside the
6LoWPAN. Likewise, a response from within the
6LoWPAN terminates at the gateway and is encapsulated
inside the respective link layer for the egress network.

• Be considerate of the compression of SOAP messages
(including their XML payload) and the processing of the
compressed data on 6LoWPAN nodes. Although
approaches for the compression of XML exist in general,
e.g. [10], none of them has been applied to SOAP
messages in resource-constraint WSN environments.

• Considers the optimization of information flow and
accessibility to allow all authorized applications to share
this data.

• Be aware of the fact that novel architectures must be
needed for application and data composition and
incorporation of potential value-added decision making
support.

• Be capable of providing an information and application
web which can be accessed and extended, by authorized,
users and applications, through standard interfaces.

4. Literature review

This section provides a brief description of current trends in
employing SOA and Web Service-based technologies in WSNs
and 6LoWPAN. Several projects have been developed in order
to provide an SOA approach for embedded networks, such as
eSOA[11], SIRENA [12], SOCRADES [13], RUNES [14], and
OASiS [15]. The majority of these projects aim at making
embedded devices directly accessible with Web Service
technologies by installing an adopted Web Service stack, i.e.
the Devices Profile for Web Services (DPWS) stack [16].
However, while this approach is suitable for a certain range of
devices, there will always be a class of very small and
lightweight devices, which cannot deal with the additional
overhead introduced by the Web Service technologies, and
consequently, require more efficient SOA implementations.

4.1. DPWS-based approaches
The Devices Profile for Web Services (DPWS) [16] (see
Figure 3) was developed to enable secure Web service
capabilities on resource-constraint devices. It features secure
exchange of messages, dynamic discovery and description of
Web services, and subscribing/receiving events to and from a
Web service. DPWS can also be used for inter-machine
communication. However, the latter requires the devices to
have an implemented peer functionality (i.e. a specific DPWS
client implementation) to use a corresponding service hosted
on another device.

Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48

44

Fig. 3. Devices Profile for Web Services [17]

Some recent works, such as [18–20], have discussed the
adequacy of DPWS for WSNs. These works recommended
eliminating the use of SOAP and HTTP protocols due to their
high overheads. Instead, they provide some solutions based on
application-specific-formats that are used in the proposed Tiny
DPWS protocol stack. Although the proposed application
specific- formats reduces the size of the transmitted messages
in the network, it hinders the extensibility of the solutions. For
any new service to be offered by sensor nodes, a new
application-specific-format should be defined in order to make
it work in the proposed infrastructure.

After discussing a set of potential technologies that could
be deployed to overcome the problems of heterogeneity and
interoperability in WSN and evaluating their advantages and
disadvantages, In [17] describes a SOA based middleware
which mediates data exchange between heterogonous sensor
platform and Web applications and services in a unified way.
The idea of this middleware consists of introducing several
modifications on the original version of DPWS as depicted in
Figure 4.

Fig. 4. DPWS-based Architecture [17]

The proposed architecture relies on some optimization
techniques to reduce the overhead imposed by traditional Web
Service technologies:
• Binary encoding techniques are used to overcome the

problem of huge overhead of XML messages.
• The less powerful nodes can alternatively offer their

functionality in the RESTful interface in order to exploit
the benefits of using web services without suffering from
their complexities.

• WS-eventing is used to save the limited network
bandwidth. Indeed, instead of calling the desired service
periodically, the user can simply subscribe to the eventing
interface of this service. WS-eventing notifies the clients
when the requested service/data has changed according to
the request definition.

• The mapping between WSN and Internet applications is
ensured by the address mapping module. This module
employs stateless address mapping to facilitate
communication between these networks.

• The Mobility Manager enables a node to leave one
platform type and attach another one without interrupting
the open service transaction.

• To accommodate heterogeneous sensor nodes, the
proposed protocols stack works on top of 6LoWPAN as
well as other platform specific networking libraries.

Although this approach appears very interesting and
promoting, implementations aspects and performance measures
are not discussed. Moreover, interactions between the different
components are not studied. In [21], Moritz et al. presented
different XML specific and XML non-specific compressors
and their influence on message size of the Devices Profile for
Web Services (DPWS). Therefore, a test scenario was analyzed
with 18 different messages. They focused on the SOAP
compression to makes DPWS applicable for deeply embedded
devices in 6LoWPAN networks, which are characterized by
very constrained resources such as small computing power,
limited power supply, and a few tens of storage capacity. The
results showed that most existing compressors suffer from the
simplicity of XML structures, which are the results of non
complex services deployed on the deeply embedded device.
Only the Efficient XML Interchange (EXI) and Fast Infoset
(FI) formats provide a much better compression rate, because
of the usage of XML schema definitions to include further
structure information. Usage of compression after re-encoding
has a minor influence. Details about compression techniques
and their performance results are available in [21]. To increase
parsing performance, a new encoding Device Profile for Web
Services (encDPWS) approach was introduced in [22]. This
paper investigated the applicability of DPWS in 6LoWPAN
networks. Their main objective is to optimize the message
encoding process in order to reduce the overhead of this
SOAP-based protocol. The encDPWS encoding is based on the
Tag-Length-Value (TLV) format, which is extensively used in
lower layers (e.g. IPv6 extension header chaining) and is
applicable on resource-constrained devices. Required buffers
are allocated before starting the parsing process, and non-
supported fields are left out without parsing. Carrying length
information for every data unit inline differentiates encDPWS
from the other well-known solutions, and significantly
increases the parsing performance. Based on some
measurements and comparisons, Moritz et al. showed that it is
possible to compress SOAP-based We service down to fit the
size requirements of low power deeply embedded devices. This
allows DPWS deployments in 6LoWPAN networks, and thus,
a seamless connectivity of low-power sensors and actuators
with higher-value services in networked device infrastructure
or the Internet with one comprehensive cross-domain
technology. However, these results did not take into account
resource requirement analysis and performance evaluations and
comparison with existing schemes. Besides, these
measurements are done under some specific hypothesis like
considering only message sizes as performance metric.

Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48

45

4.2. Sensor Web Frameworks
Sensor Web is a revolutionary concept towards achieving a
collaborative, consistent, and consolidated sensor data
collection, fusion and distribution system, typically used in
environment monitoring applications. Sensor Webs can act as
an extensive monitoring and sensing system that provides
timely, comprehensive, continuous and multi-mode
observations. This new earth-observation system opens up a
new avenue to fast assimilation of data from various sensors
and to accurate analysis and informed decision makings.
Sensor Web Frameworks generally aim at making the
heterogeneous sensor (and actuator) devices along with sensor
reading repository discoverable and accessible from the
Internet. In general, they provide a mash-up application that
allows visualizing sensory data. A key challenge in building
the Sensor Web is how to automatically access and integrate
different types of spatiotemporal data that is observed by
sensor devices or generated using simulation models. The
Open Geospatial Consortiums (OGC) [23] is an international
standardization consortium, which provides a framework that
specifies standard interfaces to access geographical data in
addition to encoding and exchanging these data over the
Internet. OGC Web Services follow the W3C’s service-
oriented web services framework and support publishing,
automatically discovering and accessing geographical
information over the web; leading to Spatial Data
Infrastructures (SDI). The Sensor Web Enablement (SWE) [24]
initiative, initiated by the OGC, extends the prominent OGC
Web services by providing additional services for integrating
Web-connected sensors and sensor systems. The SWE
architecture was designed to enable the creation of web-
accessible sensor assets through common interfaces and
encodings. SWE currently defines four Web service
specifications and two models of encodings for observations
and sensors, respectively. The four Web services are [24]: (1)
Sensor Observations Service for requesting, filtering, and
retrieving observations and sensor system information, (2)
Sensor Planning Service for sensor tasking and feasibility
studies, (3) Sensor Alert Service for publishing and subscribing
to alerts from sensors, and (4) Web Notification Service as a
data transport protocol for the asynchronous delivery of
messages or alerts. The two data models and encodings, which
are used as data and metadata exchange protocols, are: (1)
Observations & Measurements (O&M) used for encoding
observations and measurements (data) from a sensor device, in
real-time and archived modes and (2) Sensor Model Language
(SensorML), used for describing metadata about sensors
systems and processes associated with sensor observations,
thus providing information needed for discovery of sensors and
the location of sensor observations. SWE attempts to
efficiently address the aforementioned key challenges. In fact,
it provides an infrastructure that follows the publish-find-bind
paradigm borrowed from the SOA paradigm. It also allows for
fusing multiple data models and formats into a common data
model and representation. However, SWE has the limitation
that it only provides rudimentary support for the required data
conversion. On the other hand, the SWE framework presents
some major gaps when it comes to dynamic data fusion and
context based information extraction. First, SWE does not
specify any explicit ontological structure. Although all services
make use of a common encoding and transport protocol,
semantic interoperability is still an issue due to the lack of an
explicit common formal conceptual model encoded in the
system (there is only one model in the documentation). The
services and encodings focus on providing standard encoding
schemes, but they are not grounded in any formal ontology.
This impacts on dynamically fusing data with different time

granularity, space and measured phenomena. Apart from the
lack of semantics, the SWE framework mostly addresses data
acquisition but neglects filtering and information overload.
Data is basically pulled from passive services rather than being
pushed from active services according to the publish subscribe
paradigm. Another drawback of the SWE framework is the
lack of support for deploying, discovering and accessing
Sensor Web applications. Service providers hide complex
application-logic behind OGC services. Users may be aware of
individual instances of OGC services, but it will not be clear on
exactly what applications each service (or combination of
services) supports. In addition to these standardization efforts,
there has been several proprietary solutions that illustrated the
Sensor Web concept. For instance, SensorMap [25], a
Microsoft project, provides a set of tools that data owners can
use to easily publish their environmental data, and a GUI
enabling users to make queries over live data. SensorMap
transparently provides mechanisms to archive, index and
aggregate sensory data, and process queries [26]. The
SenorMap GUI is a mash-up application that permits users to
submit queries on available sensors and overlays the
aggregated results on a map. The framework introduced in [27]
facilitates access to both real time and historical sensed data,
though of variety of access methods. It addresses the scalability
issue by introducing a distributed sensor register.

Although these solutions provide either an SOA-based
APIs or common interfaces that make sensing data accessible
for the users, their operational behavior is very much
influenced by the role of the heavy application-level gateway
and single point of failure problem. The application-level
gateway plays a crucial role due to the absence of direct
interaction between sensor nodes, the Internet applications, and
users. IrisNet (Internet-scale Resource-Intensive Sensor
Network Services) [28] and Tenet [29] are two other
approaches that have adopted SOA in developing middleware
solutions for WSNs. Tenet [29] simplifies application
development for tiered sensor networks. It benefits from
generic motes in the lower tier, and masters, which are
relatively unconstrained 32- bit platform nodes, in the upper
tier. Tenet provides a SOA based solution that, in spite of begin
flexible to accommodate some applications, is still heavily
relying on the application level gateway that plays an important
role in the Tenet solution. On the other hand, IrisNet is a
distributed software architecture, which provides high-level
sensor services to users. It has two main components: (i.)
Sensor Agents (SA), which provides, pre-process and reduce
raw data from a physical sensor, and (ii.) Organizing Agents
(OA), which provides a sensor service. An Organizing Agent
typically collects and analyzes data from Sensor Agents to
answer the particular class of queries related to the underlying
service. An important characteristic of this architecture is that
Sensor Agents are dynamically programmable. The
architecture addresses issues that pertain to designing large-
scale distributed systems, such as distributed processing,
distributed storage and security. Sensory data is typically
represented in XML format, and queried are expressed by
means of the XPATH query language. Furthermore, data
reduction is a key concept introduced in this system and
consists in extracting higher-level features from raw data from
different sensors. Although these solutions expose WSN to be
more accessible through the Internet by means of application-
level gateways, they mainly suffer from the single-point-of-
failure problem, and scalability issues common to centralized
gateway approaches. Additionally, no functionality to enable
direct and seamless interaction between wireless sensors and
the Internet has been supported, so far. GeoSwift, another
SOA-based framework that was proposed by Liang et al. in

Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48

46

[30], is a distributed geospatial information infrastructure for
the Sensor Web. This framework consists of a three-layered
architecture composed of (i.) the Sensor Layer, which
comprises the actual sensor devices, (ii.) the Communication
Layer, which represents the physical network or data
communication links between the various components, and
(iii.) the Information Layer, that ensures interoperability and
integration of data among different sensors. The experimental
prototype uses a Web services’ approach for service
registration and discovery. The architecture advocates the use
of OGC standards for integrating and exposing sensory data.
The authors have proposed an extension to the traditional Web
services’ approach by relying on a sensing server. The sensing
server essentially makes part of the Information Layer, and is
able to integrate and store data in different formats from
different sensors, and consequently, makes an abstraction of
the sensor-specific data formats and communication protocols
to the end-user. New sensors can be integrated into the system
by extending the sensing server or by deploying a new server.

All aforementioned approaches aim to provide a
distributed infrastructure for publishing, discovering and
accessing sensor resources and to tackle, to some extent, the
challenge of data fusion. They also aim to restrict data access
for end users only to the required information. These
approaches are promising for a single or a group of
organizations building distributed applications. However, it is
questionable whether these approaches will be able to scale
well on the Internet, where thousands of different organizations
will be developing and deploying different applications
comprising trillion of sensor nodes and much more users will
need to tailor and integrate these applications.

4.3. Some other research efforts
Several other efforts aimed at using SOA in WSNs. In what
follows, we present an overview of most relevant works. In
[31, 32], the authors addressed the feasibility of using RESTful
Web services to integrate SOA with IP-based WSNs. In [31],
the authors presented an approach to integrate tiny wireless
sensor or actuator nodes into an IP-based network. Sensors and
actuators are represented as resources of the corresponding
node and are made accessible using a RESTful web service.
Sensor nodes run a small web server on top of a TCP/IP stack
to provide access to sensor data and actuators using HTTP
requests. Data is represented in the JSON format, which is a
more lightweight alternative as compared to XML. A prototype
application based on TinyOS 2.1 on a custom sensor node
platform with 8 Kbytes of RAM and an IEEE 802.15.4
compliant radio transceiver was implemented. A key feature in
this approach is that compared to many existing approaches
that provide Web services at a smart gateway, it proves the
feasibility to provide Web services at each node, even when
using a very resource-constrained hardware platform. The
system explained in [32] uses two mechanisms to provide a
good performance and low-power operation: a session aware
power-saving radio protocol and the use of the HTTP
Conditional GET mechanism. In [33], Rezgui and Eltoweissy
explored the potential of SOA in building open, efficient,
interoperable, scalable, and application-aware Wireless Sensor
and Actuator Networks (WSANs). A prototype of service
oriented WSAN was developed using TinyOS. I [34], King et
al. developed a service-oriented WSAN platform, called Atlas,
which enables self-integrative, programmable pervasive
spaces. Kushwaha et al. developed in [35] a programming
framework, called OASiS, which provides abstractions for
object-centric, ambient-aware, service-oriented sensor network
applications. OASiS decomposes specified application

behaviors and generates the appropriate node-level code for
deployment onto sensor networks. It enables the development
of WSN applications without having to deal with the
complexity and unpredictability of low-level system and
network issues. In [36], Golatowski et al. proposed a service
oriented software architecture for mobile sensor networks. An
adaptive middleware is employed in the architecture that
encompasses mechanisms for cooperative data mining, self
organization, networking, and energy optimization to build
higher-level service structures. In [10], the authors presented an
approach to seamlessly integrate WSNs into business process
(i.e. SOA) environments using the Busines Process Execution
Language (BPEL) and Web Services while using only very few
resources on the sensor nodes. It introduces how application
developers can use standard-compliant techniques to describe
business processes that are using services offered by WSNs,
without the need for hand-crafted code for data conversion, etc.
By adopting this approach, services offered by the WSN can be
used seamlessly in enterprise-level business processes. These
services can also quickly be composed to higher-level
applications by simply modifying the business process.
Priyantha et al. described in [37] a Web Servicebased approach
based on standard technologies such as IPv6, 6LoWPAN, and
HTTP. Considering the message serialization and transport,
Web Service messages are exchanged using HTTP. In their
approach, they tried to avoid using complex SOAP messages as
much as possible. Instead, if Web Service messages do not
contain complex data structures, simple URL encoded
messages are exchanged to reduce the message size. In [38],
Amundson et al. presented a SOA-based approach for WSNs
not relying on Web services. Thus, to enable sensor nodes
calling Web Services of Enterprise-IT systems, their solution
imposes the use of a gateway, which converts between the
proprietary middleware message format and standard Web
Service message format.

5. Conclusions and research roadmap
In this paper, we have presented a survey on research

efforts for the integration between Service-Oriented
Architecture and LoWPANs. Certainly, these efforts have
clearly contributed to illustrate the SOA/LoWPAN coupling
through different and diverse approaches. However, the
coupling between SOA and LoWPANs (such as WSNs) still
presents several challenges to be investigated, including but not
limited to:
• Adaptation: The adaptation challenge consists in adapting

the concept of SOA of the traditional Internet to the
requirements of Cyber-Physical Systems and networks of
cooperating objects. Indeed, SOA can provide domain
independent solutions for discovery, selection,
composition or aggregation of services to provide
meaningful functionality that highly rely on semantics,
formal specifications and reasoning. However, SOA
architectural principle cannot be used directly. It has to be
adapted to additionally include, not only large complex
services, but also simple ones, like data storage, routing or
sensor readings. It must also be compliant with the
requirements of low power and limited resource devices.
Identifying and specifying services are crucial for
exploiting SO in WSANs. A large number of questions
need to be answered in this respect. For example, how
many categories of services should be classified in the
context of WSAN? What are the functionalities,
interfaces, and properties of each service? What are its
quality levels relevant to performance requirements? In

Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48

47

particular, how to deal with the difference between
sensors and actuators when specifying services?

• Quality-of-Service: SOA enables the discovery, access
and sharing of the services, data, computational and
communication resources in the network by several and
different users. It also allows for rapid and cost-effective
composition of interoperable and scalable systems based
on reusable services exposed by these systems. This is
particularly useful for QoS provisioning in Wireless
Sensor and Actuators Networks that are integrated into
large-scale Cyber-Physical Systems in which multiple
applications run on diverse technologies and platforms.
The provision of QoS that pertains to SOA over WSNs is
of a paramount importance. Real-time guarantee is one the
main challenges as it is important to deliver service of
high priority with a bounded delay and a certain level of
reliability. The choice of SOA technology would have a
great impact of the QoS and performance, for that reason
comparative studies between existing SOA mechanisms
would be of a great interest and importance to understand
the advantages and limitations of each technique.

• Composition and Monitoring: SOA suits particularly well
for monitoring systems since the development of the
whole network can directly be mapped to the service,
simple or complex. For example, the network itself
provides several composite high-level services such as
area monitoring or manipulation of actuators. In addition,
each node offers complex services like data forwarding or
sensor readings. Each node can also be represented as a
collection of services that interact with each other. In this
context, the core challenges lie in devising a
communication-level and application-level architecture
for monitoring systems that satisfies both SOA and WSNs
requirements at the same time. In this respect, several
questions arise such as for instance: what sort of service
categories should be classified in the context of
monitoring systems in general and those compliant with
6LoWPAN in particular? How to adapt the legacy
services of the Internet to th requirements of 6LoWPAN
networks?

• Semantics: Semantic technologies are often proposed as
important components of heterogeneous, dynamic
information systems. The requirements and opportunities
arising from the rapidly growing capabilities of networked
sensing devices are a challenging. In this context, One
promising research objective would be to develop an
understanding of the ways semantic web technologies,
including ontologies, agent architectures and semantic
web services, can contribute to the growth and the
deployment of large-scale sensor networks and their
applications. several emerging issues could be
investigated, including:
– Standardization: This issue plays an essential role

with respect to interoperability. The specification of
standards for communication (MAC, routing,
topology control, etc.), data representation, service
description, service discovery, etc. that cope with
LoWPANs constraints is must for supporting
largescale deployment and interoperability of these
technologies. Today, some efforts have addressed
this issue, such the IEEE 802.15.4, 6LoWPAN,
OGC, and ROLL, etc. however; there is a need that
all these standardization committee work closely for
defining a universal solutions at different levels.

– SWS management inside lowPANs: SWS deals with
service publishing, discovery, composition services,
invoking, and monitoring. All these services must

have quality of service, fault-tolerance, security,
dependability etc. then how to fit all of those in such
constrained environment such as WSNs.

– Software development process: Currently, we have a
lack of availability of software development process
for WSN applications. Yet, it is needed that such
process must deal with WSN application
development and integration to the whole third-party
system.

References
[1] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless

Embedded Internet. Wiley Publishing, 2010.

[2] J. W. Hui and D. E. Culler, “IP is Dead, Long Live IP for
Wireless Sensor Networks,” in SenSys’08: Proceedings of
the 6th ACM Conference on Embedded Network Sensor
Systems. New York, NY, USA: ACM, 2008, pp. 15–28.

[3] C. Pautasso and E. Wilde, “RESTful Web Services:
Principles, Patterns, Emerging Technologies,” in WWW
’10: Proceedings of the 19th international conference on
World wide web. New York, NY, USA: ACM, 2010, pp.
1359–1360.

[4] C. Pautasso, O. Zimmermann, and F. Leymann, “RESTFUL
Web Services vs. ”BIG” Web Services: Making the Right
Architectural Decision,” in WWW, 2008, pp. 805–814.

[5] J. D. Case, M.Fedor, M. L. Schoffstall, and J. Davin
“Simple Network Management Protocol (SNMP),” United
States, 1990.

[6] S. Thomson and T. Narten, “IPv6 Stateless Address
Autoconfiguration,” United States, 1998.

[7] M. Geoff, “The 6LoWPAN Architecture,” in EmNets ’07
Proceedings of the 4th workshop on Embedded networked
sensors. New York, NY, USA: ACM, 2007, pp. 78–82.

[8] “The Internet Engineering Task Force.” [Online]. Available:
http://www.ietf.org

[9] C. Werner, C. Buschmann, and T. J¨acker, “Enhanced
Transport Bindings for Efficient soap Messaging,” in
ICWS, 2005, pp. 193–200.

[10] N. Glombitza, D. Pfisterer, and S. Fischer, “Integrating
Wireless Sensor Networks into Web Service-Based
Business Processes,” in MidSens ’09: Proceedings of the
4th International Workshop on Middleware Tools, Services
and Run-Time Support for Sensor Networks. New York,
NY, USA: ACM, 2009, pp. 25–30.

[11] A. Scholz, I. Gaponova, S. Sommer, A. Kemper, A. Knoll,
C. Buckl, J. Heuer, and A. Schmitt, “eSOA - Service-
Oriented Architectures Adapted for Embedded Networks,”
in Proceedings of 7th IEEE International Conference on
Industrial Informatics, June 2009, pp. 599–605.
http.dx.doi.org/10.1109/INDIN.2009.5195871

[12] F. Jammes and H. Smit, “Service-Oriented Paradigms in
Industrial Automation,” Industrial Informatics, IEEE
Transactions on, vol. 1, no. 1, pp. 62–70, April 2005.
http.dx.doi.org/10.1109/TII.2005.844419

[13] L. M. S. de Souza, P. Spiess, D. Guinard, M. Khler, S.
Karnouskos, and D. Savio, “SOCRADES: A Web Service
Based Shop Floor Integration Infrastructure,” in IOT, ser.
Lecture Notes in Computer Science, vol. 4952. Springer,
2008, pp. 50–67.

Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48

48

[14] P. Costa, G. Coulson, and C. Mascolo, “The runes
Middleware: A Reconfigurable Component-Based
Approach to Networked Embedded Systems,” in In Proc.
of 16 th International Symposium on Personal Indoor and
Mobile Radio Communications (PIMRC05. IEEE Press,
2005, pp. 11–14.

[15] M. Kushwaha, I. E. Amundson, X. Koutsoukos, S. Neema,
and J. Sztipanovits, “OASiS: A Programming Framework
for Service-Oriented Sensor Networks,” in IEEE/Create-
Net COMSWARE 2007, January 2007.

[16] Devices Profile for Web Services. [Online]. Available:
http://www.opengeospatial.org/projects/groups/sensorweb

[17] H. Abangar, P. Barnaghi, K. Moessner, A. Nnaemego, K.
Balaskandan, and R. Tafazolli, “A Service Oriented
Middleware Architecture for Wireless Sensor Networks,”
in Proceedings of the Future Network & MobileSummit
2010 Conference, 2010.

[18] F. Jammes, A. Mensch, and H. Smit, “Service-Oriented
Device Communications Using the Devices Profile for
Web Services, booktitle = MPAC ’05: Proceedings of the
3rd international workshop on Middleware for pervasive
and ad-hoc computing, 2005, Grenoble, France.

 [19] G. Moritz, E. Zeeb, S. Pr¨uter, F. Golatowski, D
Timmermann, and R. Stoll, “Devices Profile for Web
services in Wireless Sensor Networks: Adaptations and
Eenhancements,” in ETFA’09: Proceedings of the 14th
IEEE international conference on Emerging technologies
& factory automation. Piscataway, NJ, USA: IEEE Press,
2009, pp. 43–50.

[20] I. K. Samaras, J. V. Gialelis, and G. D. Hassapis
“Integrating Wireless Sensor Networks into Enterprise
Information Systems by Using Web Services,” in
SENSORCOMM ’09: Proceedings of the 2009 Third
International Conference on Sensor Technologies and
Applications. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 580–587.

[21] G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski,
“Encoding and Compression for the Devices Profile for
Web Services,” in AINA Workshops, 2010, pp. 514–519.

[22] G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski,,
“encDPWS - Message Encoding of SOAP Web Services,”
in PerCom Workshops, 2010, pp. 784–787.

[23] Open Geospatial Consortium. [Online]. Available:
http://www.opengeospatial.org/

[24] Sensor Web Enablement WG. [Online]. Available:
http://www.opengeospatial.org/projects/groups/sensorweb

[25] S. Nath, J. Liu, and F. Zhao, “Sensormap for Wide-Area
Sensor Webs,” Computer, vol. 40, no. 7, pp. 90–93, 2007.
http.dx.doi.org/10.1109/MC.2007.250

[26] A. Santanche, S. Nath, J. Liu, B. Priyantha, and F. Zhao,
“SenseWeb: Browsing the Physical World in Real time,”
in Demo Abstract, April 2006.

[27] H. M. I. Rhead, M. Merabti and P. Fergus, “Worldwide
Sensor Web Framework Overview,” in Proceedings of the
9th Annual Postgraduate Symposium, The Convergence of
Telecommunications, Networking and Broadcasting, 2008.

[28] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan,
“IrisNet: An Architecture for a Worldwide Sensor Web,”
IEEE Pervasive Computing, vol. 2, pp. 22–33, 2003.
http.dx.doi.org/10.1109/MPRV.2003.1251166

[29] J. Paek, B. Greenstein, O. Gnawali, K.-Y. Jang, A. Joki,
M. Vieira, J. Hicks, D. Estrin, R. Govindan, and E.
Kohler, “The Tenet Achitecture for Tiered Sensor
Networks,” ACM Trans. Sen. Netw., vol. 6, no. 4, pp. 1–
44, 2010. http.dx.doi.org/10.1145/1777406.1777413

[30] S. H. L. Liang, A. Croitoru, and C. V. Tao, “A Distributed
Geospatial Infrastructure for Sensor Web,” Comput.
Geosci., vol. 31, no. 2, pp. 221–231, 2005.
http.dx.doi.org/10.1016/j.cageo.2004.06.014

[31] L. Schor, P. Sommer, and R. Wattenhofer, “Towards a
Zero-Configuration Wireless Sensor Network Architecture
for Smart Buildings,” in BuildSys ’09: Proceedings of the
First ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings. New York, NY, USA:
ACM, 2009, pp. 31–36.

[32] D. Yazar and A. Dunkels, “Efficient Applicatio Integration
in IP-based Sensor Networks,” in BuildSys
’09:Proceedings of the First ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in
Buildings. New York, NY, USA: ACM, 2009, pp. 43–48.

[33] A. Rezgui and M. Eltoweissy, “Service-Oriented Sensor-
Actuator Networks: Promises, Challenges, and the Road
Ahead,” Computer Communications, vol. 30, no. 13, pp.
2627–2648, 2007.
http.dx.doi.org/10.1016/j.comcom.2007.05.036

[34] J. King, R. Bose, null Hen-I Yang, S. Pickles, and A.
Helal, “Atlas: A service-oriented sensor platform:
Hardware and middleware to enable programmable
pervasive spaces,” Local Computer Networks, Annual IEE
Conference on, vol. 0, pp. 630–638, 2006.

[35] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema,
and J. Sztipanovits, “OASiS: A Programming Framework
for Service-Oriented Sensor Networks,” in In
IEEE/Create-Net COMSWARE 2007, 2007.

[36] F. Golatowski, J. Blumenthal, M. H, M. Haase, Burchardt
and D. Timmermann, “Service Oriented Software
Architecture for Sensor Networks,” in In Proc. Int.
Workshop on Mobile Computing (IMC03, 2003, pp. 93–
98.

[37] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao,
“Tiny Eeb Services: Design andIimplementation of
Interoperable and Evolvable Sensor Networks,” in SenSys
’08: Proceedings of the 6th ACM conference on
Embedded network sensor systems. New York, NY, USA:
ACM, 2008, pp. 253–266.

[38] I. Amundson, M. Kushwaha, X. Koutsoukos, S. Neema,
and J. Sztipanovits, “Efficient Integration of Web Services
in Ambient-Aware Sensor Network Applications,” in 3rd
IEEE/CreateNet International Workshop on Broadband
Advanced Sensor Networks (BaseNets 2006), October
2006.

