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Abstract 
The paper deals with reconfigurable multi-agent distributed embedded control systems following the component-based 
International Industrial Standard IEC61499 in which a Function Block (abbreviated by FB) is an event-triggered 
software component owning data and a control application is a distributed network of Function Blocks. To handle all 
possible industrial cases, we classify reconfiguration scenarios into three forms before we define an architecture of 
reconfigurable multi-agent systems where a Reconfiguration Agent modelled by nested state machines is affected to 
each device of the execution environment to apply local reconfigurations, and a Coordination Agent is proposed for any 
coordination between devices in order to guarantee safe and adequate distributed reconfigurations. A Communication 
Protocol is proposed to allow a feasible coordination between agents by using well-defined Coordination Matrices. We 
model the agents according to the formalism Net Condition/Event Systems (abbrev. NCES) which is a rich extension of 
Petri nets, and apply the model checker SESA to validate the coordination between agents. Indeed, we should verify that 
whenever a reconfiguration scenario is applied in a device, the remote devices should react as soon as possible according 
to user requirements. We developed the tool "ProtocolReconf" for the visual simulation of the inter-agent protocol which 
is applied in the paper to two benchmark production systems available at Martin Luther University. 
Keywords: Function Block, Embedded System, Multi-Agent, Distributed Reconfiguration, Model Checking, Simulation. 
 

  

1. Introduction 

The new generation of industrial embedded control systems is 
addressing new criteria as flexibility and agility [1], [2]. To 
reduce their cost, these systems should be changed and adapted 
to their environment without disturbances. Several interesting 
academic and industrial research works have been made in 
recent years to develop reconfigurable embedded control 
systems [3]. We distinguish in these works two reconfiguration 
policies: static and dynamic reconfigurations such that static 
reconfigurations are applied off-line to apply changes before 
starting the system [4], whereas dynamic reconfigurations are 
dynamically applied at run-time. Two cases exist in the last 
policy: manual reconfigurations applied by users [5] and 
automatic reconfigurations applied by Intelligent Agents [6, 8].   
Nowadays, four classes of software agents have been proposed 
[11]: (i) Logic-based Agents such that agents take decisions 
depending on logical deductions; (ii) Reactive Agents where 
agents make decisions according to some forms of mappings 
from causes to actions; (iii) Belief-Desire-Intention (BDI) 
Agents such that agents have beliefs, desires, and intentions in 
which decisions-makings are based on manipulations of data 
structures; (iv) Layered Architectures where agents are 
specified with many software layers. On the other hand, two 
classes of software components are clearly distinguished in 
[12]:  the first addresses components to be instantiated, 

composed and deployed at run-time [7], and the second 
addresses components to be composed off-line for real-time 
embedded systems. We are interested in this paper in the 
second class by following the well-known component-based 
International Industrial Standard IEC61499 for the 
development of embedded control systems [14,16]. In this 
standard, a Function Block is an event-triggered software unit 
to be composed of an interface and an implementation. The 
interface contains data/event inputs/outputs to support 
interactions with the environment, whereas the implementation 
contains algorithms to be executed when corresponding input 
events occur. According to this standard, a system is 
implemented by a network of Function Blocks under 
precedence constraints. 
 
We are interested in this research in automatic reconfigurations 
of distributed industrial embedded control systems following 
the standard IEC61499. We mean in the paper by a 
reconfiguration scenario any operation allowing the automatic 
additions, removals or updates of Function Blocks to save the 
whole system when hardware faults occur, or to improve also 
its productivity. In this case, the system is modeled by different 
networks of Function Blocks such that each one should be 
executed at run-time when a particular reconfiguration scenario 
is automatically applied. To handle all possible automatic 
reconfigurations, we propose a distributed multi-agent 
architecture [15] in which a Reactive and Layered 
Reconfiguration Agent that we model by nested state machines 
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is affected to each device of the execution environment to 
handle local automatic reconfigurations, and a centralized 
Coordination Agent is defined to manage distributed 
reconfigurations between devices because any uncontrolled 
automatic reconfiguration applied in a device can lead to 
critical problems and/or serious disturbances in  others.  We 
propose the formal concept of  "Coordination  Matrix"  to  
define  for  each  distributed  reconfiguration scenario  the  
behavior  of  all  concerned  reconfiguration Agents  that  
should simultaneously react.  To guarantee a deterministic 
behavior of  the  whole  distributed architecture,  we  define  
for  each  matrix  a priority level according to the emergency of 
the corresponding reconfiguration scenario. The Coordination 
Agent handles all matrices to coordinate between agents 
according to a well-defined communication protocol:  when a 
Reconfiguration Agent applies in the corresponding device a 
highest-priority reconfiguration, the Coordination Agent 
informs the rest of concerned agents to react and to bring the 
whole distributed system to safe and optimal behaviors. We 
model each Reconfiguration Agent and each Coordination 
Matrix according to the formalism Net Condition/Event 
Systems which is an extension of Petri nets [9], and apply the 
model checker SESA to exhaustively check if all system’s 
devices react as described in user requirements to guarantee 
safe and correct distributed reconfigurations. We verify in this 
case functional properties according to the temporal logic 
"Computation Tree Logic"[9]. We developed in addition a 
software tool for graphical simulations of the inter-agents 
protocol in order to visually show for users the reactivity of the 
distributed system’s agents according to environment’s 
evolutions. We describe in the next section the benchmark 
production systems FESTO and EnAS that we follow as 
running examples in the paper to explain our contributions. We 
define in Section 3 a multi-agent architecture for 
reconfigurable embedded control systems, before apply 
thereafter in Section 4 a model checking of the inter-agent 
protocol. We present in section 5 the tool simulating the 
architecture, before discussing the originality of the paper’s 
contribution in Section 6, and conclude the paper in Section 7. 

2. Benchmark Production Systems FESTO and EnAS 

We  present  two benchmark  production  systems following 
the Standard IEC61499: FESTO and EnAS available at Martin 
Luther University in Germany. We propose in particular some 
reconfiguration scenarios to be applied in these systems that 
we assume in the following as running examples. 

2.1. FESTO System 

The benchmark production system FESTO is a well-
documented demonstrator used by many universities for 
research and education purposes, and is used as a running 
example in the context of this paper.  FESTO is composed of 
three units:  Distribution, Test and Processing Units.  
Distribution Unit is composed of a pneumatic feeder and a 
converter  to  forward  cylindrical  work  pieces  from  a  stack 
to  the  testing  unit  which  is  composed  of  the  Detector,  the 
Tester and the Elevator. This unit performs checks on work 
pieces for height, material type and color. Work pieces that 
successfully pass this check are forwarded to the rotating disk 
of Processing Unit, where the drilling of the work piece is 
performed. We assume two drilling machines Drill_machine1 
and Drill_machine2 to drill pieces. The result of the drilling 
operation is next checked by the checking machine and the 
work piece is forwarded to another mechanical unit. Three 

production modes of FESTO are considered according to the 
rate of input pieces denoted by number_pieces into the system 
(i.e. ejected by the feeder). 

 
• Case1: High production. If number_pieces ≥ Constant1, 

Then the two drilling machines are used at the same time 
to accelerate their production. In this case, Distribution 
and Testing Units should forward two  successive  pieces  
to  the  rotating  disc before starting the drilling with 
Drill_machine1 AND Drill_machine2. For this production 
mode, the periodicity of input pieces is p = 11 seconds, 
 

• Case2: Medium production. If Constant2 ≤ 
number_pieces < Constant1, Then we use Drill_machine1    
OR Drill_machine2 to drill work pieces. For this 
production mode, the periodicity of input pieces is p = 30 
seconds, 
 

• Case3: Light production. If number_pieces < Constant2,   
Then   only   the   drilling   machine Drill_machine1 is 
used. For this production mode, the periodicity of input 
pieces is p = 50 seconds. 
 

On the other hand, if one of the drilling machines is broken at 
run-time, then we have to only use the other one. In this case, 
we reduce the periodicity of input pieces to p = 40 seconds. 
The system is completely stopped in the worst case if the two 
drilling machines are broken. 

 
2.2. EnAS System 
 
The  benchmark  production  system  EnAS  was  designed as a 
prototype to demonstrate energy-antarcic actuator/sensor 
systems. We assume that it has the following behavior: it 
transports pieces from the production system (i.e. FESTO 
system) to storing units. The pieces in EnAS shall be placed 
inside tins to close with caps afterwards. Two different 
production strategies can be applied: we place in each tin one 
or two pieces according to production rates of pieces, tins and 
caps. We denote respectively by nbpieces , nbtins+caps the 
production number of pieces and tins (as well as caps) per hour 
and by Threshold a variable (defined in user requirements) to 
choose the adequate production strategy. The EnAS system is 
mainly composed of a belt, two Jack stations (J1 and J2) and 
two Gripper stations (G1 and G2). The Jack stations place new 
produced pieces and close tins with caps, whereas the Gripper 
stations remove charged tins from the belt into storing units. 
Initially, the belt moves a particular pallet containing a tin and 
a cap to the first Jack station J1. According to production 
parameters, we distinguish two cases, 
 
• Case1: First  production  policy.  If  (nb pieces/nb 

tins+caps ≤ Threshold), Then the Jack station J1 places 
from the production station a new piece and closes the tin 
with the cap. In this case, the Gripper station G1 removes 
the tin from the belt into the storing station St1. 
 

• Case2: Second production policy. If (nbpieces/nbtins+caps > 
Threshold), Then the Jack station J1 places just a piece in 
the tin which is moved thereafter into the second Jack 
station to place a second new piece. Once J2 closes the tin 
with a cap, the belt moves the pallet into the Gripper 
station G2 to remove the tin (with two pieces) into the 
second storing station St2. 
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3. Multi-Agent Reconfigurable Architectures 

We define a multi-agent architecture for distributed 
reconfigurable embedded control systems following the 
International Standard IEC61499. A Reconfiguration Agent  
is  affected  in  this  architecture to a device of  the  execution  
environment  to  handle  automatic  reconfigurations of  
Function  Blocks.  It is specified by nested state machines that 
support all reconfiguration forms. Nevertheless, the 
coordination between agents in this distributed architecture is 
extremely mandatory because any uncontrolled  automatic  
reconfiguration applied  in  a  device can  lead  to  critical  
problems,  serious  disturbances or  also inadequate 
distributed behaviors in others. To guarantee safe distributed 
reconfigurations, we define the concept of Coordination 
Matrix that defines correct reconfiguration scenarios to be 
simultaneously applied in distributed devices, and define 
the concept of Coordination Agent that handles coordination 
matrices to coordinate between distributed agents. We 
propose a communication protocol for agents to manage 
concurrent distributed reconfiguration scenarios. 
 
Running Example.   In FESTO and EnAS where a 
Reconfiguration Agent is defined for each one of them, the 
reconfiguration of the first can lead to a reconfiguration of 
the second in order to guarantee a coherent production in 
these platforms. This means: 

–  If  Constant2  ≤  number_pieces,  Then the FESTO’s 
agent should apply the Medium or High Production 
Mode, and in this case the EnAS’s agent should improve 
the productivity by applying the Second Production 
Policy in order to put two pieces in each tin. 

– I f  Constant2 > number_pieces, Then the FESTO’s 
agent should decrease the productivity by applying the 
Light Mode  (i.e.  only  Drill_machine1  is  used),  and 
in this case, the EnAS’s agent should also decrease the 
productivity by applying the First Production Policy in 
order to put only one piece in the tin. 

On the other hand, when a hardware problem occurs at 
run- time in a platform, a reconfiguration of the second is 
required as follows: 

– I f  one of the Jack stations J1 and J2 or the Gripper 
station G2 is broken in the production system EnAS, 
Then the corresponding agent should decrease the 
productivity by applying the First Production Mode, 
and in this case the FESTO’s agent should also follow 
the Light Production Mode in order to guarantee a 
coherent behavior. 

– If one of the drilling machines Drill_machine1 and 
Drill_machine2 is broken, Then the FESTO’s agent 
should decrease the productivity, and in this case the 
EnAS’s agent should follow the First Production Mode 
where only one piece is put in a tin. 

 
3.1. Architecture of the Reconfiguration Agent 
 
We define for each device of the execution environment a 
unique agent that checks the environment’s evolution and 
takes into account user requirements to apply automatic 
reconfiguration scenarios. We define the following units that 
belong to three hierarchical levels of the agent’s architecture: 
– First level: (Architecture Unit) this unit checks the 
system’s behavior and changes its architecture (adds/removes 
Function Blocks) when particular conditions are satisfied. We 

note that Standardized Manager Function Blocks are used in 
this unit to load or unload such blocks into/from the memory 
[14]. 
– Second level: (Control Unit) for a particular loaded 
architecture, this unit checks the system’s behavior and: 
reconfigures compositions of blocks (i.e. changes the 
configuration of connections), or adds/removes data/event 
inputs/outputs, or reconfigures the internal behavior of blocks 
(i.e. updates of algorithms), 
– Third level: (Data Unit) this unit updates data if particular 
conditions are satisfied. 
We design the agent by nested state machines where the 
Architecture Unit is specified by an Architecture State Machine 
(denoted by ASM) in which each state corresponds to a 
particular architecture of the system. Therefore, each transition 
of the ASM corresponds to the load (or unload) of Function 
Blocks into (or from) the memory. We construct for each state 
S of the ASM a particular Control State Machine (denoted by 
CSM) in the Control Unit. This state machine specifies all 
reconfiguration forms to possibly apply when the system’s 
architecture corresponding to the state S is loaded (i.e. 
modification of FB compositions or of their internal behavior). 
Each transition of any CSM should be fired if particular 
conditions are satisfied. Finally, the Data Unit is specified also 
by Data State Machines (denoted by DSMs) where each one 
corresponds to a state of a CSM or the whole ASM. 
 
Notation.  We denote in the following by, 
– nASM the number of states in the state machine ASM (i.e. the 
number of possible architectures implementing the system). 
A S M i  (i ∈ [1, nASM ]) denotes a state  of ASM   to encode 
a particular architecture (i.e. particular FB network). This 
state corresponds to a particular state machine CSM that we 
denote by CSMi (i ∈ [1,nASM]), 
– nCSMi the number of states in CSMi and let CSMi,j (j ∈ 
[1, nC SMi ]) be a state of C SMi, 
– nDSM the number of Data State Machines corresponding to all 
possible reconfiguration scenarios of the system. Each state 
CSMi,j (j ∈ [1, nCSMj]) is associated to a particular DSM state 
machine DSMk (k ∈ [1,nDSM]), 
– nDSMk the number of states in DSMk. DSMk,h (h∈ [1, 
nDSMk ]) denotes a state of the state machine DSMk which 
can correspond to one of the following cases: (i) one or more 
states of a state machine CSM, (ii) more than one CSM   
state machine, (iii) all the ASM state machines. The agent 
automatically applies at run-time different reconfiguration  
scenarios such that each one denoted by Reconfigurationi,j,k,h 
corresponds to a particular network of Function Blocks fbni,j,k,h 
as follows: (i) the  architecture ASMi  is loaded in the memory, 
(ii) the control policy is fixed in the state CSMi,j, (iii) the data 
configuration corresponding to the state DSMk , h  is applied. 
 
Running example. We present in Figure 1 the nested state 
machines of our FESTO agent. The ASM state machine is 
composed of two states ASM1 and ASM2 corresponding to 
the first (i.e. the Light Production Mode) and the second (the 
High and Medium modes) architectures. The state 
machines CSM1 and CSM2 correspond to the states ASM1 
and ASM2. In CSM 2 state machine, the states CSM21 
and CSM22 correspond respectively to the High and the 
Medium Production M odes (where the second architecture 
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is loaded). To fire a transition from CSM21 to CSM22, 
the value of number_pieces should be in [Constant2, 
Constant1 [. We note that the states CSM12 and CSM25 
correspond to the blocking problem where the two drilling 
machines are broken. Finally the state machines DSM1 
and DSM2 correspond to the state machines CSM1 and 
CSM2.  In particular, the state DSM21 encodes the 
production periodicity when we apply the High production 
mode (i.e. the state CSM21 of CSM2), and the state 
DSM 22 encodes the production periodicity when we apply 
the Medium mode (i.e. CSM22 of CSM2). Finally, the state 
DSM23 corresponds to CSM 23 and CSM24 and encodes 
the production periodicity when one of the drilling 
machines is broken. We design the agent of our EnAS 
Benchmark Production System by nested state machines as 
depicted in Figure 2. The first level is specified by ASM 
where each state defines a particular architecture of the 
system. The state ASM1(resp. ASM2 ) corresponds to the 
second (resp. first) policy where Control Components that 
control J1 , J2 and G2 (resp. only J1 and G1) are loaded 
in memory. We associate for each one of these states a CSM in 
the Control Unit. Finally, Data Unit is specified by DSM 
which defines the values that Threshold takes under well-
defined conditions.  Note  that  if  we  follow  the  Second  
Production Policy (state ASM1 ) and the gripper G2 is  
broken, then we should change the policy and also the 
system architecture by loading the Control Component  
G1_C T L  to remove pieces into Belt1. On the other hand, 
we associate in the second level for the state ASM1 the CSM 
CSM1 that defines the different reconfiguration forms to 
apply when the first architecture is loaded in the memory. 
In  particular, If the state CSM11 is active and the Jack  
station J1 is broken, Then we activate the  state CSM12 in  
which the Jack  station J2 is  running alone to place  only 
one piece in the tin. In this case, the internal behavior of 
the block Belt_CTL should be changed (i.e. the tin should 
be transported directly to the station J2 ). In the same way, 
If we follow the same policy in the state CSM11 and the 
Jack station J2 is broken, Then we should activate the state 
C SM13 where the behavior of J1 should be changed to 
place a piece in the tin that should be closed too (i.e. the 
behavior of the Control Component J 1_C T L should be 
reconfigured). We specify finally in Data Unit a DSM 
where we change the value of Threshold when Gripper G1    
is broken (we suppose as an example that we are not 
interested in the system performance when this Gripper is 
broken).  By considering this hierarchical model of agents, 
we specify all possible reconfiguration scenarios that can 
be applied in embedded control systems: Add-Remove (first 
level) or Update the structure of Control Components 
(second level) or just Update data (third level). 
 
 

 
Fig.1. Specification of the FESTO’s Agent 

 
Fig.2. Specification of the EnAS’s Agent 

3.2. Reconfiguration in a Distributed Architecture 
 

We are interested in automatic reconfigurations of Function 
Blocks to be distributed on networks of devices where 
coordination between agents is important because any 
uncontrolled automatic reconfiguration applied by any agent 
can lead to critical problems or serious disturbances in others. 
We define in this section the concept of Coordination Matrix to 
handle coherent reconfiguration scenarios in distributed 
devices, and propose thereafter an architecture of multi-agent 
distributed reconfigurable systems where a communication 
protocol between agents is defined. 
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3.2.1. Distributed Reconfigurations 
 
Let Sys be a distributed reconfigurable system of n devices, 
and let Ag1,..., Agn be n agents to handle automatic distributed 
reconfigurations of these devices. We denote in the following 
by Reconfiguration aia,ja,ka,ha  a reconfiguration scenario 
applied by Aga (a ∈ [1, n]) as follows: 
 
• The corresponding ASM state machine is in the state 

ASMia. Let conda
ia be the set of conditions to reach this 

state, 
• The state machine CSM is in the state CSMia,ja. Let conda

ja  
be the set of conditions to reach this state, 

• The state machine DSM is in the state DSMka,ha.  Let 
conda

ka,ha be the set of conditions to reach this state. 
 
To handle coherent distributed reconfigurations that guarantee 
safe behaviors of the whole system Sys, we define the concept 
of ’’Coordination Matrix” of size (n,4) that defines coherent 
scenarios to be simultaneously applied by different agents.  Let 
CM be a such matrix that we characterize as follows: each line 
a (a ∈ [1, n]) corresponds to a reconfiguration scenario 
Reconfigurationa ia,ja,ka,ha to be applied by Aga as follows: 
 

CM[a,1]=ia ; CM[a,2]=ja ; CM[a,3]=ka ; CM[a,4]= ha 
 
According to this definition: If an agent Aga applies the 
reconfiguration Reconfigurationa

CM[a,1],CM[a,2],CM[a,3],CM[a,4], 
Then each other agent Agb (b ∈ [1, n] \{ a }) should apply the 
scenario Reconfigurationb

CM[b,1],CM[b,2],CM[b,3],CM[b,4].   We 
denote in the following by “idle agent” each agent Agb 
(b∈[1,n]) which is not required to apply any reconfiguration 
when the others perform scenarios defined in CM. In this case: 
 

CM[b,1] = CM[b,2] = CM[b,3] = CM[b,4] = 0 
conda

CM[a,1]= conda
CM[a,2]= conda

CM[a,3],CM[a,4]= True 
 
We denote in addition by ξ(Sys) the set of Coordination 
Matrices to be considered for the reconfiguration of the 
distributed embedded system Sys.  Each Coordination Matrix 
CM is applied at run-time if for each agent Aga  (a ∈ [1, n]) the 
following conditions are satisfied: 
 

conda
CM[a,1]= conda

CM[a,2]= conda
CM[a,3],CM[a,4]= True 

 
On the other hand, we define “Concurrent Coordination 
Matrices”, CM1 and CM2 two matrices of ξ(Sys) that allow 
different reconfigurations of same agents as follows: ∃ b ∈ 
[1,n] such that: 
 

• CMj [b, i] ≠ 0 ∀ j ∈ {1, 2} and i ∈ [1,4], 
• CM1[b, i] ≠ CM2 [b, i] ∀ i ∈ [1, 4]. 

 
In this case, the agent Agb is disturbed because it should apply 
different reconfiguration scenarios at the same time. To 
guarantee a deterministic behavior when Concurrent 
Coordination Matrices are required to be simultaneously 
applied, we define priority levels for them such that only the 
matrix with the highest priority level should be applied. We 
denote in the following by: 
 

• Concur(CM) the set of concurrent matrices of CM ∈ 
ξ(Sys), 

• level(CM) the priority level of the matrix CM in the 
set Concur(CM) ∪ {CM}. 
 

Running Example. In the Benchmark Production Systems 
FESTO and EnAS, we show in Figure 3 the Coordination 
Matrices to be applied in order to guarantee coherent 
distributed reconfigurations at run-time. According to Figures 
1 and 2: 
• The first matrix CM1 is applied when the FESTO’s agent 
applies the Light Production Mode (i.e. the states ASM1, 
CSM11 and DSM11 are activated and Reconfiguration1,1,1,1 is 
applied), and the EnAS’s agent is required to decrease the 
productivity by applying the First Production Policy to put 
only one piece in each tin (i.e. the states ASM2, CSM21 are 
activated and Reconfiguration2,1,0,0 is applied), 
• The second matrix CM2 is applied when the FESTO’s 
agent applies the High Production Mode (i.e. the states ASM2, 
CSM21 and DSM21 are activated and Reconfiguration2;1;2;1 is 
applied) and the EnAS’s agent is required to increase the 
productivity by applying the Second Production Mode to put 
two pieces into each tin (i.e. the states ASM1, CSM11 are 
activated and Reconfiguration1,1,0,0 is applied), 
• The third matrix CM3 is applied when the FESTO’s agent 
applies the Medium Production Mode (i.e. the states ASM2, 
CSM22 and DSM22 are activated and Reconfiguration2;2;2;2 is 
applied). In this case the EnAS system is required to apply the 
Second Production Policy (i.e. the states ASM1, CSM11 are 
activated and Reconfiguration1,1,0,0 is applied), 
• The fourth matrix CM4 is applied when the Jack station J1 
in the EnAS system is broken (i.e. the states ASM1, CSM12 are 
activated and Reconfiguration1;2;0;0 is applied). In this case the 
FESTO system has to decrease the productivity by applying the 
Light production Mode (i.e. the states ASM1, CSM11 and 
DSM11 are activated and Reconfiguration1,1,1,1 is applied), 
• The matrix CM5 is applied when the Jack station J2 and 
the Gripper station G1 are broken in the EnAS system (i.e. the 
states ASM1 and CSM13 are activated and Reconfiguration1,3,0,0 
is applied). In this case the FESTO system is required to 
decrease the productivity by applying the Light Production 
Mode, 
• The matrix CM1 is applied at run-time when the Gripper 
station G2 is broken (i.e. the states ASM2, CSM21 are activated 
and Reconfiguration2,1,0,0 is applied). In this case the FESTO’s 
agent has also to decrease the productivity by applying the 
Light Production Mode, 
• The matrix CM6 is applied when the drilling machine 
Drill_machine1 is broken in FESTO (i.e. the states ASM2, 
CSM23 and DSM23 are activated and Reconfiguration2;3;2;3 is 
applied). In this case, the EnAS system is required to decrease 
the productivity by applying the First Production Mode (i.e. 
the states ASM2, CSM21 are activated and Reconfiguration2,1,0,0 
is applied), 
• The matrix CM7 is applied at run-time when the second 
drilling machine is broken at run-time. In this case, the EnAS 
system is required also the decrease the productivity by 
applying the First Production Mode, 
• Finally, the matrix CM8 is applied at run-time to stop the 
whole production when the two drilling machines 
Drill_machine1 and Drill_machine2 are broken. In this case, 
the EnAS’s agent has to reach the halt state (i.e. the states 
ASM1, CSM14 are activated and Reconfiguration1,4,0,0 is 
applied). 
 
3.2.2. Inter-Agent Protocol for Reconfigurable Systems 
 
We propose a multi-agent architecture for embedded control 
systems following the Standard IEC61499 to handle automatic 
distributed reconfigurations of devices. To guarantee a 
coherent behavior of the whole distributed system, we define a 
“Coordination Agent” (denoted by CA(ξ(Sys))) which handles 
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the Coordination Matrices of ξ(Sys) to control the rest of 
agents (i.e. Aga , a ∈ [1, n]) as follows: 
 
• When a particular agent Aga (a ∈ [1, n]) should apply a 
reconfiguration scenario Reconfiguration a ia,ja,ka,ha (i.e. under 
well-defined conditions), it sends the following request to 
CA(ξ(Sys)) in order to obtain its authorization: 

 
request(Aga, CA(ξ(Sys)), Reconfiguration a ia,ja,ka,ha) 

 
 

 
 
Fig.3. Coordination Matrices For FESTO and EnAS 
 
• When CA(ξ(Sys)) receives this request that corresponds to 
a particular coordination matrix CM ∈ ξ(Sys) and if CM has 
the highest priority between all matrices of Concur(CM) ∪ 
{CM}, then CA(ξ(Sys)) informs the agents that have 
simultaneously to react with Aga as defined in CM. The 
following information is sent from CA(ξ(Sys)):  
For each Agb, b ∈ [1, n] \{a} and CM[b, i]≠0, ∀ i∈[1, 4]: 

 
Reconfiguration (CA(ξ(Sys)), Agb,  

Reconfiguration bCM[b,1],CM[b,2],CM[b,3],CM[b,4]) 
 
According to well-defined conditions in the device of each 
Agb, the CA(ξ(Sys)) request can be accepted or refused by 
sending one of the following answers: 
 
• If condb

ib = condb
jb = condb

kb,hb = True, Then the following 
reply is sent from Agb to CA(ξ(Sys)): 
 

Possible_reconfig(Agb , CA(ξ(Sys)), 
Reconfigurationb

CM[b,1],CM[b,2],CM[b,3],CM[b,4]) 
 

– Else the following reply is sent from Agb to CA(ξ(Sys)): 
 

Not_possible_reconfig(Agb,CA(ξ(Sys)), 
Reconfigurationb

CM[b,1],CM[b,2],CM[b,3],CM[b,4]) 
 

If CA(ξ(Sys)) receives positive answers from all agents, Then 
it authorizes the reconfiguration in the concerned devices: 
 

For each Agb, b ∈ [1, n] and CM[b,i] ≠ 0, ∀i ∈ [1, 4], 
apply(Reconfigurationb

CM[b,1],CM[b,2],CM[b,3],CM[b,4]) in device b 
 
Else If CA(ξ(Sys)) receives a negative answer from a particular 
agent, Then 
– If the reconfiguration scenario Reconfigurationa

ia,ja,ka,ha 
allows an optimization of the whole system’s behavior, 
Then CA(ξ(Sys)) refuses the request of Aga by sending 
the following reply: 
 

Refused_reconfiguration(CA(ξ(Sys)), Aga , 
Reconfigurationa

CM[a,1],CM[a,2],CM[a,3],CM[a,4])). 
 
 
 

4. Model Checking of the Coordination Agent 

The model checking of a distributed reconfigurable system is  
mandatory  to  check  the  reactivity  of  distributed  agents 
when  reconfiguration  scenarios  should  be  applied  in  the 
corresponding devices. We propose a NCES-based model for 
each Coordination Matrix to be handled by the Coordination 
Agent, and propose thereafter the verification of the whole 
system’s behavior by applying the model checker SESA and 
the temporal logic CTL.  

4.1. NCES-Based  Models for Coordination Agent  

We   model   each   Coordination   Matrix   CM ∈ ξ(Sys)  to  
be  handled  by  the  Coordination  Agent CA(ξ(Sys)) by a 
NCES-based Coordination Model in which the   conditions   
conda

ia,   conda
ja and conda

ka,ha are verified for each non idle 
agent Aga (a ∈ [1, n]) (i.e. application of the reconfiguration 
scenario Reconfigurationa

ia,ja,ka,ha) before an authorization is 
sent into all non idle agents in order to effectively apply 
corresponding reconfigurations.  
Running Example. We show in Figure 4 the Coordination 
Module Module(CM7,8)  to  be  applied  when  the  drilling 
machines Drill_machine1 or Drill_machine2 are broken  (i.e.  
the states  PF4  and  PF7  of  CSM1(PF1) of FESTO).  In this 
case, the EnAS’s agent should reduce the productivity by 
applying the First Production Mode (i.e. the state PE2 of 
ASM(EnAS)). We show in Figure 5 the module Module(CM4,5) 
that defines the behavior of the Coordination Matrix when the 
Jack stations J1 , J2 or the Gripper G1 are broken. In this 
case, the FESTO’s agent should reduce the productivity by 
applying the Light Production Mode (i.e. the state PF1 of 
ASM(FESTO) of FESTO). We show in Figure 6 the module 
Module(CM1) that defines the behavior of the Coordination 
Matrix when the Light Production Mode is applied by the 
FESTO’s agent (number_pieces < Constant2). In this case, the 
EnAS’s agent should apply the First Production Mode  in  
which  only  one  piece  is  put  in  the  tin. On the other hand, 
the module Module(CM2,3) defines the behavior of the 
Coordination Matrix when the  FESTO’s agent  should  apply  
the  High  or  the Medium  Modes.  In this case, the EnAS’s 
agent should change the production strategy to the Second 
Production Mode where two pieces are put in the tin.  To 
manage Concurrent Coordination Matrices, the resolution of 
hardware problems is assumed to have a higher priority than 
any optimization of the system productivity. Therefore, the 
Coordination Matrix  CM7,8 (CM 4,5 ,resp)  has  a higher  
priority than CM1 (CM2,3 , resp). According to  Figure 6, the  
matrix  CM1 (CM2,3 ,  resp)  is  applied  if  and only if the 
drilling machines Drill_machine1 and Drill_machine2 (the 
Jack stations J1 , J2 and the Gripper station G1) are not 
broken. 

4.2. Verification of Distributed Reconfigurations 

We verify with the model checker SESA the behavior of the 
whole control system when distributed reconfigurations are 
applied by the Coordination Agent. Indeed, we have to check 
for each Coordination Matrix CM ∈ ξ(Sys) that whenever an 
Agent Aga (a ∈ [1, n]) applies a reconfiguration scenario under  
well-defined conditions, the other non-idle agents should react 
by applying required the corresponding reconfigurations. 
 
Running Example. In our the benchmark  production  systems 
FESTO and EnAS,  we  apply  the  model checker  SESA  to  
verify  the  correct  feasibility  of distributed reconfiguration 
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scenarios on NCES-based models  of  agents.  Our  objective  
is  to  check  that whenever  one  of  these  demonstrators  
improves  or decreases the productivity, the other applies the 
same strategy.  In addition, we have to check that each one 
reacts when any hardware problem occurs in the second. This 
verification is mandatory in order to guarantee coherent 
behaviors of these complementary demonstrators. The model 
checker SESA generates for the NCES-based models of the 
considered agents a reachability graph composed of 162 
states.  We specify the following functional properties 
according to the temporal logic CTL: 
– Property1:   whenever   the   drilling   machines 
Drill_machine1 or Drill_machine2 are broken in the FESTO 
Benchmark System (i.e. the states PF7 or PF4 are reached), 
the EnAS system has therefore to decrease the productivity (i.e. 
the state PE2 is reached). The following formulas are proven 
to be true by the model checker SESA: 

Formula1: z0 |= AGAte7XAGAtc1XPF7 
Formula2: z0 |= AGAte7XAGAtc1XPF4 

– Property2: whenever the Jack stations J1 and J2 or the 
Gripper station G1 are broken in EnAS, the FESTO system has 
to react by decreasing the productivity to the Light Production 
Mode. The following formulas are proven to be true by the 
model checker SESA: 
Formula3 (J1 is broken):  

z0 |= AGAtf2XAGAtc3XPF12 
Formula4 (J2 and G1 are broken):  

z0 |= AGAtf2XAGAtc3XPF13 
–  Property3: If the condition number_pieces ≥ Constant2 is 
satisfied and FESTO improves  in  this  case  the  productivity  
to  the Medium or the High Modes (i.e. the place PF2 is 
reached), EnAS should improve also  the  productivity  by  
applying  the  Second Production Policy where two pieces are 
put in each tin. The following formula is proven to be true by 
the model checker SESA:  

Formula5: z0 |= AGAtf8XAGAtc4XPF2 
 
– Property4: If the condition (nb pieces /nb tins+caps >      
Threshold) is satisfied and EnAS should improve the 
productivity by applying the second mode (i.e. the place PE1 is 
reached), FESTO should also increase the productivity by 
applying the Medium or High Modes (i.e. the state PF1 is 
reached). The following formula is proven to be true by the 
model checker SESA: 

Formula6: z0 |= AGAtf1XAGAtc6XPE1 
 

5. Implementation 
 

We developed a complete tool ProtocolReconf at INSAT 
Institute of Carthage University in Tunisia by using Qt Creator 
2.0.0 (for more information we refer to [10]). We firstly 
present its different graphic interfaces, before we show a 
simulation running the communication protocol.  The tool 
ProtocolReconf offers the possibility to create the 
Reconfiguration and Coordination Agents by introducing their 
parameters. For the Reconfiguration Agents, it is necessary to 
define Data, Devices, and all possible Reconfigurations (Figure 
7). Each data must be defined by indicating the name and the 
value, and each device is characterized also by its identifier 
and state (functional or broken). It is required in addition to 
define the different scenarios that the Reconfiguration Agent 
can support so that when a modification occurs in the system, 
it should look for the convenient reconfiguration.  For the 
Coordination Agent, it is necessary to define the set of 
Coordination Matrices and especially the current matrix to 
apply to the whole system (Figure 8). The communication 

between the different reconfiguration agents follows the 
specific protocol defined before.  
  

 
Fig.4. Reconfigurations when the drilling machines are broken 
 
 
 
 

 
Fig.5.    Reconfigurations after when hardware problems 
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Fig.6.    Reconfigurations to regulate the performance 

To ensure a new adaptation of the system, a Reconfiguration 
Agent sends a request to the Coordination Agent indicating the 
new reconfiguration to apply. Consequently, this coordinator 
searches the right Coordination Matrix and sends a request to 
the rest of Reconfiguration Agents. After receiving all the 
feedbacks, the Coordination Agent decides to apply this new 
Coordination Matrix (if all Reconfiguration Agents accept this 
modification) or to cancel the corresponding required 
reconfiguration scenario. 
Running Example1. In FESTO and EnAS (Figure 9), we 
assume that the matrix CM2 is applied i.e. the FESTO’s  agent  
applies  the  High Production  Mode  and  the  EnAS’s  agent  
applies  the  Second  Production  Strategy.  To  verify  the  
interaction  between these  agents  when  a  particular  
hardware  problem  occurs, we  change  the  state  of  the  
device  Driller1  which  becomes broken. Consequently, the 
FESTO’s agent should decrease the production by sending a 
request to the Coordination Agent in  order  to  look  for  the  
most  convenient  matrix  which  is CM6. The Coordination 
Agent sends a request to decrease the production in EnAS. The 
EnAS’s agent studies the feasibility of this new reconfiguration 
in order to accept the decrease of production. In this case, the 
Coordination Agent sends a final confirmation to officially 
apply this new coordination matrix. 
 

 
Fig.7.    Interface for Reconfiguration Agent 

 
Running  Example2. We assume that the matrix CM6 is 
applied i.e. the FESTO’s agent applies the Low Production 
Mode and the EnAS’s agent applies the First Production 
strategy (Figure 10). When the state of the device Driller2 

becomes broken, the FESTO’s agent should stop the 
production by sending a request to the Coordination Agent in 
order to halt the second agent. The Coordination Agent 
decides to apply the matrix CM8 and sends a request to stop 
the production in EnAS. The EnAS’s agent accepts this new 
reconfiguration. Consequently, the Coordination Agent sends a 
confirmation to stop the production in both EnAS and FESTO 
systems. 
 

 
Fig.8.    Interface for Coordination Agent 

 

 
Fig.9.    First Example of Communication Protocol 
 

 
Fig.10.    Second Example of Communication Protocol 
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6. Related work 
 
After presenting our contribution, we discuss in this 
section the originality of our paper by analyzing related 
works. The Authors in [6] propose an ontology-based 
reconfiguration agent to dynamically reconfigure 
(without any human intervention) the manufacturing 
system by applying an intelligent semantic. Our work 
differs because it deals with feasible and coherent 
distributed reconfigurations to be applied to a distributed 
architecture.  The authors in [17] present a component 
model named MALEVA to encapsulate different 
behaviours or activities of a software agent.  In this 
work, there are two types of ports: data ports to transfer 
data and control ports to activate specific behaviours. 
Although this work is interesting, the proposed 
component model is limited and doesn’t allow all 
possible forms of distributed reconfigurations. In [18], 
the authors define SAASHA as a Self-Adaptable Agent 
System for Home Automation.  The authors distinguish 
two types of components: graphical user interface 
components and control device components. A 
SAASHA agent is proposed to evaluate the 
environment’s evolution before generating convenient 
control components. Although this work is important, it 
is restricted to Home Automation unlike our work 
intended to be used for any embedded system. In 
addition, the authors do not address reconfigurations in 
distributed architectures. In [19], the authors propose 
PROSA as a holonic architecture for manufacturing 
systems. PROSA offers a set of standard components to 
be used by the architect to design a manufacturing 
system where holons are used as autonomous entities. 
The architecture of a holon is defined as follows: 
physical processing component, physical control 
component, decision making component, inter-holons 
interface and human interface. However in our work, we 
are mainly interested in the software level (the 
interaction with the hardware level is ensured through 
sensors and actuators). The contribution that we propose 
in the current paper addresses the correct application of 
coherent distributed reconfigurations of embedded 
control systems. To our knowledge, this is the first 
contribution addressing this problem. 
 
7. Conclusion 
 
This paper deals with multi-agent distributed reconfigurable 
embedded control systems following the standard IEC61499.  
We classify all possible reconfiguration scenarios into three 
forms: the first deals with the system architecture, the second 
with the internal structure of blocks or with their composition, 
and the third deals with the reconfiguration of data.  We define 
an architecture of reconfigurable multi-agent systems where a 
Reconfiguration Agent modelled by nested state machines is 
affected to each device of the execution environment to handle 
local automatic reconfigurations, and a Coordination Agent 
handling Coordination Matrices is defined to guarantee safe 
distributed reconfigurations. We use NCES to model the whole 
architecture which is verified by applying the model checker 
SESA. We developed the tool "ProtocolReconf" to simulate 

the inter-agents communication protocol. The paper’s 
contributions are applied to two Benchmark Production 
Systems FESTO and EnAS. In our future work, we plan to 
study the schedulability of distributed reconfigurable Function 
Blocks in order to meet real-time constraints. We plan also to 
study their simulation which is not an exhaustive approach. In 
this case, a technique based on injections of faults should be 
studied to improve a such verification. 
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