
 Journal of Ubiquitous Systems & Pervasive Networks
Volume 1, No. 1 (2010) pp. 19-28

* Corresponding author. E-mail: khalgui.mohamed@gmail.com

© 2010 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/juspn.01.01.003

19

New Solutions for Feasible and Coherent Reconfigurations
of Multi-Agent Embedded Software Architectures

Mohamed Khalgui*a,b, Atef Gharbic

aMartin Luther University, Germany,

bXidian University, China,
cUniversity of Carthage, Tunisia,

Abstract
The paper deals with reconfigurable multi-agent distributed embedded control systems following the component-based
International Industrial Standard IEC61499 in which a Function Block (abbreviated by FB) is an event-triggered
software component owning data and a control application is a distributed network of Function Blocks. To handle all
possible industrial cases, we classify reconfiguration scenarios into three forms before we define an architecture of
reconfigurable multi-agent systems where a Reconfiguration Agent modelled by nested state machines is affected to
each device of the execution environment to apply local reconfigurations, and a Coordination Agent is proposed for any
coordination between devices in order to guarantee safe and adequate distributed reconfigurations. A Communication
Protocol is proposed to allow a feasible coordination between agents by using well-defined Coordination Matrices. We
model the agents according to the formalism Net Condition/Event Systems (abbrev. NCES) which is a rich extension of
Petri nets, and apply the model checker SESA to validate the coordination between agents. Indeed, we should verify that
whenever a reconfiguration scenario is applied in a device, the remote devices should react as soon as possible according
to user requirements. We developed the tool "ProtocolReconf" for the visual simulation of the inter-agent protocol which
is applied in the paper to two benchmark production systems available at Martin Luther University.
Keywords: Function Block, Embedded System, Multi-Agent, Distributed Reconfiguration, Model Checking, Simulation.

1. Introduction

The new generation of industrial embedded control systems is
addressing new criteria as flexibility and agility [1], [2]. To
reduce their cost, these systems should be changed and adapted
to their environment without disturbances. Several interesting
academic and industrial research works have been made in
recent years to develop reconfigurable embedded control
systems [3]. We distinguish in these works two reconfiguration
policies: static and dynamic reconfigurations such that static
reconfigurations are applied off-line to apply changes before
starting the system [4], whereas dynamic reconfigurations are
dynamically applied at run-time. Two cases exist in the last
policy: manual reconfigurations applied by users [5] and
automatic reconfigurations applied by Intelligent Agents [6, 8].
Nowadays, four classes of software agents have been proposed
[11]: (i) Logic-based Agents such that agents take decisions
depending on logical deductions; (ii) Reactive Agents where
agents make decisions according to some forms of mappings
from causes to actions; (iii) Belief-Desire-Intention (BDI)
Agents such that agents have beliefs, desires, and intentions in
which decisions-makings are based on manipulations of data
structures; (iv) Layered Architectures where agents are
specified with many software layers. On the other hand, two
classes of software components are clearly distinguished in
[12]: the first addresses components to be instantiated,

composed and deployed at run-time [7], and the second
addresses components to be composed off-line for real-time
embedded systems. We are interested in this paper in the
second class by following the well-known component-based
International Industrial Standard IEC61499 for the
development of embedded control systems [14,16]. In this
standard, a Function Block is an event-triggered software unit
to be composed of an interface and an implementation. The
interface contains data/event inputs/outputs to support
interactions with the environment, whereas the implementation
contains algorithms to be executed when corresponding input
events occur. According to this standard, a system is
implemented by a network of Function Blocks under
precedence constraints.

We are interested in this research in automatic reconfigurations
of distributed industrial embedded control systems following
the standard IEC61499. We mean in the paper by a
reconfiguration scenario any operation allowing the automatic
additions, removals or updates of Function Blocks to save the
whole system when hardware faults occur, or to improve also
its productivity. In this case, the system is modeled by different
networks of Function Blocks such that each one should be
executed at run-time when a particular reconfiguration scenario
is automatically applied. To handle all possible automatic
reconfigurations, we propose a distributed multi-agent
architecture [15] in which a Reactive and Layered
Reconfiguration Agent that we model by nested state machines

Khalgui et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 19-28

20

is affected to each device of the execution environment to
handle local automatic reconfigurations, and a centralized
Coordination Agent is defined to manage distributed
reconfigurations between devices because any uncontrolled
automatic reconfiguration applied in a device can lead to
critical problems and/or serious disturbances in others. We
propose the formal concept of "Coordination Matrix" to
define for each distributed reconfiguration scenario the
behavior of all concerned reconfiguration Agents that
should simultaneously react. To guarantee a deterministic
behavior of the whole distributed architecture, we define
for each matrix a priority level according to the emergency of
the corresponding reconfiguration scenario. The Coordination
Agent handles all matrices to coordinate between agents
according to a well-defined communication protocol: when a
Reconfiguration Agent applies in the corresponding device a
highest-priority reconfiguration, the Coordination Agent
informs the rest of concerned agents to react and to bring the
whole distributed system to safe and optimal behaviors. We
model each Reconfiguration Agent and each Coordination
Matrix according to the formalism Net Condition/Event
Systems which is an extension of Petri nets [9], and apply the
model checker SESA to exhaustively check if all system’s
devices react as described in user requirements to guarantee
safe and correct distributed reconfigurations. We verify in this
case functional properties according to the temporal logic
"Computation Tree Logic"[9]. We developed in addition a
software tool for graphical simulations of the inter-agents
protocol in order to visually show for users the reactivity of the
distributed system’s agents according to environment’s
evolutions. We describe in the next section the benchmark
production systems FESTO and EnAS that we follow as
running examples in the paper to explain our contributions. We
define in Section 3 a multi-agent architecture for
reconfigurable embedded control systems, before apply
thereafter in Section 4 a model checking of the inter-agent
protocol. We present in section 5 the tool simulating the
architecture, before discussing the originality of the paper’s
contribution in Section 6, and conclude the paper in Section 7.

2. Benchmark Production Systems FESTO and EnAS

We present two benchmark production systems following
the Standard IEC61499: FESTO and EnAS available at Martin
Luther University in Germany. We propose in particular some
reconfiguration scenarios to be applied in these systems that
we assume in the following as running examples.

2.1. FESTO System

The benchmark production system FESTO is a well-
documented demonstrator used by many universities for
research and education purposes, and is used as a running
example in the context of this paper. FESTO is composed of
three units: Distribution, Test and Processing Units.
Distribution Unit is composed of a pneumatic feeder and a
converter to forward cylindrical work pieces from a stack
to the testing unit which is composed of the Detector, the
Tester and the Elevator. This unit performs checks on work
pieces for height, material type and color. Work pieces that
successfully pass this check are forwarded to the rotating disk
of Processing Unit, where the drilling of the work piece is
performed. We assume two drilling machines Drill_machine1
and Drill_machine2 to drill pieces. The result of the drilling
operation is next checked by the checking machine and the
work piece is forwarded to another mechanical unit. Three

production modes of FESTO are considered according to the
rate of input pieces denoted by number_pieces into the system
(i.e. ejected by the feeder).

• Case1: High production. If number_pieces ≥ Constant1,

Then the two drilling machines are used at the same time
to accelerate their production. In this case, Distribution
and Testing Units should forward two successive pieces
to the rotating disc before starting the drilling with
Drill_machine1 AND Drill_machine2. For this production
mode, the periodicity of input pieces is p = 11 seconds,

• Case2: Medium production. If Constant2 ≤
number_pieces < Constant1, Then we use Drill_machine1
OR Drill_machine2 to drill work pieces. For this
production mode, the periodicity of input pieces is p = 30
seconds,

• Case3: Light production. If number_pieces < Constant2,
Then only the drilling machine Drill_machine1 is
used. For this production mode, the periodicity of input
pieces is p = 50 seconds.

On the other hand, if one of the drilling machines is broken at
run-time, then we have to only use the other one. In this case,
we reduce the periodicity of input pieces to p = 40 seconds.
The system is completely stopped in the worst case if the two
drilling machines are broken.

2.2. EnAS System

The benchmark production system EnAS was designed as a
prototype to demonstrate energy-antarcic actuator/sensor
systems. We assume that it has the following behavior: it
transports pieces from the production system (i.e. FESTO
system) to storing units. The pieces in EnAS shall be placed
inside tins to close with caps afterwards. Two different
production strategies can be applied: we place in each tin one
or two pieces according to production rates of pieces, tins and
caps. We denote respectively by nbpieces , nbtins+caps the
production number of pieces and tins (as well as caps) per hour
and by Threshold a variable (defined in user requirements) to
choose the adequate production strategy. The EnAS system is
mainly composed of a belt, two Jack stations (J1 and J2) and
two Gripper stations (G1 and G2). The Jack stations place new
produced pieces and close tins with caps, whereas the Gripper
stations remove charged tins from the belt into storing units.
Initially, the belt moves a particular pallet containing a tin and
a cap to the first Jack station J1. According to production
parameters, we distinguish two cases,

• Case1: First production policy. If (nb pieces/nb

tins+caps ≤ Threshold), Then the Jack station J1 places
from the production station a new piece and closes the tin
with the cap. In this case, the Gripper station G1 removes
the tin from the belt into the storing station St1.

• Case2: Second production policy. If (nbpieces/nbtins+caps >
Threshold), Then the Jack station J1 places just a piece in
the tin which is moved thereafter into the second Jack
station to place a second new piece. Once J2 closes the tin
with a cap, the belt moves the pallet into the Gripper
station G2 to remove the tin (with two pieces) into the
second storing station St2.

Khalgui et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 19-28

21

3. Multi-Agent Reconfigurable Architectures

We define a multi-agent architecture for distributed
reconfigurable embedded control systems following the
International Standard IEC61499. A Reconfiguration Agent
is affected in this architecture to a device of the execution
environment to handle automatic reconfigurations of
Function Blocks. It is specified by nested state machines that
support all reconfiguration forms. Nevertheless, the
coordination between agents in this distributed architecture is
extremely mandatory because any uncontrolled automatic
reconfiguration applied in a device can lead to critical
problems, serious disturbances or also inadequate
distributed behaviors in others. To guarantee safe distributed
reconfigurations, we define the concept of Coordination
Matrix that defines correct reconfiguration scenarios to be
simultaneously applied in distributed devices, and define
the concept of Coordination Agent that handles coordination
matrices to coordinate between distributed agents. We
propose a communication protocol for agents to manage
concurrent distributed reconfiguration scenarios.

Running Example. In FESTO and EnAS where a
Reconfiguration Agent is defined for each one of them, the
reconfiguration of the first can lead to a reconfiguration of
the second in order to guarantee a coherent production in
these platforms. This means:

– If Constant2 ≤ number_pieces, Then the FESTO’s
agent should apply the Medium or High Production
Mode, and in this case the EnAS’s agent should improve
the productivity by applying the Second Production
Policy in order to put two pieces in each tin.

– I f Constant2 > number_pieces, Then the FESTO’s
agent should decrease the productivity by applying the
Light Mode (i.e. only Drill_machine1 is used), and
in this case, the EnAS’s agent should also decrease the
productivity by applying the First Production Policy in
order to put only one piece in the tin.

On the other hand, when a hardware problem occurs at
run- time in a platform, a reconfiguration of the second is
required as follows:

– I f one of the Jack stations J1 and J2 or the Gripper
station G2 is broken in the production system EnAS,
Then the corresponding agent should decrease the
productivity by applying the First Production Mode,
and in this case the FESTO’s agent should also follow
the Light Production Mode in order to guarantee a
coherent behavior.

– If one of the drilling machines Drill_machine1 and
Drill_machine2 is broken, Then the FESTO’s agent
should decrease the productivity, and in this case the
EnAS’s agent should follow the First Production Mode
where only one piece is put in a tin.

3.1. Architecture of the Reconfiguration Agent

We define for each device of the execution environment a
unique agent that checks the environment’s evolution and
takes into account user requirements to apply automatic
reconfiguration scenarios. We define the following units that
belong to three hierarchical levels of the agent’s architecture:
– First level: (Architecture Unit) this unit checks the
system’s behavior and changes its architecture (adds/removes
Function Blocks) when particular conditions are satisfied. We

note that Standardized Manager Function Blocks are used in
this unit to load or unload such blocks into/from the memory
[14].
– Second level: (Control Unit) for a particular loaded
architecture, this unit checks the system’s behavior and:
reconfigures compositions of blocks (i.e. changes the
configuration of connections), or adds/removes data/event
inputs/outputs, or reconfigures the internal behavior of blocks
(i.e. updates of algorithms),
– Third level: (Data Unit) this unit updates data if particular
conditions are satisfied.
We design the agent by nested state machines where the
Architecture Unit is specified by an Architecture State Machine
(denoted by ASM) in which each state corresponds to a
particular architecture of the system. Therefore, each transition
of the ASM corresponds to the load (or unload) of Function
Blocks into (or from) the memory. We construct for each state
S of the ASM a particular Control State Machine (denoted by
CSM) in the Control Unit. This state machine specifies all
reconfiguration forms to possibly apply when the system’s
architecture corresponding to the state S is loaded (i.e.
modification of FB compositions or of their internal behavior).
Each transition of any CSM should be fired if particular
conditions are satisfied. Finally, the Data Unit is specified also
by Data State Machines (denoted by DSMs) where each one
corresponds to a state of a CSM or the whole ASM.

Notation. We denote in the following by,
– nASM the number of states in the state machine ASM (i.e. the
number of possible architectures implementing the system).
A S M i (i ∈ [1, nASM]) denotes a state of ASM to encode
a particular architecture (i.e. particular FB network). This
state corresponds to a particular state machine CSM that we
denote by CSMi (i ∈ [1,nASM]),
– nCSMi the number of states in CSMi and let CSMi,j (j ∈
[1, nC SMi]) be a state of C SMi,
– nDSM the number of Data State Machines corresponding to all
possible reconfiguration scenarios of the system. Each state
CSMi,j (j ∈ [1, nCSMj]) is associated to a particular DSM state
machine DSMk (k ∈ [1,nDSM]),
– nDSMk the number of states in DSMk. DSMk,h (h∈ [1,
nDSMk]) denotes a state of the state machine DSMk which
can correspond to one of the following cases: (i) one or more
states of a state machine CSM, (ii) more than one CSM
state machine, (iii) all the ASM state machines. The agent
automatically applies at run-time different reconfiguration
scenarios such that each one denoted by Reconfigurationi,j,k,h
corresponds to a particular network of Function Blocks fbni,j,k,h
as follows: (i) the architecture ASMi is loaded in the memory,
(ii) the control policy is fixed in the state CSMi,j, (iii) the data
configuration corresponding to the state DSMk , h is applied.

Running example. We present in Figure 1 the nested state
machines of our FESTO agent. The ASM state machine is
composed of two states ASM1 and ASM2 corresponding to
the first (i.e. the Light Production Mode) and the second (the
High and Medium modes) architectures. The state
machines CSM1 and CSM2 correspond to the states ASM1
and ASM2. In CSM 2 state machine, the states CSM21
and CSM22 correspond respectively to the High and the
Medium Production M odes (where the second architecture

Khalgui et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 19-28

22

is loaded). To fire a transition from CSM21 to CSM22,
the value of number_pieces should be in [Constant2,
Constant1 [. We note that the states CSM12 and CSM25
correspond to the blocking problem where the two drilling
machines are broken. Finally the state machines DSM1
and DSM2 correspond to the state machines CSM1 and
CSM2. In particular, the state DSM21 encodes the
production periodicity when we apply the High production
mode (i.e. the state CSM21 of CSM2), and the state
DSM 22 encodes the production periodicity when we apply
the Medium mode (i.e. CSM22 of CSM2). Finally, the state
DSM23 corresponds to CSM 23 and CSM24 and encodes
the production periodicity when one of the drilling
machines is broken. We design the agent of our EnAS
Benchmark Production System by nested state machines as
depicted in Figure 2. The first level is specified by ASM
where each state defines a particular architecture of the
system. The state ASM1(resp. ASM2) corresponds to the
second (resp. first) policy where Control Components that
control J1 , J2 and G2 (resp. only J1 and G1) are loaded
in memory. We associate for each one of these states a CSM in
the Control Unit. Finally, Data Unit is specified by DSM
which defines the values that Threshold takes under well-
defined conditions. Note that if we follow the Second
Production Policy (state ASM1) and the gripper G2 is
broken, then we should change the policy and also the
system architecture by loading the Control Component
G1_C T L to remove pieces into Belt1. On the other hand,
we associate in the second level for the state ASM1 the CSM
CSM1 that defines the different reconfiguration forms to
apply when the first architecture is loaded in the memory.
In particular, If the state CSM11 is active and the Jack
station J1 is broken, Then we activate the state CSM12 in
which the Jack station J2 is running alone to place only
one piece in the tin. In this case, the internal behavior of
the block Belt_CTL should be changed (i.e. the tin should
be transported directly to the station J2). In the same way,
If we follow the same policy in the state CSM11 and the
Jack station J2 is broken, Then we should activate the state
C SM13 where the behavior of J1 should be changed to
place a piece in the tin that should be closed too (i.e. the
behavior of the Control Component J 1_C T L should be
reconfigured). We specify finally in Data Unit a DSM
where we change the value of Threshold when Gripper G1
is broken (we suppose as an example that we are not
interested in the system performance when this Gripper is
broken). By considering this hierarchical model of agents,
we specify all possible reconfiguration scenarios that can
be applied in embedded control systems: Add-Remove (first
level) or Update the structure of Control Components
(second level) or just Update data (third level).

Fig.1. Specification of the FESTO’s Agent

Fig.2. Specification of the EnAS’s Agent

3.2. Reconfiguration in a Distributed Architecture

We are interested in automatic reconfigurations of Function
Blocks to be distributed on networks of devices where
coordination between agents is important because any
uncontrolled automatic reconfiguration applied by any agent
can lead to critical problems or serious disturbances in others.
We define in this section the concept of Coordination Matrix to
handle coherent reconfiguration scenarios in distributed
devices, and propose thereafter an architecture of multi-agent
distributed reconfigurable systems where a communication
protocol between agents is defined.

Khalgui et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 19-28

23

3.2.1. Distributed Reconfigurations

Let Sys be a distributed reconfigurable system of n devices,
and let Ag1,..., Agn be n agents to handle automatic distributed
reconfigurations of these devices. We denote in the following
by Reconfiguration aia,ja,ka,ha a reconfiguration scenario
applied by Aga (a ∈ [1, n]) as follows:

• The corresponding ASM state machine is in the state

ASMia. Let conda
ia be the set of conditions to reach this

state,
• The state machine CSM is in the state CSMia,ja. Let conda

ja
be the set of conditions to reach this state,

• The state machine DSM is in the state DSMka,ha. Let
conda

ka,ha be the set of conditions to reach this state.

To handle coherent distributed reconfigurations that guarantee
safe behaviors of the whole system Sys, we define the concept
of ’’Coordination Matrix” of size (n,4) that defines coherent
scenarios to be simultaneously applied by different agents. Let
CM be a such matrix that we characterize as follows: each line
a (a ∈ [1, n]) corresponds to a reconfiguration scenario
Reconfigurationa ia,ja,ka,ha to be applied by Aga as follows:

CM[a,1]=ia ; CM[a,2]=ja ; CM[a,3]=ka ; CM[a,4]= ha

According to this definition: If an agent Aga applies the
reconfiguration Reconfigurationa

CM[a,1],CM[a,2],CM[a,3],CM[a,4],
Then each other agent Agb (b ∈ [1, n] \{ a }) should apply the
scenario Reconfigurationb

CM[b,1],CM[b,2],CM[b,3],CM[b,4]. We
denote in the following by “idle agent” each agent Agb
(b∈[1,n]) which is not required to apply any reconfiguration
when the others perform scenarios defined in CM. In this case:

CM[b,1] = CM[b,2] = CM[b,3] = CM[b,4] = 0
conda

CM[a,1]= conda
CM[a,2]= conda

CM[a,3],CM[a,4]= True

We denote in addition by ξ(Sys) the set of Coordination
Matrices to be considered for the reconfiguration of the
distributed embedded system Sys. Each Coordination Matrix
CM is applied at run-time if for each agent Aga (a ∈ [1, n]) the
following conditions are satisfied:

conda
CM[a,1]= conda

CM[a,2]= conda
CM[a,3],CM[a,4]= True

On the other hand, we define “Concurrent Coordination
Matrices”, CM1 and CM2 two matrices of ξ(Sys) that allow
different reconfigurations of same agents as follows: ∃ b ∈
[1,n] such that:

• CMj [b, i] ≠ 0 ∀ j ∈ {1, 2} and i ∈ [1,4],
• CM1[b, i] ≠ CM2 [b, i] ∀ i ∈ [1, 4].

In this case, the agent Agb is disturbed because it should apply
different reconfiguration scenarios at the same time. To
guarantee a deterministic behavior when Concurrent
Coordination Matrices are required to be simultaneously
applied, we define priority levels for them such that only the
matrix with the highest priority level should be applied. We
denote in the following by:

• Concur(CM) the set of concurrent matrices of CM ∈
ξ(Sys),

• level(CM) the priority level of the matrix CM in the
set Concur(CM) ∪ {CM}.

Running Example. In the Benchmark Production Systems
FESTO and EnAS, we show in Figure 3 the Coordination
Matrices to be applied in order to guarantee coherent
distributed reconfigurations at run-time. According to Figures
1 and 2:
• The first matrix CM1 is applied when the FESTO’s agent
applies the Light Production Mode (i.e. the states ASM1,
CSM11 and DSM11 are activated and Reconfiguration1,1,1,1 is
applied), and the EnAS’s agent is required to decrease the
productivity by applying the First Production Policy to put
only one piece in each tin (i.e. the states ASM2, CSM21 are
activated and Reconfiguration2,1,0,0 is applied),
• The second matrix CM2 is applied when the FESTO’s
agent applies the High Production Mode (i.e. the states ASM2,
CSM21 and DSM21 are activated and Reconfiguration2;1;2;1 is
applied) and the EnAS’s agent is required to increase the
productivity by applying the Second Production Mode to put
two pieces into each tin (i.e. the states ASM1, CSM11 are
activated and Reconfiguration1,1,0,0 is applied),
• The third matrix CM3 is applied when the FESTO’s agent
applies the Medium Production Mode (i.e. the states ASM2,
CSM22 and DSM22 are activated and Reconfiguration2;2;2;2 is
applied). In this case the EnAS system is required to apply the
Second Production Policy (i.e. the states ASM1, CSM11 are
activated and Reconfiguration1,1,0,0 is applied),
• The fourth matrix CM4 is applied when the Jack station J1
in the EnAS system is broken (i.e. the states ASM1, CSM12 are
activated and Reconfiguration1;2;0;0 is applied). In this case the
FESTO system has to decrease the productivity by applying the
Light production Mode (i.e. the states ASM1, CSM11 and
DSM11 are activated and Reconfiguration1,1,1,1 is applied),
• The matrix CM5 is applied when the Jack station J2 and
the Gripper station G1 are broken in the EnAS system (i.e. the
states ASM1 and CSM13 are activated and Reconfiguration1,3,0,0
is applied). In this case the FESTO system is required to
decrease the productivity by applying the Light Production
Mode,
• The matrix CM1 is applied at run-time when the Gripper
station G2 is broken (i.e. the states ASM2, CSM21 are activated
and Reconfiguration2,1,0,0 is applied). In this case the FESTO’s
agent has also to decrease the productivity by applying the
Light Production Mode,
• The matrix CM6 is applied when the drilling machine
Drill_machine1 is broken in FESTO (i.e. the states ASM2,
CSM23 and DSM23 are activated and Reconfiguration2;3;2;3 is
applied). In this case, the EnAS system is required to decrease
the productivity by applying the First Production Mode (i.e.
the states ASM2, CSM21 are activated and Reconfiguration2,1,0,0
is applied),
• The matrix CM7 is applied at run-time when the second
drilling machine is broken at run-time. In this case, the EnAS
system is required also the decrease the productivity by
applying the First Production Mode,
• Finally, the matrix CM8 is applied at run-time to stop the
whole production when the two drilling machines
Drill_machine1 and Drill_machine2 are broken. In this case,
the EnAS’s agent has to reach the halt state (i.e. the states
ASM1, CSM14 are activated and Reconfiguration1,4,0,0 is
applied).

3.2.2. Inter-Agent Protocol for Reconfigurable Systems

We propose a multi-agent architecture for embedded control
systems following the Standard IEC61499 to handle automatic
distributed reconfigurations of devices. To guarantee a
coherent behavior of the whole distributed system, we define a
“Coordination Agent” (denoted by CA(ξ(Sys))) which handles

Khalgui et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 19-28

24

the Coordination Matrices of ξ(Sys) to control the rest of
agents (i.e. Aga , a ∈ [1, n]) as follows:

• When a particular agent Aga (a ∈ [1, n]) should apply a
reconfiguration scenario Reconfiguration a ia,ja,ka,ha (i.e. under
well-defined conditions), it sends the following request to
CA(ξ(Sys)) in order to obtain its authorization:

request(Aga, CA(ξ(Sys)), Reconfiguration a ia,ja,ka,ha)

Fig.3. Coordination Matrices For FESTO and EnAS

• When CA(ξ(Sys)) receives this request that corresponds to
a particular coordination matrix CM ∈ ξ(Sys) and if CM has
the highest priority between all matrices of Concur(CM) ∪
{CM}, then CA(ξ(Sys)) informs the agents that have
simultaneously to react with Aga as defined in CM. The
following information is sent from CA(ξ(Sys)):
For each Agb, b ∈ [1, n] \{a} and CM[b, i]≠0, ∀ i∈[1, 4]:

Reconfiguration (CA(ξ(Sys)), Agb,

Reconfiguration bCM[b,1],CM[b,2],CM[b,3],CM[b,4])

According to well-defined conditions in the device of each
Agb, the CA(ξ(Sys)) request can be accepted or refused by
sending one of the following answers:

• If condb

ib = condb
jb = condb

kb,hb = True, Then the following
reply is sent from Agb to CA(ξ(Sys)):

Possible_reconfig(Agb , CA(ξ(Sys)),
Reconfigurationb

CM[b,1],CM[b,2],CM[b,3],CM[b,4])

– Else the following reply is sent from Agb to CA(ξ(Sys)):

Not_possible_reconfig(Agb,CA(ξ(Sys)),
Reconfigurationb

CM[b,1],CM[b,2],CM[b,3],CM[b,4])

If CA(ξ(Sys)) receives positive answers from all agents, Then
it authorizes the reconfiguration in the concerned devices:

For each Agb, b ∈ [1, n] and CM[b,i] ≠ 0, ∀i ∈ [1, 4],
apply(Reconfigurationb

CM[b,1],CM[b,2],CM[b,3],CM[b,4]) in device b

Else If CA(ξ(Sys)) receives a negative answer from a particular
agent, Then
– If the reconfiguration scenario Reconfigurationa

ia,ja,ka,ha
allows an optimization of the whole system’s behavior,
Then CA(ξ(Sys)) refuses the request of Aga by sending
the following reply:

Refused_reconfiguration(CA(ξ(Sys)), Aga ,
Reconfigurationa

CM[a,1],CM[a,2],CM[a,3],CM[a,4])).

4. Model Checking of the Coordination Agent

The model checking of a distributed reconfigurable system is
mandatory to check the reactivity of distributed agents
when reconfiguration scenarios should be applied in the
corresponding devices. We propose a NCES-based model for
each Coordination Matrix to be handled by the Coordination
Agent, and propose thereafter the verification of the whole
system’s behavior by applying the model checker SESA and
the temporal logic CTL.

4.1. NCES-Based Models for Coordination Agent

We model each Coordination Matrix CM ∈ ξ(Sys) to
be handled by the Coordination Agent CA(ξ(Sys)) by a
NCES-based Coordination Model in which the conditions
conda

ia, conda
ja and conda

ka,ha are verified for each non idle
agent Aga (a ∈ [1, n]) (i.e. application of the reconfiguration
scenario Reconfigurationa

ia,ja,ka,ha) before an authorization is
sent into all non idle agents in order to effectively apply
corresponding reconfigurations.
Running Example. We show in Figure 4 the Coordination
Module Module(CM7,8) to be applied when the drilling
machines Drill_machine1 or Drill_machine2 are broken (i.e.
the states PF4 and PF7 of CSM1(PF1) of FESTO). In this
case, the EnAS’s agent should reduce the productivity by
applying the First Production Mode (i.e. the state PE2 of
ASM(EnAS)). We show in Figure 5 the module Module(CM4,5)
that defines the behavior of the Coordination Matrix when the
Jack stations J1 , J2 or the Gripper G1 are broken. In this
case, the FESTO’s agent should reduce the productivity by
applying the Light Production Mode (i.e. the state PF1 of
ASM(FESTO) of FESTO). We show in Figure 6 the module
Module(CM1) that defines the behavior of the Coordination
Matrix when the Light Production Mode is applied by the
FESTO’s agent (number_pieces < Constant2). In this case, the
EnAS’s agent should apply the First Production Mode in
which only one piece is put in the tin. On the other hand,
the module Module(CM2,3) defines the behavior of the
Coordination Matrix when the FESTO’s agent should apply
the High or the Medium Modes. In this case, the EnAS’s
agent should change the production strategy to the Second
Production Mode where two pieces are put in the tin. To
manage Concurrent Coordination Matrices, the resolution of
hardware problems is assumed to have a higher priority than
any optimization of the system productivity. Therefore, the
Coordination Matrix CM7,8 (CM 4,5 ,resp) has a higher
priority than CM1 (CM2,3 , resp). According to Figure 6, the
matrix CM1 (CM2,3 , resp) is applied if and only if the
drilling machines Drill_machine1 and Drill_machine2 (the
Jack stations J1 , J2 and the Gripper station G1) are not
broken.

4.2. Verification of Distributed Reconfigurations

We verify with the model checker SESA the behavior of the
whole control system when distributed reconfigurations are
applied by the Coordination Agent. Indeed, we have to check
for each Coordination Matrix CM ∈ ξ(Sys) that whenever an
Agent Aga (a ∈ [1, n]) applies a reconfiguration scenario under
well-defined conditions, the other non-idle agents should react
by applying required the corresponding reconfigurations.

Running Example. In our the benchmark production systems
FESTO and EnAS, we apply the model checker SESA to
verify the correct feasibility of distributed reconfiguration

Khalgui et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 19-28

25

scenarios on NCES-based models of agents. Our objective
is to check that whenever one of these demonstrators
improves or decreases the productivity, the other applies the
same strategy. In addition, we have to check that each one
reacts when any hardware problem occurs in the second. This
verification is mandatory in order to guarantee coherent
behaviors of these complementary demonstrators. The model
checker SESA generates for the NCES-based models of the
considered agents a reachability graph composed of 162
states. We specify the following functional properties
according to the temporal logic CTL:
– Property1: whenever the drilling machines
Drill_machine1 or Drill_machine2 are broken in the FESTO
Benchmark System (i.e. the states PF7 or PF4 are reached),
the EnAS system has therefore to decrease the productivity (i.e.
the state PE2 is reached). The following formulas are proven
to be true by the model checker SESA:

Formula1: z0 |= AGAte7XAGAtc1XPF7
Formula2: z0 |= AGAte7XAGAtc1XPF4

– Property2: whenever the Jack stations J1 and J2 or the
Gripper station G1 are broken in EnAS, the FESTO system has
to react by decreasing the productivity to the Light Production
Mode. The following formulas are proven to be true by the
model checker SESA:
Formula3 (J1 is broken):

z0 |= AGAtf2XAGAtc3XPF12
Formula4 (J2 and G1 are broken):

z0 |= AGAtf2XAGAtc3XPF13
– Property3: If the condition number_pieces ≥ Constant2 is
satisfied and FESTO improves in this case the productivity
to the Medium or the High Modes (i.e. the place PF2 is
reached), EnAS should improve also the productivity by
applying the Second Production Policy where two pieces are
put in each tin. The following formula is proven to be true by
the model checker SESA:

Formula5: z0 |= AGAtf8XAGAtc4XPF2

– Property4: If the condition (nb pieces /nb tins+caps >
Threshold) is satisfied and EnAS should improve the
productivity by applying the second mode (i.e. the place PE1 is
reached), FESTO should also increase the productivity by
applying the Medium or High Modes (i.e. the state PF1 is
reached). The following formula is proven to be true by the
model checker SESA:

Formula6: z0 |= AGAtf1XAGAtc6XPE1

5. Implementation

We developed a complete tool ProtocolReconf at INSAT
Institute of Carthage University in Tunisia by using Qt Creator
2.0.0 (for more information we refer to [10]). We firstly
present its different graphic interfaces, before we show a
simulation running the communication protocol. The tool
ProtocolReconf offers the possibility to create the
Reconfiguration and Coordination Agents by introducing their
parameters. For the Reconfiguration Agents, it is necessary to
define Data, Devices, and all possible Reconfigurations (Figure
7). Each data must be defined by indicating the name and the
value, and each device is characterized also by its identifier
and state (functional or broken). It is required in addition to
define the different scenarios that the Reconfiguration Agent
can support so that when a modification occurs in the system,
it should look for the convenient reconfiguration. For the
Coordination Agent, it is necessary to define the set of
Coordination Matrices and especially the current matrix to
apply to the whole system (Figure 8). The communication

between the different reconfiguration agents follows the
specific protocol defined before.

Fig.4. Reconfigurations when the drilling machines are broken

Fig.5. Reconfigurations after when hardware problems

Khalgui et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 19-28

26

Fig.6. Reconfigurations to regulate the performance

To ensure a new adaptation of the system, a Reconfiguration
Agent sends a request to the Coordination Agent indicating the
new reconfiguration to apply. Consequently, this coordinator
searches the right Coordination Matrix and sends a request to
the rest of Reconfiguration Agents. After receiving all the
feedbacks, the Coordination Agent decides to apply this new
Coordination Matrix (if all Reconfiguration Agents accept this
modification) or to cancel the corresponding required
reconfiguration scenario.
Running Example1. In FESTO and EnAS (Figure 9), we
assume that the matrix CM2 is applied i.e. the FESTO’s agent
applies the High Production Mode and the EnAS’s agent
applies the Second Production Strategy. To verify the
interaction between these agents when a particular
hardware problem occurs, we change the state of the
device Driller1 which becomes broken. Consequently, the
FESTO’s agent should decrease the production by sending a
request to the Coordination Agent in order to look for the
most convenient matrix which is CM6. The Coordination
Agent sends a request to decrease the production in EnAS. The
EnAS’s agent studies the feasibility of this new reconfiguration
in order to accept the decrease of production. In this case, the
Coordination Agent sends a final confirmation to officially
apply this new coordination matrix.

Fig.7. Interface for Reconfiguration Agent

Running Example2. We assume that the matrix CM6 is
applied i.e. the FESTO’s agent applies the Low Production
Mode and the EnAS’s agent applies the First Production
strategy (Figure 10). When the state of the device Driller2

becomes broken, the FESTO’s agent should stop the
production by sending a request to the Coordination Agent in
order to halt the second agent. The Coordination Agent
decides to apply the matrix CM8 and sends a request to stop
the production in EnAS. The EnAS’s agent accepts this new
reconfiguration. Consequently, the Coordination Agent sends a
confirmation to stop the production in both EnAS and FESTO
systems.

Fig.8. Interface for Coordination Agent

Fig.9. First Example of Communication Protocol

Fig.10. Second Example of Communication Protocol

Khalgui et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 19-28

27

6. Related work

After presenting our contribution, we discuss in this
section the originality of our paper by analyzing related
works. The Authors in [6] propose an ontology-based
reconfiguration agent to dynamically reconfigure
(without any human intervention) the manufacturing
system by applying an intelligent semantic. Our work
differs because it deals with feasible and coherent
distributed reconfigurations to be applied to a distributed
architecture. The authors in [17] present a component
model named MALEVA to encapsulate different
behaviours or activities of a software agent. In this
work, there are two types of ports: data ports to transfer
data and control ports to activate specific behaviours.
Although this work is interesting, the proposed
component model is limited and doesn’t allow all
possible forms of distributed reconfigurations. In [18],
the authors define SAASHA as a Self-Adaptable Agent
System for Home Automation. The authors distinguish
two types of components: graphical user interface
components and control device components. A
SAASHA agent is proposed to evaluate the
environment’s evolution before generating convenient
control components. Although this work is important, it
is restricted to Home Automation unlike our work
intended to be used for any embedded system. In
addition, the authors do not address reconfigurations in
distributed architectures. In [19], the authors propose
PROSA as a holonic architecture for manufacturing
systems. PROSA offers a set of standard components to
be used by the architect to design a manufacturing
system where holons are used as autonomous entities.
The architecture of a holon is defined as follows:
physical processing component, physical control
component, decision making component, inter-holons
interface and human interface. However in our work, we
are mainly interested in the software level (the
interaction with the hardware level is ensured through
sensors and actuators). The contribution that we propose
in the current paper addresses the correct application of
coherent distributed reconfigurations of embedded
control systems. To our knowledge, this is the first
contribution addressing this problem.

7. Conclusion

This paper deals with multi-agent distributed reconfigurable
embedded control systems following the standard IEC61499.
We classify all possible reconfiguration scenarios into three
forms: the first deals with the system architecture, the second
with the internal structure of blocks or with their composition,
and the third deals with the reconfiguration of data. We define
an architecture of reconfigurable multi-agent systems where a
Reconfiguration Agent modelled by nested state machines is
affected to each device of the execution environment to handle
local automatic reconfigurations, and a Coordination Agent
handling Coordination Matrices is defined to guarantee safe
distributed reconfigurations. We use NCES to model the whole
architecture which is verified by applying the model checker
SESA. We developed the tool "ProtocolReconf" to simulate

the inter-agents communication protocol. The paper’s
contributions are applied to two Benchmark Production
Systems FESTO and EnAS. In our future work, we plan to
study the schedulability of distributed reconfigurable Function
Blocks in order to meet real-time constraints. We plan also to
study their simulation which is not an exhaustive approach. In
this case, a technique based on injections of faults should be
studied to improve a such verification.

References
[1] Vyatkin, V., Christensen, J., Lastra, J-L.: OOONEIDA:
An Open, Object-Oriented Knowledge Economy for
Intelligent Distributed Automation. IEEE Transactions on
Industrial Informatics, Vol. 1, N. 1, pp.04-17, (2005)
[2] Pratl, G., Dietrich, D., Hancke, G., Penzhorn, W.: A
New Model for Autonomous, Networked Control Systems.
IEEE Transactions on Industrial Informatics, Vol. 3, N. 1.
(2007)
[3] Gehin, A-L., Staroswiecki, M.: Reconfiguration Analysis
Using Generic Component Models. IEEE Transactions on
Systems, Machine and Cybernetics, Vol.38, N.3. (2008)
[4] Angelov, Ch., Sierszecki, K., Marian, N.: Design models
for reusable and reconfigurable state machines. L.T. Yang
and All (Eds): EUC 2005, LNCS 3824, pp:152-163.
International Federation for Information Processing. (2005)
[5] Rooker, M.N., Sunder, C., Strasser, T., Zoitl, A., Hummer,
O., Ebenhofer, G.: Zero Downtime Reconfiguration of
Distributed Automation Systems: The εCEDAC Approach.
Third International Conference on Industrial Applications of
Holonic and Multi-Agent Systems. Springer-Verlag (2007)
[6] Al-Safi, Y., Vyatkin, V.: An ontology-based
reconfiguration agent for intelligent mechatronic systems,
Third International Conference on Industrial Applications of
Holonic and Multi-Agent Systems. Springer - Verlag (2007)
[7] Crnkovic, I., Larsson, M.: Building reliable component-
based software systems. Artech House, UK, (2002)
[8] Theiss, S., Vasyutynskyy, V., Kabitzsch, K.: Software
Agents in Industry: A Customized Framework in Theory and
Praxis. IEEE Transactions on Industrial Informatics, Vol. 5, N.
2. (2009)
[9] Khalgui, M., Hanisch, H-M.: NCES-based modelling
and CTL-based verification of reconfigurable Benchmark
Production Systems. SIES2008 Third international symposium
on industrial embedded systems, June 11. (2008)
[10] Qt, cross-platform application and framework,
http://qt.nokia.com/products.
[11] Wooldridge, M. Intelligent agents. In G. Weiss (Ed.),
Multi-agent systems. MIT Press. (1999).
[12] ROADMAP: Component-based Design and Integration
Platforms, Ed Brinksma and all, 2003, http://www.artist-
embedded.org.
[13] Rainer Faller, Project experience with IEC 61508 and its
consequences, Safety Science, Vol. 42, pp. 405-422, 2004.
http.dx.doi.org/10.1016/j.ssci.2003.09.008
[14] Thramboulidis, K., An Architecture to Extend the
IEC61499 Model for Distributed Control Applications, 7th
International Conference on Automation Technology, 2003
[15] Gharbi, A., Khalgui, M., Ben Ahmed, S.: Inter-Agents
Communication Protocol for Distributed Reconfigurable
Control Software Components, The International Conference
on Ambient Systems Networks and Technologies (ANT-10),
2010
[16] Minhat, M., et al. : A novel open CNC architecture based
on STEP-NC data model and IEC 61499 function blocks.
Journal of Robotics and Computer-Integrated Manufacturing,
Vol. 25, N. 3, (2009)

Khalgui et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 19-28

28

[17] Briot, J.-P., Meurisse, T. : A Component-based Model of
Agent Behaviors for Multi-Agent based Simulations,
Proceedings of the 7th International Workshop on Multi-Agent
Based Simulation (MABS’06), 5th International Joint
Conference on Autonomous Agents and Multi-Agent Systems,
pp. 183–190, 2006.
[18] Hamoui, F., Urtado, C., Vauttier, S., Huchard, M.,
SAASHA : a Self-Adaptable Agent System for Home
Automation, Software Engineering and Advanced
Applications (SEAA), 2010 36th EUROMICRO Conference
on, pp. 227 – 230, 2010
[19] Verstraete, P., Germain, B. S., Hadeli, K., Valckenaers,
P., Brussel, H. V., On applying the PROSA reference
architecture in multi-agent manufacturing control applications,
Proceedings of the Multi-agent Systems and Software
Architecture, Special Track at Net. Object Days. Erfurt,
Germany, Sep 19, 2006 - Sep 19, 2009 (pp. 31-47).

