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Abstract 

The process of collecting traffic data is a key component to evaluate the current state of a transportation network and to 

analyze movements of vehicles. In this paper, we argue that both active stationary and mobile measurement devices should 

be taken into account for high-quality traffic data with sufficient geographic coverage. Stationary devices are able to collect 

data over time at certain locations in the network and mobile devices are able to gather data over large geographic regions. 

Hence, the two types of measurement devices have complementary properties and should be used in conjunction with each 

other in the data collection process. To evaluate the complementary characteristics of stationary and mobile devices for 

traffic data collection, we present a traffic simulation model, which we use to study the share of successfully identified 

vehicles when using both types of devices with varying identification rate. The results from our simulation study, using 

freight transport in southern Sweden, shows that the share of successfully identified vehicles can be significantly improved 

by using both stationary and mobile measurement devices.  
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1.  Introduction 

It is widely known that transportation plays a fundamental role 

for the economic and social development [1, 2]. For example, 

transportation allows people to commute to and from 

workplaces and educational institutes and enables transportation 

of goods. In order to maintain an efficient transportation 

infrastructure and to plan for present and future needs, there is a 

need to continuously gather information about the current state 

of the transport network. Thus, an important task for traffic 

authorities and other responsible actors is to collect up-to-date 

and accurate data about the traffic in order to evaluate the 

performance of the network [3]. Even though large amounts of 

resources are spent collecting, processing and analyzing traffic 

data, there is typically lack of knowledge on how individual 

vehicles travel over larger areas. For example, there is often a 

need to gain deeper knowledge of the movements of trucks 

carrying hazardous materials and to trace vehicles traveling on 

networks where road user charging is applied [4, 5]. This 

knowledge gap mainly stems from the inability, of the 

dominating types of technologies that are currently in use for 

collecting traffic data, to identify vehicles. 

One of the main objectives of collecting data is to accurately 

reflect the real-world state about the traffic in the network for 

further analysis. The data is vital for planners and traffic analysts 

to efficiently manage and coordinate the usage of the network 

and to ensure that adequate safety measures are taken.  Traffic 

data has a wide range of applications. For instance, traffic data 

can be used to estimate travel-times, predict congestion, and to 

find accident-prone locations in the network [6-8].  

The purpose of this work is to evaluate how active stationary 

and mobile measurement devices can be combined for traffic 

data collection in a road transport network. An active 

measurement device is equipped with technology able to detect 

and identify vehicles, for instance, automatic license plate 

number recognition. Due the complementary characteristics of 

stationary and mobile devices, we argue that they should be used 

in conjunction with each other for efficient traffic data 

collection. To evaluate the idea of using both types of 

measurement devices for traffic data collection, we developed a 

traffic simulation model, which we applied in order to simulate 

movements of freight trucks in southern Sweden. The 

simulation model is able to reproduce traffic flows on individual 

road segments, and it allows us in a cost-effective way, to 

investigate different scenarios with varying identification rate to 

gain insight into how stationary and mobile devices complement 

each other. In our scenario study, we study the share of the 

transportation fleet that was successfully detected and 

identified, as well as the share of freight trucks that was 

successfully detected and identified on the first link and the last 
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link along their journeys. We consider the latter information to 

be relevant since it can be used to estimate the travel demand 

between locations in the network (e.g., OD-matrix estimation). 

The current paper extends the paper by Holmgren et al. [9]. In 

particular, in the current paper we provide additional details 

about the mathematical model and new simulation results useful 

for vehicle movement analysis. 

The remainder of the paper is organized as follows. In Section 

2, we discuss the key properties of stationary and mobile devices 

for traffic data collection. Section 3 describes the mathematical 

model of our traffic simulation model, which we used in order 

to evaluate our idea on traffic data collection in the simulation 

study presented in Section 4. Finally, we provide some 

concluding remarks in Section 5.   

 

2.  Traffic data collection overview 

Related work includes various studies on how to integrate traffic 

data from multiple measurement sources. The movements of 

freight trucks can, for instance, be analyzed by the means of data 

obtained from automatic number plate recognition (ANPR) 

cameras and GPS-data from the on-board units of the trucks 

[10]. The state of traffic (e.g., traffic density, vehicle speeds and 

flows) can be estimated by employing vehicle-to-infrastructure 

communication using connected vehicles and traffic counts 

from stationary devices, and from mobile devices and loop 

detector data using Kalman filtering [11, 12]. 

In the remainder of this section, we discuss some important 

properties of stationary and mobile measurement technologies. 

For example, the two properties of geographic coverage, which 

is higher for mobile devices and the possibility to successfully 

detect and identify vehicles, which we argue is better for 

stationary devices, makes it relevant to consider both types for 

detailed real-time traffic data collection [13].  

When a vehicle is detected by an active measurement device, 

either stationary or mobile, the device should be able identify 

the detected vehicle, and possibly the position and time of the 

detection, and communicate the data to the responsible authority 

[14]. The identification could, for instance be made by the 

means of radio-frequency identification (RFID) or ANPR 

cameras.  

Stationary devices have fixed placements, meaning that they are 

only able to observe those vehicles that pass the device. 

However, since they continuously operate in the same location, 

stationary devices can discover patterns of traffic flows over 

time and discover anomalies that deviates from prior 

measurements. Mobile devices, such as probe vehicles have a 

significantly larger geographic coverage than stationary 

devices, since they drive around in the network and collect data 

wherever they happen to drive [15, 16]. On the other hand, as 

their location is constantly changing, probe vehicles do usually 

not collect detailed data about the traffic at specific locations 

over time. 

The identification rate of a measurement device is the ability to 

successfully detect and identify a vehicle, which is to a large 

extent affected by external factors. For instance, when a device 

is equipped with camera, a high identification rate requires that 

the device is sufficiently close to the traffic, and that there are 

no obstacles between the camera and the vehicle to be observed. 

A stationary camera-based device can be placed above the road 

to ensure that no obstacle cover the traffic to be detected, 

meaning that they are able to detect vehicles even if the traffic 

density is high. Probe vehicles have less possibility to control 

the external conditions which means they have to operate under 

conditions that are often less favorable than for stationary 

devices.  For instance, other vehicles may block the view of the 

camera of a probe vehicle if the traffic density is high on roads 

with multiple lanes, meaning that the probe vehicle is unable to 

detect oncoming vehicles on the opposite side of the road. 

We argue that the cost in general will be lower for mobile 

devices than for stationary devices. Today, modern cell phones 

are typically equipped with technologies suitable for vehicle 

detection, such as camera, Global Positioning System, and 

Bluetooth [17, 18]. This means that virtually any kind of vehicle 

could serve as probe vehicle. As stationary devices are placed 

along or above the road, they may require both building permits, 

and operating personnel [17]. Here, we would like to advocate 

for the potential of using already existing equipment in the 

traffic infrastructure for data collection. For instance, speed 

cameras possess the ability to identify vehicles, and could serve 

multiple purposes, by installing software for data collection.  

Since it may be costly to build new stationary devices, we find 

it reasonable to assume that the ownership of stationary devices 

mainly belongs to public authorities. Hypothetically, any 

vehicle can operate as a probe vehicle, which also means that 

privately owned vehicles can be used for traffic data collection; 

however, the willingness of private actors to use their vehicles 

as probe vehicles depends to a large extent on their incentives. 

A possible incentive is the will to contribute with data that can 

be used to analyze traffic, and in the longer perspective, 

contribute to the development of the transport network. 

The number of devices to use for traffic data collection depends 

on the budgetary constraints of building and maintaining 

stationary devices, as well as the number of available probe 

vehicles. Since we expect the cost for stationary devices to be 

relatively high, we believe that the possibility to build new 

stationary devices is limited. However, as previously discussed, 

utilizing the possible synergies between different ways of using 

technologies currently in use, may reduce the need for new 

stationary devices. The number of mobile devices mainly 

depends on the incentives of drivers to let their vehicles act as 

probe vehicles. 

The major issues of using privately owned vehicles as probe 

vehicles for data collection are privacy and integrity. Which type 

of data that is collected, how long it is stored, and data 

encryption for secure transmissions are issues that should be 

addressed to ensure the data collection process is handled 

correctly. Therefore, there is a need of a standardized policy 

framework for the involved actors (e.g., mobile phone operators 

and authorities). We suggest that public cryptography, where the 

measurement devices make use of the public encryption key of 

the responsible authority, can be used for secure data 

transmission and encryption of the signatures of probe vehicles. 

 

3. The simulation model 

We describe a transport network by a set of nodes 𝑁 and a set of 

links 𝐴. The nodes represent intersections and other locations in 

the network connecting roads. The links represent road 

segments in the network. For each node 𝑛 ∈ 𝑁, we let 𝑂𝑛 and 𝐼𝑛 

denote the set of outgoing and incoming links from and to 𝑛, 

respectively. The travel time for link 𝑎𝑘 is denoted by 𝜏𝑘, and 

𝜑𝑘(𝑡)  is the flow of vehicles on that link at time 𝑡 . The 

simulation model used in this paper utilize hourly flows over a 

24-hour period, and for this end we use periodic step functions 

to describe 𝜑𝑘(𝑡). The functions 𝜑𝑘(𝑡) are constant over a one-

hour interval and have an overall period of 24 hours. Since the 

functions 𝜑𝑘(𝑡)  are constant during one-hour intervals, we may 

without loss of generality assume that 𝑡  is a discrete integer 

variable. We follow the common assumption that the number of 

arriving vehicles at a certain node is Poisson distributed [19]. 

The time from 𝑡0  until the next time a vehicle enters 𝑎𝑘  is a 

random variable 𝑋𝑘 with the cumulative distribution function 
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𝐹𝑋𝑘
(𝑡 | 𝑡0) = 𝑃(𝑡0 < 𝑋𝑘 ≤ 𝑡) = ∫ 𝑓𝑋𝑘

(𝜉) 𝑑𝜉
𝑡

𝑡0
. (1) 

The expected number of entering vehicles per unit of time 𝑡, is 

given by the intensity function 

𝜑𝑘(𝑡 | 𝑡0) = lim
ℎ→0

𝑃(𝑋𝑘 ≤ 𝑡 + ℎ | 𝑋𝑘 > 𝑡)

ℎ
|

𝑡≥𝑡0

  

                 = lim
ℎ→0

𝑃(𝑡  < 𝑋𝑘 ≤ 𝑡 + ℎ)

ℎ⋅𝑃(𝑋𝑘 > 𝑡)
|

𝑡≥𝑡0

  

                    =
𝑓𝑋𝑘

(𝑡 | 𝑡0)

1−𝐹𝑋𝑘
(𝑡 | 𝑡0)

 ,  (2) 

 

which yields the distribution function 

𝐹𝑋𝑘
(𝑡 | 𝑡0) = 1 − exp (− ∫ 𝜑𝑘(𝑥) 𝑑𝑥

𝑡

𝑡0
). (3) 

It follows that the expected number of vehicles passing node 𝑛 

during a time interval of length 𝑇 is 

𝜆 = 𝑇 ∑ 𝜑𝑘𝑎𝑘 ∈ 𝑂𝑛
, (4) 

meaning that the expected number of departures from node 𝑛 

during hour 𝑡 can be calculated by 

𝛿𝑛(𝑡) = ∑ 𝜑𝑘(𝑡)𝑎𝑘 ∈ 𝐼𝑛
, (5) 

and the time between departures is exponentially distributed. 

Since 𝜑𝑘(𝑡) are constant during one-hour intervals, it follows 

that any vehicles reaching a node 𝑛1 has a probability of  

𝑝 =  
𝜑𝑗

∑ 𝜑𝑘𝑎𝑘 ∈ 𝑂𝑛1

, (6) 

to travel from 𝑛1 to 𝑛2, where 𝑗 is such that 𝑎𝑗 = (𝑛1, 𝑛2). The 

number of vehicles traveling directly from 𝑛1 to 𝑛2 follows the 

distribution Bin(𝑋, 𝑝), where 𝑋 is a random variable from the 

distribution Po(𝜆). From a practical perspective, it is reasonable 

to assume that the incoming flow to a node is the same as the 

outgoing flow, albeit with some time delays based on 𝜏𝑘. In the 

model it is required that  

∑ 𝜑𝑘(𝑡 − 𝜏𝑘)𝑎𝑘∈𝐼𝑛
= ∑ 𝜑𝑘(𝑡)𝑎𝑘∈𝑂𝑛

 (7) 

holds for all 𝑛 ∈ 𝑁, and all 𝑡 ∈  ℝ. In equation (7), the left-

hand side is the flow going into node 𝑛 at time 𝑡, and the right-

hand side is the flow going out from node 𝑛 at time 𝑡. From a 

logistic point of view it is a challenging task to measure the 

traffic flows of a transportation network over multiple points 

simultaneously over a 24-hour period. Hence, traffic flow data 

over a 24-hour period may contain deviations such that nodes 

have larger inflow than outflow or vice-versa. This may occur 

when for instance the measurements are made by temporary 

pneumatic tubes that are moved around in the network according 

to some schedule, or when there is no measurement performed 

and the flow data is instead estimated. This calls for calibration 

of the data to satisfy equation (7). Calibration of the data can be 

performed by introducing loops at each node in the network. The 

loops are links of the form 𝑎𝑘 = (𝑛𝑖 , 𝑛𝑖) , which act as 

“parking”. As soon as a vehicle reaches a node, the vehicle will 

temporarily leave the simulated system with a particular 

probability and be “parked” for a certain amount of time. By 

introducing loops at each node, we can always find flows 𝜑𝑘(𝑡) 

on the loops such that the system is balanced for each one-hour 

interval and node [20]. The loops also allow the model to handle 

the overall number of vehicles in the network, which vary hourly 

over the day. For simplicity we assign all loops a travel time 

𝜏𝑘 = 1  (the same length as the constant interval of the step 

function). The vehicle flow data (from the databases TFK and 

TIKK), provided by the Swedish Transport Administration, 

used in our simulation study did not satisfy equation (7) and 

required calibration as previously described. 

 

4. Simulation study 

The purpose of our simulation study is to evaluate and illustrate 

the idea of using stationary and mobile devices for collecting 

individual-level data about vehicles. Based on real traffic 

intensities on each road segment over a day, the aim of the 

simulation model is to reproduce the hourly traffic flows on each 

link. The main idea is to simulate the movements of vehicles 

over time, and to log each successful observation made by a 

measurement device. We assume that a vehicle can be identified 

by a stationary device when the vehicle passes the location of 

the device, and by a mobile device when the vehicle and a probe 

vehicle meet on the opposite links of a road. 

We study the share of the simulated traffic for a selection of 

routes, which is successfully observed and identified by either a 

stationary or mobile device, for each of the 24 hours of the day 

with varying identification rate. This allows us to verify our idea 

of the complementary characteristics of stationary and mobile 

measurement devices. We also study the share of vehicles that 

is expected to be successfully observed and identified on both 

the first link and the last link on a route, as this provides deeper 

knowledge on how vehicles are expected to move over larger 

areas in the network. 

4.1. Scenario description 

 
We focus on freight transport since trucks may have fewer 

concerns regarding privacy issues and may therefore be more 

prone to operate as probe vehicles. The network used in our 

simulation study consists of 33 nodes and 102 bi-directed links, 

and it is a representation of a road traffic network in southern 

Sweden (see Fig. 1).  

 

 
 
Fig. 1.  The traffic network used in our simulation study on top 

of the traffic flow map. The traffic flow map was 

provided by the Swedish Transport Administration. 

 

The selection of the road transport network to consider in our 

simulation study is based on the traffic flow map in Fig. 1 and 

the underlying truck flow data (average daily flows). In the 

simulation study, we let the speed cameras located in the 

network act as stationary devices, and freight trucks are used as 

probe vehicles. We assume that both the stationary and mobile 

measurement devices are active, meaning that they are capable 

of recording and communicating the observed vehicles' 
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identities (e.g., license plate number), position, travel direction, 

and the time for the observation.  

The choices of which nodes and links to include in our selected 

network was made to capture the major traffic flows in the 

considered region. The set of nodes contains locations where 

routes are expected to intersect, and where large traffic flows 

propagates in the network. This argues why some nodes are 

located very close to each other. For each of the 24 hours of a 

day, we extracted the corresponding distribution of the traffic 

volumes for each link and identified the locations of the speed 

cameras along the links. As far as we know, the sole purpose of 

speed cameras in Sweden is to observe and identify vehicles 

violating the speed limits. However, as discussed in Section 2, 

we assume that the functionality of speed cameras can be 

extended to also operate as devices for traffic data collection.  

The considered region is rather densely populated with a high 

amount of traffic and we mainly included roads with high traffic 

volumes. This means that the density of speed cameras in our 

study is higher than in the whole of Sweden. For instance, there 

are large areas in Sweden, particularly in the northern part, 

where the traffic volumes are significantly lower, and the 

density of speed cameras are also lower.  We mainly included 

roads where traffic volumes are high, which are also those roads 

that typically contain speed cameras. In total, the selected roads 

contain 121 speed cameras. 

4.2. Route selection and link categorization 

 
The number of routes in a transportation network can be very 

large and it may be a cumbersome job to analyze each one of 

them. Also, routes may share similar characteristics, which 

means that it may be sufficient to study a selection of routes with 

different properties to get an overview of the entire network. The 

aim of our route selection process is to identify a “minimum” set 

of routes to be included in the analysis of the output of the 

simulation study. We claim that a successful identification of a 

vehicle primarily depends on the number of devices it is 

expected to encounter on the link, which is 1) the number of 

speed cameras located along the link, and 2) the number of probe 

vehicles that are simultaneously driving on the opposite link. 

There are other external factors such as environment, current 

lightning and weather conditions that affect whether a vehicle is 

successfully identified. However, these external factors are not 

considered explicitly since we mainly believe that the number 

of measurement devices a vehicle is expected to encounter on 

its journey has a more significant impact on the possibility to be 

identified. 

Since a route is a sequence of links connected by nodes or in 

some cases a single link, we argue that it is relevant and 

necessary to consider the number of links of a route and the 

characteristics of the links to define the main characteristics of 

a route. As the network in our study contains 33 nodes and 102 

links, there are 102 routes of length one, 326 routes (i.e., valid 

link sequences) of length two, and 1050 routes of length three. 

We considered routes of length one, two and three, which we 

categorized based on partitions of the links according to the two 

above mentioned criteria.  

As seen in Table 1, the speed cameras are not evenly distributed 

in the network as the number of cameras on the links varies 

between zero and eleven. There are 45 links with one or more 

cameras and 57 links without cameras. For the links equipped 

with at least one speed camera, the mean and median numbers 

of cameras are 2.69 and 2 respectively. Thus, we partitioned the 

links into two groups, links without speed camera, and links with 

at least one speed camera. The two group of links were further 

partitioned into subgroups, determined by the estimated number 

of expected meetings along the link. Here, it should be 

emphasized that when estimating the number of expected 

meetings, for simplification, we assumed that the number of 

departures on a link is uniformly distributed over each of the 24 

hours of the day. This assumption is exclusive to the process of 

categorizing the routes, and not considered in the simulation 

model where the number of departures is assumed to be Poisson 

distributed. We further assumed that the estimated daily truck 

traffic volume of a link is identical to the truck traffic volume of 

its opposite link, i.e., we assume ∫ 𝜑𝑘(𝑡)
24

0
𝑑𝑡 = ∫ 𝜑𝑙(𝑡)

24

0
𝑑𝑡 

holds for opposite links 𝑎𝑘 = (𝑛𝑖 , 𝑛𝑗) and 𝑎𝑙 = (𝑛𝑗 , 𝑛𝑖).  

For each link in the network, the traffic volumes vary over the 

day; in particular, the traffic volumes during night hours are 

always lower than the traffic volumes in the daytime. The peak 

hours when the traffic volumes are high, vary for the links, but 

in general, the hour distributions of the traffic flows are not 

essentially too different for the different links. We leave to 

future work to consider the daily variations. Still, we argue that 

we get a valid indication of how the number of meetings is 

expected to vary for the different links even if we do not 

consider the variations of the traffic volumes over the different 

hours of the day. Suppose that 𝑎𝑘 and 𝑎𝑙 are opposite links. At 

the time a truck enters 𝑎𝑙, the expected number of trucks that is 

at the same time driving on the opposite link 𝑎𝑘  is 
𝜏𝑘

24
∫ 𝜑𝑘(𝑡)

24

0
𝑑𝑡. The expected number of trucks that enter 𝑎𝑘 

while the truck traverses 𝑎𝑙 is 
𝜏𝑘

24
∫ 𝜑𝑘(𝑡)

24

0
𝑑𝑡. It follows that the 

number of trucks a vehicle is expected to meet when traveling 

on 𝑎𝑙  is 2 ∙
𝜏𝑘

24
∫ 𝜑𝑘(𝑡)

24

0
𝑑𝑡 . Furthermore, during the link 

categorization process, we assumed that the expected traveling 

speed for all trucks on all links in the considered scenario is 

identical. Since the allowed speed limit for a heavy truck 

(vehicle transporting goods with a capacity above 3.5 tons) in 

Sweden is 80 km/h (or 90 km/h when traveling on motorways), 

we used an estimated average traveling speed of 68 km/h for all 

trucks over the links.  

The number of vehicles that a truck traveling on a particular link 

is expected to meet, varies from 0.054 to 222, where the mean 

value is 25.5, and the median in 15.7. In addition, the cumulative 

distribution over the measure (see Fig. 2) clearly shows that the 

smaller values of expected meetings dominate. 

 

 
 
Fig. 2.  Empirical cumulative distribution of the number of  

expected meetings. 
 
For example, 98% of the values are below 200, 96.1% of the 

values are below 100, and 90.2% of the values are below 50. It 

can be also seen in the histogram over the expected number of 

meetings (see Fig. 3) that the smaller values are dominating. 

As previously discussed, the links were partitioned into groups 

based on the number of expected meetings. We used different 

value ranges of the expected number of meetings depending on 

how many links a route contains. 

0 50 100 150 200 250

Number of expected meetings

0
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Single links that was considered as a route was partitioned by 

the value ranges [0.0539, 8.54], [8.55, 20.9], and [21.0, 222] into 

six categories (each value range gave two route categories: one 

with and one without speed camera). The links that are a part of 

routes of length two or three, was partitioned by the value ranges 

[0.0539, 15.7] and [15.8, 222] into four categories. The link 

categories are shown in Table 2.  

 
Fig. 3. Histogram over the number of expected meetings. 

 
Table. 2.  Link categories (1-6) for routes with one link, and link 

categories (7-10) for routes with two or three links. 

Link category  Speed camera Expected meetings 

(range) 

1   [0.0539, 8.54] 

2   [8.55, 20.9] 
3   [21.0, 222] 

4   [0.0539, 8.54] 

5   [8.55, 20.9] 
6   [21.0, 222] 

7   [0.0539, 15.7] 

8   [15.8, 222] 

9   [0.0539, 15.7] 
10   [15.8, 222] 

 

In order to obtain a manageable number of routes with different 

characteristics to be included in the output analysis, we 

identified and partitioned routes with similar characteristics into 

different categories, based on speed camera availability and 

expected number of meetings on the links.  From the 10 different 

link partitions, we considered 56 different route categories, from 

which we randomly selected one route from each category to be 

included in our output analysis. 

 

 

4.2. Average share of successfully identified vehicles 

 
In our simulation study we used 13200 trucks, which were 

initially scattered uniformly over the nodes in the network. To 

ensure that the simulation was near equilibrium (near the true 

traffic flows) we used a 24-hour warm-up period. The 

simulation was run for a simulated 10-day period, where each 

successful observation and identification by a measurement 

device was logged. In our study we let the identification rate for 

the respective measurement devices be identical over all the 

links. For instance, if we assume that the identification rate is 

10% for stationary devices, the identification rate is 10% on all 

the links, and if we assume that the identification rate is 20% for 

mobile devices, the identification rate is 20% on all links. We 

also include functionality to control the share of vehicles acting 

as probe vehicles in the identification rate. Suppose the share of 

vehicles that operates as probe vehicles is 𝑥, and the share of 

encountered vehicles that a probe vehicle is expected to 

successfully identify be 𝑦, then the probability of a successful 

identification for mobile devices, according to our definition, 

is 𝑥 ∙ 𝑦. We argue that 𝑥 ∙ 𝑦  should be proportional to the total 

number of identifications made by a probe vehicle (i.e., no 

additional information is gained by knowing both 𝑥 and 𝑦).  

We examined the share of the vehicle fleet that was successfully 

identified at least once on the considered routes for each hour of 

a day. The results are presented in Fig. 4 and Table 3, where we 

considered varying identification rate, and assumed identical 

identification rate for all stationary and mobile devices. The 

results confirm that it is possible to achieve a high share of 

successfully identified vehicles, even for a low percentage of the 

transportation fleet acting as probe vehicles, and for low 

identification rate for stationary devices. 

In the diagrams in Fig. 5 and Fig. 6, we illustrate how the share 

of successfully identified vehicles is expected to vary over a 24-

hour period and the average share of identified vehicles for 

varying identification rate for a link without speed cameras with 

expected number of meetings in the range [0.0539, 8.54], 

respectively. As shown in Fig. 5 it is challenging to successfully 

identify vehicles during the night when the number of expected 

meetings is low, and there is no stationary device located along 

the link. 
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Table 1. Links (node pairs), travel times, link lengths, and number of speed cameras along the links. Each pair of nodes in the table 

represents two links in opposite directions. For instance, the node pair 3, 32 represents the two links (3, 32) and (32, 3), where one speed 

camera is located along the link (3, 32) and two speed cameras along the opposite direction (32, 3), denoted 1/2 in the “Cameras” column. 

 Link 

(node pair) 

Travel time 
(min) 

Length 
(km) 

Cameras 
(amount) 

 
Link 

(node pair) 
Travel time 

(min) 
Length 

(km) 
Cameras 
(amount) 

 
Link 

(node pair) 
Travel time 

(min) 
Length 

(km) 
Cameras 
(amount) 

1, 13 11 20.0   7, 12 35 39.8   16, 20 13 22.0  
1, 14 47 66.3 2/2  7, 20 15 16.0 2/2  16, 22 23 31.6 3/4 

2, 17 35 62.6 1/0  8, 10 59 80.2 11/11  17, 18 6 9.9  

2, 29 2 4.2 0/1  8, 27 71 101.0 2/2  18, 23 7 11.8  
2, 31 11 20.5   9, 21 18 28.7 0/1  18, 25 19 29.9  

3, 4 6 9.7   9, 24 24 34.8   19, 30 22 32.3  

3, 12 26 33.7 0/1  10, 21 17 25.0 0/1  21, 24 25 31.4 0/1 
3, 32 20 26.7 1/2  11, 12 3 4.3   22, 28 20 25.3 2/1 

4, 5 17 25.9 1/1  11, 29 7 10.9   23, 25 16 18.1 4/3 

4, 7 23 31.0 3/3  11, 33 7 8.8 1/1  23, 28 24 36.1  
4, 19 13 18.8   13, 31 16 29.1   24, 27 37 48.9 3/3 

5, 6 30 41.0 3/2  13, 32 31 39.6   25, 28 47 45.6  

5, 9 38 55.3 2/2  14, 26 38 58.3 1/1  26, 27 5 7.0  
5, 19 27 33.3   14, 32 38 71.2   29, 33 5 9.0  

6, 7 8 10.8 2/2  15, 15 2 3.1   26, 30 38 54.2 6/6 

6, 20 8 12.0   15, 17 4 6.4   31, 33 12 14.3 2/3 

6, 22 21 27.0 2/2  15, 23 17 20.7 4/5  32, 33 12 21.7  
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Fig. 4.  Share of vehicles that were successfully identified at least 

once per hour, where the identification rate is varied in 

the same way for stationary and mobile devices. The 

share of successfully identified vehicles is the average 

taken over all simulated routes in the network for each 

hour and each of the considered identification rates. 

 
Fig. 5.  Share of successfully identified vehicles over a 24-hour 

period on a link without camera and expected number of 

meetings in the range [0.0539, 8.54]. 

 

Fig. 6 shows the average share of successfully identified 

vehicles where the identification rate for stationary and mobile 

device varies separately. We note that even for a high 

identification rate, it is expected that more than 40% of the 

trucks will not be identified. This can be explained by that when 

a truck drives on a link without a speed camera, there must be at 

the same time at least one probe vehicle that drives on the link 

in the opposite direction in order to be able to identify the truck. 

For instance, this situation may not occur during night hours 

when the number of meetings is low.  

 
Fig. 6.  Average share of successfully identified vehicles over a 

24-hour period with varying identification rate on a link 

without camera and expected number of meetings in the 

range [0.0539, 8.54]. 

 

For comparison, in Fig. 7 and Fig. 8 we illustrate the share of 

successfully identified vehicles on a link, again with the 

expected number of meetings in the range [0.0539, 8.54], but the 

link also has two speed cameras. Fig. 7 and Fig. 8 indicates that 

for the links with a low number of expected meetings, the share 

of successfully identified vehicles can be significantly increased 

by using (especially during nighttime), in this case two 

stationary devices. On links with a reasonably high number of 

expected meetings, the share of identified vehicles is expected 

to be rather high, even for lower shares of vehicles acting as 

probe vehicles or lower identification rate. 
 

4.3. Successful identification on the first and the last link 

 
In order to further study the movements of trucks in the network, 

we also considered the share of vehicles that were successfully 

identified on both the first link and the last link along routes of 

length three. Fig. 9 shows the share of successfully identified 

vehicles on the first link and the last link on a route consisting 

of links without speed cameras and expected number of 

meetings in the range [0.0539, 15.7]. The highest achieved share 

of identified vehicles is 0.683, which may argue that it may be 

insufficient to only use probe vehicles to determine the travel 

demand on a route with a low number of expected meetings.  

Table 3.  The average share of identified vehicles at least once on all routes with varying identification rate. 

Time period 
Identification rate 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0-1 0.243 0.384 0.491 0.57 0.634 0.675 0.713 0.737 0.757 0.777 

1-2 0.259 0.4 0.5 0.586 0.646 0.696 0.729 0.758 0.781 0.798 

2-3 0.288 0.446 0.549 0.625 0.688 0.726 0.755 0.778 0.799 0.813 
3-4 0.35 0.524 0.638 0.712 0.76 0.796 0.833 0.865 0.881 0.898 

4-5 0.482 0.692 0.803 0.862 0.906 0.931 0.945 0.956 0.966 0.973 

5-6 0.72 0.874 0.928 0.951 0.969 0.983 0.99 0.993 0.994 0.996 
6-7 0.706 0.885 0.934 0.957 0.975 0.978 0.983 0.988 0.992 0.997 

7-8 0.729 0.889 0.936 0.963 0.981 0.987 0.992 0.997 0.997 0.999 

8-9 0.721 0.882 0.944 0.965 0.979 0.987 0.99 0.994 0.996 0.999 
9-10 0.728 0.901 0.944 0.965 0.979 0.984 0.99 0.994 0.998 0.999 

10-11 0.738 0.879 0.935 0.958 0.973 0.983 0.99 0.995 0.996 0.999 

11-12 0.744 0.889 0.945 0.968 0.977 0.987 0.991 0.994 0.996 0.999 
12-13 0.723 0.864 0.925 0.951 0.969 0.978 0.983 0.989 0.991 0.992 

13-14 0.732 0.872 0.931 0.961 0.971 0.98 0.986 0.99 0.994 0.997 

14-15 0.731 0.889 0.946 0.965 0.975 0.982 0.988 0.989 0.993 0.998 

15-16 0.7 0.873 0.934 0.96 0.976 0.981 0.984 0.987 0.99 0.993 

16-17 0.639 0.806 0.883 0.926 0.947 0.965 0.974 0.979 0.985 0.99 

17-18 0.577 0.757 0.838 0.886 0.911 0.937 0.949 0.958 0.967 0.972 
18-19 0.506 0.692 0.794 0.856 0.899 0.926 0.943 0.955 0.963 0.968 

19-20 0.464 0.652 0.757 0.822 0.857 0.885 0.908 0.922 0.937 0.944 
20-21 0.406 0.582 0.687 0.766 0.817 0.854 0.875 0.898 0.911 0.928 

21-22 0.356 0.541 0.655 0.727 0.785 0.827 0.855 0.88 0.9 0.918 

22-23 0.302 0.477 0.597 0.666 0.721 0.758 0.795 0.825 0.844 0.855 
23-24 0.259 0.401 0.505 0.583 0.643 0.682 0.709 0.728 0.743 0.755 
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Fig. 7.  Share of successfully identified vehicles over a 24-hour 

period on a link with two cameras and expected number of 

meetings in the range [0.0539, 8.54]. 

 

 
Fig. 8.  Average share of successfully identified vehicles over a 

24-hour period with varying identification rate on a link 

with two cameras and expected number of meetings in 

the range [0.0539, 8.54]. 

 
In contrast, Fig. 10 shows the share of successfully identified 

vehicles on the first and the last link with the same range of 

expected meetings, where the first and last link also are 

equipped with speed cameras. Even though the expected number 

of meetings is low, the share of identified vehicles is 

considerably higher (mean value over all identification rates is 

0.859 with standard deviation 0.287). Fig. 11 shows the share of 

successfully identified vehicles on the first link and the last link, 

where neither the first link nor the last link has speed camera, 

and the number of expected meetings is in the range [15.8, 222]. 

The mean value over all identification rates is 0.742 with 

standard deviation 0.238. For comparison, in Fig. 12 we show 

the share of successfully identified vehicles on the first and last 

link along a route, where the first and last link have a number of 

expected meetings in the range [15.8, 222], and where speed 

cameras also are located along the links. From the underlying 

results of Fig. 12, we conclude that a very low identification rate 

is required to achieve a high share of successfully identified 

vehicles when speed cameras are available, and the number of 

expected meetings is in the range [15.8, 222] (mean value over 

all identification rates is 0.870 with standard deviation 0.195). 

For instance, the simulation results show that measurement 

devices with identification rate of 0.4 or higher, is expected to 

successfully identify at least 90% of the vehicles on both the first 

link and on the last link. 

 

5. Conclusions 

In this paper we have evaluated the idea of using active 

stationary and mobile measurement devices for traffic data 

collection. Based on the results, we suggest using both types of 

technologies in order to achieve a high share of successfully 

identified vehicles, due to their complementary characteristics. 

In order to validate our idea, we developed a traffic simulation 

model which utilize flow data with 24-hour resolution. In our 

simulation study, we applied freight transport data in a region in 

southern Sweden. The aim of the study was to study the share of 

successfully identified vehicles with varying identification rate. 

The results of our study, where speed cameras and freight trucks 

where used as stationary and mobile devices, shows that a 

reasonably high share of successfully identified vehicles can be 

achieved even for low identification rate. Furthermore, the 

results also indicate the applicability of using stationary and 

mobile devices to study how vehicles move around in the 

network. Future work includes studying the integrity aspects of 

the suggested idea, in particular data encryption and how a 

public cryptography system can be implemented for secure data 

transmission. 

 
Fig. 9.  Share of vehicles that were successfully identified on both 

the first and the last link along a route with varying 

identification rate without cameras on the links and with 

expected number of meetings in the range [0.0539, 15.7]. 

 

 
Fig. 10. Share of vehicles that were successfully identified on both 

the first and the last link along a route with varying 

identification rate with cameras located on the links and 

with expected number meetings in the range  

[0.0539, 15.7]. 
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Fig. 11.  Share of vehicles that were successfully identified on both  

the first and the last link along a route with varying 

identification rate without cameras on the links and with 

expected number of meetings in the range [15.8, 222]. 

 

 
Fig. 12.  Share of vehicles that were successfully identified on both  

the first and the last link along a route with varying 

identification rate with cameras located on the links and 

with expected number of meetings in the range  

[15.8, 222]. 
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