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Abstract 

The number of bicycle riders in New York City (NYC) has been increasing steadily in the past few years. These 

numbers include private and shared bicycles. The NYC bicycle network has been expanded to accommodate the needs 

of the increasing number of riders. Although the new infrastructure has reduced the number of cyclists killed or seriously 

injured (KSI) in some areas, in other areas similar improvements were not observed. A data-driven approach to study the 

possible effects of this type of infrastructure inconsistency on the variation of the number of bicycle crashes from one 

region to another in the city is the primary motivation of this paper. A highly portable and inexpensive sensing device 

for measuring the distance between a bicycle and lateral objects is designed and developed from scratch. The developed 

mobile sensing device can also map bicycle trajectories to highlight critical segments where the safe distance from 

passing vehicles is not respected. This mobile device is powered by a portable power source and it is comprised of two 

ultrasonic sensors, a Global Positioning System (GPS) receiver, and a real-time clock (RTC). The sensor is secured 

inside a custom design 3D printed case. The case can be easily attached to any bicycle including shared bikes for testing. 

The final prototype is entirely functional and used to collect sample data to demonstrate its effectiveness to address 

safety-related problems mentioned above. Finally, a dashboard is created to display collected key information. This key 

information can be used by researches and agencies for a better understanding of the factors contributing to the safety of 

bicycle routes.  
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1. Introduction 

Many cities throughout the world have been investing in 

bicycle infrastructure to improve the safety of bicycle routes 

due to the increasing importance and potential of biking as an 

alternative mode of urban transportation. In New York City 

(NYC), daily bicycle ridership has increased by 70% between 

the years 2011 and 2016. The average annual growth rate of 

daily cycling for the same period was 11.2% [1]. Biking has 

become an important part of commuting as bicycle routes and 

shared bicycle stations have been dramatically expanded in the 

city. Currently, NYC has more than 1,100 miles of bicycle 

lanes [2]. Although there have been significant improvements 

in the city regarding bicycle facilities, they do not cover the 

whole city. For example, the neighborhoods that are further 

from Manhattan have minimal to no bicycle infrastructure. 

Seven districts in Brooklyn and three in Queens are considered 

priority bicycle districts by the NYC Department of 

Transportation (NYCDOT) [2]. Each of these districts has a 

high KSI with either medium or low coverage of bicycle 

facilities. The areas with the highest number of bicyclists killed 

or seriously injured (KSI) in 2016 were in Brooklyn and 

Queens. Both boroughs have fewer protected and conventional 

lanes than Manhattan. NYCDOT [2] has also identified the 

categories of crashes responsible for the highest number of 

cyclist fatalities: cyclist traveling adjacent to a motor vehicle 

(29%), a cyclist traveling at a right angle to a motor vehicle 

(27%), and collisions with turning motor vehicles (21%). These 

fatalities happened mostly at intersections (65%). Based on the 

types of crashes, one might assume that districts with higher 

bicycle network coverage would have a lower KSI, and vice 

versa. However, this is not always the case. They might not 

always present positive or negative correlations [3, 4]. There 

are districts that have even fewer bicycle facilities than these 

priority bicycle districts, but they have a lower KSI [2]. These 

circumstances raise questions about how these facilities and 

human behavior influence the overall safety of cyclists in the 

city. 
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Many factors can influence why some regions are safer than 

others. Some studies relate cyclist safety to the number of 

cyclists on the road (Jacobsen [5] and Bhatia and Wier [6]). 

Other studies relate it to the street infrastructure (Allen-Munley 

et al. [7]) or to the distance between the bicycle and 

moving/parked vehicles (Shackel and Parkin [8] and Walker 

[9]). Many states have laws that require motor vehicles 

overtaking bicycles to maintain a safe distance of 3 ft. In New 

York City, there are no specific legal restrictions for vehicles 

overtaking bicycles [10] but there is a recommendation for 

cyclists to maintain a safe distance of 3 ft from parked vehicles 

[11].  

With the help of disruptive technologies in transportation, 

newer and more intelligent sensing systems are being deployed 

in motorized vehicles [12]. While the advancements in mobile 

wireless communications and the Internet of Things (IoT) 

technologies have made connectivity between various elements 

of the transportation system possible, non-motorized modes 

have not received as much attention. Most of the technologies 

designed for intelligent vehicles can be modified for use with 

non-motorized transportation modes. However, there are not 

many studies in the literature providing insights into bicycle 

and bicyclist dynamics utilizing intelligent sensors. Part of the 

reason for this is due to the unavailability of on-board power, 

which can be solved with the use of portable power chargers. 

The introduction of e-bikes might also solve this issue, as their 

battery can be used to power the sensors. 

There is an increasing need for the development of new 

unobtrusive and low-cost technologies to help improve data 

collection for research that focuses on promoting the safety of 

bicycle users. With the proliferation of IoT devices, sensors, 

and open-source information, it is now possible to develop 

devices that address different challenges of the data collection 

process. In addition, data visualization tools have improved 

with the advance of technology. Using dynamic dashboards to 

consolidate the key information from data sets in one screen 

allows users to conveniently run analysis and draw conclusions 

using the presented data.  

Our main objective is to use emerging mobile sensing and 

other technologies to improve the safety of bicyclists in urban 

environments. We hope to achieve this overarching objective 

via three distinct and challenging goals. The first goal is to use 

the developed mobile sensing device to identify hotspots where 

vehicles operate dangerously close to the bicycle. This 

information is expected to help identify high-risk street 

segments for cyclists. The second goal is to compile a 

comprehensive bicycle safety dataset including real-world bike 

trajectories, unsafe distances, speed and acceleration 

measurements for the existing infrastructure. The final goal is 

to create a device that will alert bicyclists when they might be 

in a dangerous situation. 

This paper mainly focuses on our first goal of developing an 

integrated, inexpensive and highly portable multi-sensor 

mobile device as well as an accompanying customized 

software platform for collecting and processing bicycle safety 

data and a dashboard for the visualization of key performance 

indicators. The multi-sensor mobile device can collect bicycle 

trajectory data and lateral distances between the bicycle and 

objects around it. It is built using ultrasonic sensors connected 

to a Raspberry Pi (RPi) to measure the distance between the 

bicycle and lateral obstacles, especially moving vehicles. RPi is 

a single board computer using a Linux based operating system, 

and it is widely used in research projects in the literature (Miha 

[13], Dozza et al. [14], Ambrož [13], Kurkcu and Ozbay [15], 

and Kurkcu, Ozbay [16]). Fig. 1 shows how the bicycle is 

usually positioned on the road and a representation of 

ultrasonic sensor measurements. 

2. Background 

The number of studies concerning bicyclist safety has 

significantly increased in recent years. They range from 

identifying the factors that influence the number of incidents 

involving bicyclists, to new technologies deployed to improve 

the data collection and overall experience of the bicyclist. Most 

of these bicycle safety studies have mainly used the data 

available from surveys, police crash reports, and simple video 

observations. Their efficiency can be improved by making the 

data collection process faster, inexpensive, and more 

ubiquitous and reliable. For example, Laureshyn, Goede [17] 

used video processing to evaluate accidents involving cyclists 

at intersections in Norway. They compared three different 

models by how they quantify and identify the frequency of the 

accidents by type. Their results show that the models have 

great potential as tools for identifying unsafe interactions. 

Nonetheless, more data is needed to validate these models. A 

possible solution for acquiring more reliable data is the use of 

multiple sensors for continuous data collection. Dozza and 

Fernandez [18] implemented a device using multiple sensors to 

collect cycling data. The study presented a methodology 

similar to that used for naturalistic driving data for motor 

vehicles. They collected data including video, acceleration, 

directional vector, angular rate, latitude and longitude, heading, 

velocity, and pressure on the brake, which was used to 

understand the behavior of cyclists and bicycle dynamics.  

The ridership of traditional bicycles is increasing at a 

considerable rate with the introduction of new bicycle sharing 

systems, which leads to concerns of the interaction of these 

systems with the existing traffic [19]. In addition, the 

introduction of e-bikes has brought up new considerations in 

bicycle safety studies. The e-bikes can reach higher speeds and 

enable longer rides. Therefore, they increase the probability of 

accidents involving cyclists [19,20]. To understand the 

differences between the bicyclist behavior and dynamics of 

traditional bicycles and e-bikes, Werneke and Dozza [21] and 

Dozza [20] created two systems called BikeSAFE and e-

BikeSAFE to collect naturalistic cycling data from traditional 

bicycles and e-bikes. They identified that the collection of data 

from e-bikes is still not as efficient as on traditional bicycles. 

The development and enhancement of systems like e-

BikeSAFE can provide valuable data to address the unique 

issues of e-bikes.  

A significant example of how such sensors could help with e-

bike safety is the latest problem faced by Citi Bike. The 

company announced that it would expand its fleet with 4,000 

pedal-assist e-bikes on February 28th, 2019. Shortly after the 

announcement, they reviewed a small number of reports from 

riders who experienced hard braking problems on the front 

wheel [22]. The New York Daily News [22] reported that one 

user flipped over the handlebars and broke his hip. The 

newspaper also confirmed at least four other people received 

medical treatment following incidents involving hard-stopping 

front brakes. However, it is still not clear whether the reason 

for such incidents is hard braking [23,24].  If pedal-assist e-

bikes had embedded smart sensors, it would have been possible 

to identify the actual reason for these incidents by analyzing 

collected data from the bicycles.  

Strauss, Zangenehpour [25] addressed deceleration/braking and 

its relationship to cyclist safety in their study. They used 

smartphone GPS data to correlate the deceleration rate of 

traditional bicycles to the number of injuries observed at 

intersections and along with segments of the road. They 

showed that the deceleration rate has the potential to be used as 

a surrogate safety measure. Although smartphone GPS data 

was used to get the deceleration rates, it can have lower 
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accuracy in dense urban environments. A combination of 

multiple sensors can expand the safety of all users on urban 

transportation networks [26].   

Sensors can not only be used to record data for later analysis 

but also to perform real-time analysis of various data sets 

[27,28]. A multiple-sensor system can be used to collect real-

time data and process it to warn the bicyclists of possible 

dangerous situations. For example, it can identify a failure in 

the brake system or if the bicyclist is hard braking and warn the 

bicyclist to prevent an accident from happening. Liebner, 

Klanner [29] used a similar methodology to deploy a warning 

system for drivers. They use a smartphone GPS to continuously 

send the location of the bicycle to the warning device on the 

vehicle. The device uses that information to alert the driver in 

case of possible dangerous interaction. They use a high 

precision differential GPS to assess the accuracy of the 

smartphone GPS data.  

Other projects have used ultrasonic sensors to measure the 

distance of motor vehicles overtaking bicycles. However, the 

size, weight, and cost of the equipment used in these studies 

are unsuitable for large-scale data collection. Shackel and 

Parkin [8] and Walker [9] used ultrasonic technology to 

measure the distance of a bicycle from passing vehicles. The 

device developed in this project differs from the previous ones 

because it adds the GPS module, which contributes to the 

identification of routes and critical points where dangerous 

overtaking happens.  The use of cheaper and smaller 

components results in a product that is portable and adequate 

for mass data collection. The data obtained with the device can 

be used to help identify the locations where drivers get closer 

to bicycles and investigate if this behavior is related to the type 

of bicycle facility. Additionally, the mapping of hotspots of 

dangerous clearance between motor vehicles and bicycles can 

be combined with the crash data to evaluate the connection 

between safe distance and the KSI number. 

3. Device Architecture 

The mobile sensing device prototyped as part of the research 

described in this paper is primarily designed to continuously 

measure the distance between two objects. The device is 

developed to collect lateral distance data with time and space 

stamps data to help analyze safety-related patterns in terms of 

lateral distances between bicyclists and drivers operating in 

different types of bicycle facilities in highly congested urban 

transportation networks. To achieve this goal, a prototype 

consisting of multiple sensors was built and attached to a 

bicycle in NYC. To make the device portable and easy to 

mount, a special enclosure was designed using the software 

Fusion 360 and 3D printed in Polylactic Acid (PLA) with an 

Ultimaker 3 printer. Figures Fig. 1 and Fig. 2 show the multi-

sensor mobile device mounted to a bicycle and the 

components. 

The device is built using two ultrasonic sensors, a Real-Time 

Clock (RTC) and a GPS receiver connected to a low-cost small 

computer board namely, a Raspberry Pi 2 B v1.2. The 

ultrasonic sensors used in this study are cost-efficient and can 

detect a variety of solid objects without being intrusive to 

pedestrians [30]. The maximum efficiency for this type of 

sensor is achieved when the pulse emitted is perpendicular to 

the surface. It can reach a minimum and maximum range of 

2cm and 400cm, respectively. The accuracy of the sensors can 

vary depending on the temperature and humidity of the 

environment [31].  

 

 

 
Fig. 1 - Multi-sensor mobile device mounted on a 

bicycle 

 

 

 
Fig. 2 - Multi-sensor mobile components 

 
The sensing device is charged by a portable dual USB power 

pack, which has a 2500mAh lithium-ion cell with an output of 

3.7VDC. The power pack can charge the device for up to 2.5 

hours. The components chosen for building the device were 

based on their quality, cost, and dimensions. The final 

prototype dimensions are 11.2 cm by 16.5 cm, and its total cost 

is around $200. 

A Python code was developed by the authors to read the data 

from the ultrasonic sensors and from the GPS receiver and then 

combine this data into a single file. The code defines the left 

and right sensors according to the GPIO pins they are 

connected to. The differentiation of left and right sensors is 

needed to identify if the distance read is from moving or 

parked vehicles. The data from the sensors and GPS are stored 

in a database file using the library SQLite3. Another SQL table 

is created to store log messages to keep track of when the GPS 

is initialized and there are reading errors. 

The code is set to run on the device at the RPi operational 

system startup, and it keeps running in the background as long 

as the device is powered. The database file is created in the 

first run of the code and then, for the next runs, the data is 

added to the existing file. At the end of the data collection 

period, collected data is transferred to a desktop computer to be 

post-processed and further analyzed. Fig. 3 shows the sensing 

device’s architecture. 
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Fig. 3 – Data Architecture of the Developed Mobile Sensing Device 

 

In Fig. 3, the first process represents the collection of the data 

by individual sensors of the device. The data aggregation 

process is performed when the data collected is pre-processed 

and temporarily stored by the device.  The final step is to 

permanently store the data to make it available to the public. 

The visualization comes after the data analysis process. In the 

visualization process, the cleaned and processed data is used to 

create different visualizations for a better understanding of 

various safety performance measures. 

3.1. Data Analytics and Pre-processing 

 

The stored data is transferred to a regular computer for further 

analysis using a secure file transfer protocol. If sensors have a 

network connection, this data transfer process can also be 

executed on-line. This feature allows researchers to remotely 

analyze and evaluate historical and real-time data. 

Currently, the data file is manually imported to a GIS software 

for data querying, analysis, and visualization. It is post-

processed to clean the failed GPS readings, data points that are 

not part of the route that was actually traversed by the bicycle, 

or ultrasonic sensor measurements that are out of range or too 

large due to erroneous readings. The last step is to filter the 

above-mentioned data points and display the remaining 

relevant GPS pings on a map. 

3.2. Data Storage, Management and Analysis 

 

The final stage is for permanently storing the data and 

preparing it for final use and presentation. The final cleaned 

and queried data is stored in the cloud. The defined routes were 

associated with the characteristics of the available bicycle 

network and the time of day, such as if a determined trajectory 

was covered during the rush hour, at nighttime, and over a 

conventional bicycle lane or not. Finally, initial data 

visualization is enhanced by formatting and adding features 

such as legends and scale to the images. The graphs and images 

containing the main information of the data set are combined in 

a dynamic dashboard. The dashboard allows the user to see the 

different data combinations using filters. 

4. Cycling data collection and processing 

The test route for our multi-sensor mobile device was chosen 

based on the data of the number of historical crashes provided 

by the New York Police Department [32]. The data show that 

one of the streets of the chosen route has the highest number of 

collisions involving bicycles. The route has segments with 

protected bike lanes and segments with conventional bike 

lanes. Some segments of the bike lanes are interrupted by 

intersections, driveways, work zones, on-street parking spaces, 

or sections with faded markings. Moreover, even though they 

are in regions with some tall buildings, the canyon effect does 

not have a significant impact on GPS readings at this location.  

For the preliminary field test, the multi-sensor mobile device is 

mounted to a regular bicycle. The riders went through the 

determined route without changing their usual behavior when 

cycling. The exact time and mileage of each ride were 

recorded. The start and end times are used to filter the data and 

group the records collected with the multi-sensor mobile device 

by each ride. The rides happened in different times of the day. 

The total distance of the route is of 0.9 miles. 

The data was cleaned and filtered by eliminating points with 

zero latitudes/longitudes and readings of distances over the 

ultrasonic sensor range (400 cm). Multiple points with speeds 

of zero at the same location were combined into one.  Because 

the multi-sensor mobile device is mounted on the center of the 

bicycle’s body, the distance from the center of the bicycle to 

the edge of the handlebar is subtracted from the readings from 

both left and right ultrasonic sensors.  

5. Results and visualization 

The performance of the device was satisfactory for each of the 

processes namely, data collection, data aggregation, data 

analysis, and data storage. The data set had some null values of 

GPS readings, which can be justified by the initialization time 

to get the minimum number of satellites needed by the antenna.  

The final cleaned and processed data was consolidated in a 

dashboard to summarize the key aspects related to the 

bicyclists’ safety. The dashboard contains the trajectory of the 

bicycle and the time series of the speed in mph. Fig. 4 shows a 

sample of the dashboard with the map representing GPS points 

and their spatial distributions for five rides performed by the 

same cyclist. The dark green points on the map represent the 

record within the safe distance, whereas the red ones are 

bellow the safe distance of 3 ft.  
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Fig. 4 - Dashboard platform to visualize and analyze collected mobile data using the developed sensing device 

 

From the dashboard, it is possible to see that the rides had a 

considerably higher amount of records closer than the 

recommended safe distance. It is also noticeable that the red 

points (below safe distance) have lower speeds, which is 

supported by a Pearson Correlation Coefficient of 0.35 

between the distance from the left side and the speed in mph. 

This coefficient characterizes a moderate and positive 

correlation. In addition, near misses are identifiable through the 

collected data by looking at the right and left distance readings, 

speed time series, and location. For one of the rides, a traffic 

jam was also identified by a continuous line of points below 

the safe distance from the left side. 

There are 124 records with distance readings smaller than the 

safe distance for the left side and 181 for the right side. The 

segment on Jay street registered 53.81% of the total number of 

occurrences within an unsafe distance from the left side of the 

bicycle, while Brooklyn Bridge Boulevard was responsible for 

3.55%, Livingston street for 22.84%, and Tillary street for 

19.80%. Fig. 1 shows a representation of the percentages of 

records within unsafe distance for each street. 

 

 

 

 

 

 
Fig. 5 – Map of percentage of records within unsafe distance 
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When considering the occurrences within an unsafe distance 

from the right side of the bicycle, Brooklyn Bridge Boulevard 

was responsible for 41.85% of the total. Jay street was 

responsible for 24.68% of the total number of distances within 

the unsafe distance from the right side of the bicycle, 

Livingston street was responsible for 20.92%, and Tillary street 

by 12.55%. The test rides had more occurrences below the safe 

distance from the right side than from the left side for all the 

segments.  

The average speed was 6.39 mph. For the records with a 

distance shorter than 3ft for the left side, the average speed was 

4.87 mph. Meanwhile, for the right side, the average was 6.86 

mph. The records within the safe distance to the left side had 

an average speed of 7.34 mph, and for the right side, the 

average was 5.79 mph. 

6. Conclusion 

 

A prototype for collecting ultrasonic and GPS data was 

developed. The device was stable during the data collection 

process and was able to provide the expected data set necessary 

for the proposed analysis. The processed data obtained from 

the mobile sensing device was used to demonstrate how this 

type of data can be useful for conducting different and detailed 

safety analysis. The analysis of the sample data showed the 

points in which the bicycle was within an unsafe distance from 

parked vehicles and vehicle traffic. In addition, it was possible 

to identify two potential near-misses and traffic congestion. 

Finally, the dashboard was successfully implemented as the 

main visualization tool, and it facilitated the data analysis 

process. 

As the developed mobile sensing device provided good initial 

results, 3 more units will be built in the near future to be field-

tested on bicycles traveling along with different types of routes. 

Some improvements will be implemented in the future units. 

First, the size of the multi-sensor mobile device will be reduced 

to make it portable. Second, a new communication feature will 

be added to send the data directly from the RPi to a cloud 

server using a wireless connection. The remote and real-time 

access to the data will make it possible to create a real-time 

tracking system to monitor the functioning of the units, observe 

the behavior of each cyclist and monitor dangerous distances. 

With the increased sample size, it will be possible to conduct a 

more in-depth analysis of the factors influencing bicycle safety 

and to develop new studies after enhancing the device with 

new types of sensors such as LiDAR and cameras. Tests using 

the e-bike’s on-board power supply to charge the device could 

be performed to improve the charging of the multi-sensor 

mobile device.  
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