
 Journal of Traffic and Transportation Management

Volume 1, No. 1 (2019) pp. 19-26

* Corresponding author.

E-mail: genderwt@mcmaster.ca

© 2019 International Association for Sharing Knowledge and Sustainability.

DOI: 10.5383/JTTM.01.01.003
19

Evaluating Reinforcement Learning State Representations for Adaptive
Traffic Signal Control

Wade Gendersa*, Saiedeh Razaviab

aDepartment of Civil Engineering, McMaster University, Hamilton, Canada, L8S 4L8

bMcMaster Institute for Transportation and Logistics, Hamilton, Canada, L8S 4L8

Abstract

Reinforcement learning has shown potential for developing effective adaptive traffic signal controllers to reduce traffic

congestion and improve mobility. Despite many successful research studies, few of these ideas have been implemented in

practice. There remains uncertainty about what the requirements are in terms of data and sensors to actualize reinforcement

learning traffic signal control. We seek to understand the data requirements and the performance differences in different

state representations for reinforcement learning traffic signal control. We model three state representations, from low to

high-resolution, and compare their performance using the asynchronous advantage actor-critic and distributional Q-

learning algorithms with neural network function approximation in simulation. Results show that low-resolution state

representations (e.g., occupancy and average speed) perform almost identically to high-resolution state representations

(e.g., individual vehicle position and speed) using fully connected neural networks, but deep neural networks with high-

resolution state representation achieve the best performance. These results indicate implementing reinforcement learning

traffic signal controllers in practice can be accomplished with a variety of sensors (e.g., loop detectors, cameras, radar).

Keywords: adaptive traffic signal control, deep reinforcement learning, intelligent transportation systems, applied

machine learning, transportation simulation, neural networks

1. Introduction

Vehicle congestion is a major problem in cities across the world

[1]. Developing additional infrastructure is expensive and a

protracted process which can exacerbate the problem until

completed. Instead of adding more infrastructure, another

solution is to optimize currently available infrastructure.

Intersection traffic signal controllers (TSC) are ubiquitous in

modern road infrastructure and their functionality greatly

impacts all users. Many research studies have proposed

improvements to TSC, broadly in an attempt to make them

adaptive to current traffic conditions. Reinforcement learning

has been shown to be effective in developing adaptive TSC as

an intelligent transportation system with many research studies

detailing promising results. Despite the encouraging research,

few reinforcement learning adaptive TSC have been deployed in

the field. One inhibiting factor is the resources required; to

observe the traffic state, reinforcement learning TSC often

require high-resolution data beyond the detection capability of

traditional sensors (i.e., loop detectors). This research focuses on

the potential state definitions of reinforcement learning TSC and

ascertaining the performance differences between them. We

seek to answer, can a reinforcement learning TSC function using

low-resolution data from traditional sensors such loop detectors?

Or is high-resolution data from sophisticated sensors (e.g.,

cameras, radar) required? Answering this question will help

individuals interested in deploying reinforcement learning TSC

in the field, as they will be aware of the requirements and

potential outcomes. We use the traffic microsimulator SUMO

[2] and the asynchronous advantage actor-critic (A3C) [3] and

Categorical 51 atom (C51) [4] distributional Q-learning [5]

algorithms to train and evaluate multiple adaptive TSC with

different resolution state representations.

2. Related Work

Many research studies have recognized and displayed

reinforcement learning’s capability for providing a solution to

TSC. Early research provided proof-of-concept for

reinforcement learning in TSC [6–9]. Later research applied

reinforcement learning methods to more realistic and complex

traffic models [10–15]. Developments in machine learning have

yielded deep reinforcement learning techniques [3, 16, 17]

which have subsequently been applied for TSC [18–24].

Considering the aforementioned research and the extensive

reinforcement learning TSC reviews [25–27], we identify

mailto:genderwt@mcmaster.ca

Genders et. al. / Journal of Traffic and Transportation Management, 1 (2019) 19-26

20

numerous possible state representations: vehicle density, flow,

queue, location, speed along with the current traffic phase, cycle

length and red time. These state representations form a

resolution spectrum of the current traffic state, from coarse (e.g.,

flow) to fine (e.g., individual vehicle position and speed). We

consider state representation across the resolution spectrum,

requiring different sensors, and compare their performance.

Results from this research can guide individuals interested in

practical implementation.

3. Model

3.1. Reinforcement Learning

Reinforcement learning is a type of machine learning for solving

sequential decision-making problems [28]. A reinforcement

learning agent learns a policy π(s) = a, mapping from states s to

actions a, to achieve a goal, quantified as a reward r, in an

environment under uncertainty. Through repeated environment

interactions, a reinforcement learning agent strives to develop an

optimal policy π*, which maximizes the sum of future

discounted (γ ∈ (0, 1]) rewards, defined as the return Gt in Eq.1:

Gt = ∑ γkrt+k

∞

k=0

(1)

The agent interacts with the environment in repeating sequences

of, at time t, observing the environment state st, taking action at,

receiving reward rt and transitioning the environment to a new

state st+1. Over time, the agent learns what actions in what states

maximize long-term reward, also known as value. Rewards

quantitatively represent how successful the agent’s policy is

achieving its mandated goal. Reinforcement learning utilizes

various types of value functions to develop the optimal policy.

Many algorithms have been proposed to efficiently develop

value functions using sampling-based techniques. The A3C

algorithm is used to develop parameterized θ policy π(a|s;θ)

(Eq.2) and state-value Vπ(s;θ) functions (Eq.3). The agent

develops a state-value function (critic), which estimates the

expected return from a given state st, which is used to improve

the policy (actor). The A3C algorithm is an on-policy

reinforcement learning algorithm, developing the optimal policy

directly.

π(a|s; θ) = Pr[at = a|st = s; θ]

(2)

Vπ(s; θ) = E[Gt|st = s; θ] (3)

The C51 algorithm [4] is an extension of the deep Q-network

(DQN) algorithm [16], which develops a parametrized (state)

action-value function Qπ(s,a; θ) (Eq.4).

Qπ(s, a; θ) = E[Gt|st = s, at = a; θ] (4)

An action-value function estimates the expected return of taking

action at from state st. DQN estimates an action-value’s mean;

C51 extends beyond the mean by modeling the distribution of

the return incorporating the return’s variance, depicted in Fig. 1.

Like DQN, C51 is an off-policy, value-based reinforcement

learning method, different from the A3C algorithm, which does

not directly develop the optimal policy. Instead, the C51

algorithm can be used to develop the optimal policy by acting

greedily with respect to the current state’s action-value (i.e.,

choosing the action with the high value given the current state).

Compared to policy-based reinforcement learning algorithms

like A3C, C51 is more sample-efficient due to its use of an

experience replay [30]. However, policy-based algorithms like

A3C often have stronger convergence properties due to their

direct development of the policy.

Both algorithms make use parametric function approximation in

the form of neural networks. The parameters define the weights

between neurons in the network, estimated through sampling,

gradient based techniques [31–33].

3.2. Environment

The environment used to train the reinforcement learning

adaptive TSC is the traffic microsimulator SUMO [2]. The

network geometry is an isolated intersection with four origin-

destination zones in each compass direction; North (N), South

(S), East (E) and West (W). Each origin-destination zone is

connected to the intersection with eight lanes, four incoming and

four outgoing. The turning movements for incoming lanes to the

intersection are; the right lane allows right turn and through

movements, the middle two lanes allow through movements and

the left lane allows left turns.

We simulate a peak or rush hour traffic demand scenario for

training. The traffic is generated stochastically using a negative

exponential distribution with a rate parameter λ. To add further

stochasticity, the rate parameter λ is sampled from a normal

distribution N (λ, λ/10), displayed in Fig. 2.

3.3. State

At time t the reinforcement learning agent observes the state of

the environment st. The agent’s behaviour and ability to learn is

greatly influenced by the state and its definition. Three state

spaces are defined for reinforcement learning TSC with different

resolutions of the environment. All state representations include

the most recent traffic phase encoded as a one-hot vector (i.e. a

phase from the set of all traffic phases P) and the time spent in

that phase. One-hot vectors are used to represent categorical

variables. For K categories, a K × K identity matrix represents

all the categories, with each row representing a different

category.

3.3.1. Occupancy and Speed

The lowest resolution state space is defined using occupancy and

average speed. Loop detectors are the most common sensors at

intersections and can be used to collect coarse traffic statistics,

such as occupancy and average speed for each lane. We model

each incoming lane with two loop detectors, one at the stop line

and the other setback 50 m from the stop line. The occupancy

and average speed (normalized by the speed limit) are computed

from the previous 10 s interval. Given m incoming lanes, the

A3C-Loop state is st ∈ ℝ(2m+|P |+1).

3.3.2. Queue and Density

A higher resolution state space is defined using vehicle density

and queue. Loop detectors are inadequate to collect queue and

density data reliably, more sophisticated sensors are required

(i.e., video cameras, radar). Assuming a jam density kj, Vl

represents the set of vehicles on lane l and Vl,q the set of queued

vehicles on lane l, we define vehicle lane density Vl/kj and

vehicle lane queue Vl,,q/kj. Given m incoming lanes, we denote

the A3C-Queue state st ∈ ℝ (2m+|P |+1).

Genders et. al. / Journal of Traffic and Transportation Management, 1 (2019) 19-26

21

3.3.3. Discrete Cell Encoding

The highest resolution state space discretizes each incoming lane

into cells of a fixed length c = 2.5 m, termed the Discrete Traffic

State Encoding (DTSE). Cells are binary encoded, 1 represents

the presence of a vehicle and 0 represents the absence of a

vehicle. Sophisticated sensors (i.e., video cameras, radar) would

also be required to collect this state data. Given an incoming lane

length L = 135 m, the A3C-DTSE state is st ∈ ℝ((L/c) m+|P |+1)t ,

where we use a history of the t = 2 most recent states. This state

definition was first proposed using SARSA reinforcement

learning [6] and has since been utilized in deep reinforcement

learning TSC [18, 19, 21].

The C51 variant utilizes the highest-resolution state space,

DTSE, to create a C51-DTSE TSC. The only difference between

the A3C-DTSE and C51-DTSE states is that C51 stacks the t =

4 most recent states into each observation, similar to DQN [16].

3.4. Actions

After observing state st, the agent chooses an action at ∈ A. The

actions available are the green traffic phases, denoted in this

research by a pair of compass directions and set of movement

priorities (i.e., G represents protected through movements and

permissive left turn movements and LG represents protected left

turn movements and prohibited through movements). For

example, the action NSG represents North-South protected

through movements, permissive left turn movements and

prohibits all East-West movements. Actions in a sequence may

require yellow change and red clearance phases, with additional

action/phase information detailed in Table 1. The set of all

possible actions is denoted A = {NSG, EWG, NSLG, EWLG}.

All actions at ∈ A have a duration of 10 s and yellow and red

phases have a duration of 4 s. When no vehicles are present at

the intersection (i.e., ∀l, Vl = {})), all movements are prohibited

with the red clearance phase.

The agent’s traffic signal control policy is acyclic, unconstrained

and ad-hoc. We argue imposing a cycle in reinforcement

learning TSC is presumptuous. If a cycle is optimal, the agent

will develop such a policy. There are no maximum times for

each phase and the agent chooses the next action/phase without

limitation.

3.5. Rewards

After observing state st and taking action at, the agent receives a

scalar reward rt ∈ ℝ from the environment. The reward is

feedback for how ‘good’ action at was in st. Many rewards have

been proposed for reinforcement learning TSC (e.g., functions

of throughput, queue, delay). The A3C’s reward is defined in

Eq.5 as change in cumulative delay:

rt = Dat
− Dat+1

 (5)

Where 𝐷𝑎𝑡
, 𝐷𝑎𝑡+1

 represent the cumulative delay at the

intersection when action at and at+1 are taken. Cumulative

vehicle delay D at time t is defined in Eq.6:

Dt = ∑ dt
v

vϵVt

(6)

Where Vt is the set of vehicles on incoming lanes in the

simulation at time t and 𝑑𝑡
𝑣 is the delay of vehicle v at time t.

Preliminary work found the C51-DTSE performed poorly with

the aforementioned change in delay reward. Further

investigation found negative cumulative delay a suitable reward,

defined in Eq.7:

rt = −Dt (7)

3.6. Agent

The agent is the entity, through repeated interaction with the

environment, that implements and improves the policy π. In this

research, the agent chooses the next green traffic phase. We

model the agent as an artificial neural network.

An artificial neural network is chosen for its flexible function

approximation capabilities. The A3C agent’s neural network

architecture is an input layer and then a fully connected hidden

layer with rectified linear (ReLu) activation functions followed

by another fully connected hidden layer with ReLu activation

functions. The output layer has |A| = 4 neurons with softmax

activation functions which output the action probabilities

representing the policy (i.e., next traffic phase). The number of

neurons in each hidden layer for each state representation is

equal to the cardinality of the input state; A3C-Loop and A3C-

Queue hidden layers have 42 neurons and A3C-DTSE hidden

layers have 1780 neurons.

The A3C algorithm simulates multiple actor-critic agents in

parallel, each with their own environment. Using a local

parameter set θ', each agent computes an advantage Adv = Gt −

V (s;θ') from multistep returns of length tmax = 32. The advantage

is a measure of the difference between the actual and expected

performance of the policy. The advantage is used to compute

parameter gradients dθ which are asynchronously applied to a

global parameter set θ for updating the state-value (Eq.8) and

policy functions (Eq.9). Each agent periodically copies the

global parameters θ as their local parameters θ'. The rewards are

standardized before computing the return (i.e., rt←(rt−µr)/σr)

and the gradient of the policy entropy 𝜖𝑡 = 𝛽 𝛻
𝜃′𝐻(𝜋(𝑠; 𝜃′)) is

added to the parameter update for improved learning.

dθ← dθ +
∂(Adv)2

∂θ′ (8)

dθ← dθ + ∇
θ′ log

e
π(a|s; θ′) (Adv) + ϵt (9)

The C51-DTSE uses a deep convolutional neural network

architecture. The first layer receives the DTSE as input, with the

following sequence of hidden convolutional and fully connected

layers: 16 filters of size 4x4, 16 filters of size 3x3, 32 filters of

size 2x2, a fully connected layer of 256 neurons and |A| = 4

separate output heads of 51 fully connected neurons,

representing each of the 4 action’s return distributions. All

hidden layers use ReLu activation functions except the final

output heads, which uses softmax activation functions. The C51

algorithm updates using a categorical cross-entropy loss where

the targets are discrete distributional returns. Readers interested

in C51 algorithm details should consult the algorithm designer’s

original publication [4]. A decentralized acting, centralized

learning architecture is used to train the C51-DTSE. Parallel

actors explore distinct environments and send experiences (i.e.,

tuples of (st, at, rt, st+1)) to a centralized learner experience replay

[34], each actor implementing a different 𝜀-greedy exploration

policy. The learner uniformly samples experience batches from

the replay and computes parameter updates using online and

target parameter sets. One important difference between the

A3C and C51 implementations in this research is that A3C uses

32-step returns while C51 uses only 1-step returns.

Genders et. al. / Journal of Traffic and Transportation Management, 1 (2019) 19-26

22

4. Experiments

We subject each different state representation reinforcement

learning TSC to N = 100 rush hour demand scenarios, T = 7 200

simulation steps in duration, for training. As a form of data

augmentation and to prevent overfitting, the rush hour demand

scenario is randomly shifted in time for each simulation,

displayed in Fig. 2. Training is conducted using a consumer i7

CPU with 8 parallel, asynchronous threads. Training for each

state representation was 3-6 hours wall clock time.
For comparison after training, each different state reinforcement

learning TSC is subjected to 100 rush hour demand scenarios

without data augmentation (i.e., random seeds) to ensure parity

during testing. Throughput, delay and queue statistics are

collected during testing simulations. During testing simulations,

all network parameters are frozen; the A3C follows its learned

policy and the C51 acts with a fixed exploration rate of 0.05.

The traffic microsimulator SUMO [2] is used for all simulations.

Tensorflow [35], Keras [36], SciPy [37] and additional Python

libraries [38, 39] are used for implementing the neural networks

and reinforcement learning.

As a baseline for comparison, we model an Actuated TSC which

uses loop detectors to modulate the green phase lengths. The

Actuated TSC is cyclic; each phase has a minimum green time

of 10 s, after which a gap-out timer begins decrementing from 5

s. If a vehicle is detected in a lane with a protected movement

under the current phase the gap-out timer is reset to 5 s, up to a

maximum of 40 s.

All TSC models use the Adam optimizer [40] for training with a

learning rate of 7.5 × 10−4 and an epsilon of 1 × 106. A batch size

of 16 is used and both networks update after 100 experiences

(i.e., online parameters are copied to target parameters for C51

and gradients are applied to global parameters for A3C).

Hyperparameters unique to C51 used in this research include

distributional return maximum Vmax = 0.0 and minimum Vmin =

−10.0 values. The experience replay has a maximum capacity of

1 × 104 and is filled to capacity before updates begin. A visual

representation of C51-DTSE TSC’s distributional returns after

training can be seen in Fig. 1.

5. Analysis & Discussion

Testing results are displayed in Table 2 and visually in Fig. 3.

All reinforcement learning TSC achieve superior performance

in reducing delay and queue lengths compared to the Actuated

TSC. This result is not surprising, as the reinforcement learning

TSC have greater flexibility in action selection compared to the

Actuated TSC, which must implement phases in a cycle.

Observing the traffic metrics collected, there appears to be little

to no difference between the different state representations when

using the A3C algorithm, however, the C51-DTSE TSC

achieves the best performance overall. There is no difference in

throughput or queue between A3C variants, however, the A3C-

Loop exhibits the highest delay compared to the A3C-Queue and

A3C-DTSE. This result is surprising to the authors, specifically

how little difference there is between the different A3C state

representations considering the spectrum of data resolution

modeled.

The fact that the C51-DTSE outperformed all A3C variants is

likely due to a combination of factors; the distributional return

model and the difference in neural network architecture (i.e.,

deep convolutional versus shallow fully-connected). Although

in theory A3C is described as on-policy, updating using

asynchronous policy gradients, in practice policy lag can occur,

making it slightly off-policy, diminishing the quality of the

gradient updates and reducing learning performance. The A3C’s

behaviour is contrasted with C51’s off-policy experience replay

buffer, which is more robust while learning because the gradient

updates are computed at the centralized learner. While the C51

algorithm with high-resolution state data achieves the best

performance, the performance disparity is not as significant as

has been observed in other reinforcement learning tasks, such as

Atari video games [4, 41]. Low-resolution state data, as can be

generated from loop detectors, still achieves considerable

performance gains compared to traditional, Actuated TSC.

These findings suggest common traffic sensors such as loop

detectors would be sufficient to provide data for any parties

interested in implementing reinforcement learning TSC in

practice. However, parties interested in achieving the maximum

performance should consider deep neural networks with high-

resolution state data and a distributional return model.

6. Conclusion

We modeled adaptive TSC using the A3C and C51

reinforcement learning algorithms with various state

representations to determine any differences in performance.

Results show that data collected from traditional and ubiquitous

sensors such as loop detectors are sufficient for reinforcement

learning adaptive TSC. Under the model devised in this research,

high-resolution state representations requiring sophisticated

sensors offer improvements only by reducing delays and queues

by approximately 10 − 20%, with no difference in throughput

compared to low-resolution state representations.

Considering the successful combination of experience replay

and distributional returns, many future areas of research exists.

Off-policy, policy-based reinforcement learning methods have

been successfully developed which combine the data efficiency

of experience replay with direct policy development [42–44].

Additionally, improved algorithms have been developed for

modeling distributional returns, displaying improved

performance beyond C51 [41]. Any of these techniques could be

used to further improve reinforcement learning TSC and are

worth future investigation.

Acknowledgements

Find some source code related to this research at

https://github.com/docwza/deep-rl-tsc.

References

[1] Cookson, G. (2018). INRIX Global Traffic Scorecard.

Technical report, INRIX

[2] Krajzewicz, D., Erdmann, J., Behrisch, M., and

Bieker, L. (2012). Recent development and

applications of SUMO - Simulation of Urban

MObility. International Journal On Advances in

Systems and Measurements, 5(3&4):128–138.

[3] Mnih, V., Badia, A. P., Mirza, M., Graves, A.,

Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu,

K. (2016). Asynchronous methods for deep

reinforcement learning. In International Conference

on Machine Learning, pages 1928–1937.

Genders et. al. / Journal of Traffic and Transportation Management, 1 (2019) 19-26

23

[4] Bellemare, M. G., Dabney, W., and Munos, R. (2017).

A distributional perspective on reinforcement

learning. arXiv preprint arXiv:1707.06887.

[5] Watkins, C. J. and Dayan, P. (1992). Q-learning.

Machine learning, 8(3-4):279–292.

https://doi.org/10.1023/A:1022676722315

[6] Thorpe, T. L. and Anderson, C. W. (1996). Traffic

light control using sarsa with three state

representations. Technical report, Citeseer.

[7] Wiering, M. et al. (2000). Multi-agent reinforcement

learning for traffic light control. In ICML, pages

1151–1158.

[8] Brockfeld, E., Barlovic, R., Schadschneider, A., and

Schreckenberg, M. (2001). Optimizing traffic lights in

a cellular automaton model for city traffic. Physical

Review E, 64(5):056132.

https://doi.org/10.1103/PhysRevE.64.056132

[9] Abdulhai, B., Pringle, R., and Karakoulas, G. J.

(2003). Reinforcement learning for true adaptive

traffic signal control. Journal of Transportation

Engineering, 129(3):278–285.

https://doi.org/10.1061/(ASCE)0733-

947X(2003)129:3(278)

[10] Wiering, M., Vreeken, J., Van Veenen, J., and

Koopman, A. (2004). Simulation and optimization of

traffic in a city. In Intelligent Vehicles Symposium,

2004 IEEE, pages 453–458. IEEE.

https://doi.org/10.1109/IVS.2004.1336426

[11] El-Tantawy, S., Abdulhai, B., and Abdelgawad, H.

(2013). Multiagent reinforcement learning for

integrated network of adaptive traffic signal

controllers (marlin-atsc): methodology and large-

scale application on downtown toronto. IEEE

Transactions on Intelligent Transportation Systems,

14(3):1140–1150.

https://doi.org/10.1109/TITS.2013.2255286

[12] Abdoos, M., Mozayani, N., and Bazzan, A. L. (2013).

Holonic multi-agent system for traffic signals control.

Engineering Applications of Artificial Intelligence,

26(5):1575–1587.

https://doi.org/10.1016/j.engappai.2013.01.007

[13] Zhu, F., Aziz, H. A., Qian, X., and Ukkusuri, S. V.

(2015). A junction-tree based learning algorithm to

optimize network wide traffic control: A coordinated

multiagent framework. Transportation Research Part

C: Emerging Technologies, 58:487–501.

https://doi.org/10.1016/j.trc.2014.12.009

[14] Jin, J. and Ma, X. (2017). A group-based traffic signal

control with adaptive learning ability. Engineering

applications of artificial intelligence, 65:282–293.

https://doi.org/10.1016/j.engappai.2017.07.022

[15] Aslani, M., Mesgari, M. S., and Wiering, M. (2017).

Adaptive traffic signal control with actor-critic

methods in a real-world traffic network with different

traffic disruption events. Transportation Research

Part C: Emerging Technologies, 85:732–752.

https://doi.org/10.1016/j.trc.2017.09.020

[16] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,

Veness, J., Bellemare, M. G., Graves, A., Riedmiller,

M., Fidjeland, A. K., Ostrovski, G., et al. (2015).

Humanlevel control through deep reinforcement

learning. Nature, 518(7540):529–533.

https://doi.org/10.1038/nature14236

[17] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,

T., Tassa, Y., Silver, D., and Wierstra, D. (2015).

Continuous control with deep reinforcement learning.

arXiv preprint arXiv:1509.02971.

[18] Rijken, T. (2015). DeepLight: Deep reinforcement

learning for signalised traffic control. PhD thesis,

Master’s Thesis. University College London, London,

United Kingdom.

[19] Van Hasselt, H., Guez, A., and Silver, D. (2016).

Deep reinforcement learning with double q-learning.

In AAAI, pages 2094–2100.

[20] Li, L., Lv, Y., and Wang, F.-Y. (2016). Traffic signal

timing via deep reinforcement learning. IEEE/CAA

Journal of Automatica Sinica, 3(3):247–254.

https://doi.org/10.1109/JAS.2016.7508798

[21] Genders, W. and Razavi, S. (2016). Using a deep

reinforcement learning agent for traffic signal control.

arXiv preprint arXiv:1611.01142.

[22] Casas, N. (2017). Deep deterministic policy gradient

for urban traffic light control. arXiv preprint

arXiv:1703.09035

[23] Wan, C.-H. and Hwang, M.-C. (2018). Value-based

deep reinforcement learning for adaptive isolated

intersection signal control. IET Intelligent Transport

Systems, 12(9):1005–1010.

https://doi.org/10.1049/iet-its.2018.5170

[24] Nishi, T., Otaki, K., Hayakawa, K., and Yoshimura,

T. (2018). Traffic signal control based on

reinforcement learning with graph convolutional

neural nets. In 21st International Conference on

Intelligent Transportation Systems. IEEE.

https://doi.org/10.1109/ITSC.2018.8569301

[25] Genders, W. and Razavi, S. (2018). Evaluating

reinforcement learning state representations for

adaptive traffic signal control. Procedia computer

science, 130:26–33.

https://doi.org/10.1016/j.procs.2018.04.008

[26] El-Tantawy, S., Abdulhai, B., and Abdelgawad, H.

(2014). Design of reinforcement learning parameters

for seamless application of adaptive traffic signal

control. Journal of Intelligent Transportation Systems,

18(3):227–245.

https://doi.org/10.1080/15472450.2013.810991

https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1103/PhysRevE.64.056132
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:3(278)
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:3(278)
https://doi.org/10.1109/IVS.2004.1336426
https://doi.org/10.1109/TITS.2013.2255286
https://doi.org/10.1016/j.engappai.2013.01.007
https://doi.org/10.1016/j.trc.2014.12.009
https://doi.org/10.1016/j.engappai.2017.07.022
https://doi.org/10.1016/j.trc.2017.09.020
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/JAS.2016.7508798
https://doi.org/10.1049/iet-its.2018.5170
https://doi.org/10.1109/ITSC.2018.8569301
https://doi.org/10.1016/j.procs.2018.04.008
https://doi.org/10.1080/15472450.2013.810991

Genders et. al. / Journal of Traffic and Transportation Management, 1 (2019) 19-26

24

[27] Mannion, P., Duggan, J., and Howley, E. (2016). An

experimental review of reinforcement learning

algorithms for adaptive traffic signal control. In

Autonomic Road Transport Support Systems, pages

47–66. Springer. https://doi.org/10.1007/978-3-319-

25808-9_4

[28] Yau, K.-L. A., Qadir, J., Khoo, H. L., Ling, M. H., and

Komisarczuk, P. (2017). A survey on reinforcement

learning models and algorithms for traffic signal

control. ACM Computing Surveys (CSUR), 50(3):34.

https://doi.org/10.1145/3068287

[29] Sutton, R. S. and Barto, A. G. (1998). Reinforcement

learning: An introduction, volume 1. MIT press

Cambridge.

[30] Lin, L.-J. (1992). Self-improving reactive agents

based on reinforcement learning, planning and

teaching. Machine learning, 8(3-4):293–321.

https://doi.org/10.1007/BF00992699

[31] Linnainmaa, S. (1970). The representation of the

cumulative rounding error of an algorithm as a taylor

expansion of the local rounding errors. Master’s

Thesis (in Finnish), Univ. Helsinki, pages 6–7.

[32] Werbos, P. J. (1982). Applications of advances in

nonlinear sensitivity analysis. In System modeling

and optimization, pages 762–770. Springer

https://doi.org/10.1007/BFb0006203

[33] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.

(1985). Learning internal representations by error

propagation. Technical report, California Univ San

Diego La Jolla Inst for Cognitive Science.

https://doi.org/10.21236/ADA164453

[34] Horgan, D., Quan, J., Budden, D., Barth-Maron, G.,

Hessel, M., Van Hasselt, H., and Silver, D. (2018).

Distributed prioritized experience replay. arXiv

preprint arXiv:1803.00933.

[35] Abadi, M., Agarwal, A., Barham, P., Brevdo, E.,

Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,

J., Devin, M., et al. (2016). Tensorflow: Large-scale

machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467

[36] Chollet, F. (2015). Keras. http://keras.com

[37] Jones, E., Oliphant, T., Peterson, P., et al. (2017).

SciPy: Open source scientific tools for Python.

[38] Kapturowski, S. (2017). Tensorflow-rl.

https://github.com/steveKapturowski/tensorflow-rl

[39] Flyyufelix. (2017). C51-ddqn-keras.

https://github.com/flyyufelix/C51-ddqn-keras

[40] Kingma, D. and Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint

arXiv:1412.6980.

[41] Dabney, W., Rowland, M., Bellemare, M. G., and

Munos, R. (2017). Distributional reinforcement

learning with quantile regression. arXiv preprint

arXiv:1710.10044.

[42] Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,

Kavukcuoglu, K., and de Freitas, N. (2016). Sample

efficient actor-critic with experience replay. arXiv

preprint arXiv:1611.01224.

[43] Gruslys, A., Azar, M. G., Bellemare, M. G., and

Munos, R. (2017). The reactor: A sample-efficient

actor-critic architecture. arXiv preprint

arXiv:1704.04651.

[44] Espeholt, L., Soyer, H., Munos, R., Simonyan, K.,

Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T.,

Dunning, I., et al. (2018). Impala: Scalable distributed

deep-rl with importance weighted actor-learner

architectures. arXiv preprint

[45] Liu, Y., Liu, L., and Chen, W.-P. (2017). Intelligent

traffic light control using distributed multi-agent q

learning. arXiv preprint arXiv:1711.10941.

https://doi.org/10.1109/ITSC.2017.8317730

https://doi.org/10.1007/978-3-319-25808-9_4
https://doi.org/10.1007/978-3-319-25808-9_4
https://doi.org/10.1145/3068287
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BFb0006203
https://doi.org/10.21236/ADA164453
https://doi.org/10.1109/ITSC.2017.8317730

Genders et. al. / Journal of Traffic and Transportation Management, 1 (2019) 19-26

25

Fig. 1. C51-DTSE action-value distribution for the current state s in the SUMO traffic model. The solid vertical line in each subplot represents

the expected value of the action-value’s distribution. With reward defined as negative cumulative delay, the action value closest to 0.0

is optimal. Observing the simulator state s, the majority of vehicles are traversing North and South links. The action-value distributions

reflect this fact, as the NSG action exhibits the highest action-value, indicating it is the optimal action.

Fig. 2. Rush hour demand traffic scenario used for training (randomly shifted temporally) (right) and testing (fixed temporally) (left).

Genders et. al. / Journal of Traffic and Transportation Management, 1 (2019) 19-26

26

Fig. 3. Testing results comparing different agent and state definitions in a 2 hour simulation testing simulations. Each method’s performance

is estimated from 100 randomly generated (i.e., randomly seeded) testing simulations. Solid coloured lines represent mean values and

shaded areas represent 95% confidence intervals.

Table 1. Traffic Signal Phase Information

 Turning Movements

Action NEMA Phases Compass Directions Left Through Right

NSG 2, 6 North, South Permissive Protected Permissive

NSLG 1, 5 North, South Protected Prohibited Permissive

EWG 4, 8 East, West Permissive Protected Permissive

EWLG 3, 7 East, West Protected Prohibited Permissive

 Table 2. Traffic Signal Controllers Estimated Performance

 (n=100, �̂�, �̂�)

Traffic Signal Control Method Total Throughput (veh/sim) Total Delay (s/sim) Total Queue(veh/sim)

A3C-Loop (6 609, 86) (2.8 × 106, 4.6 × 105) (1.2 × 105, 0.8 × 104)

A3C-Queue (6 612, 87) (2.3 × 106, 2.5 × 105) (1.2 × 105, 0.7 × 104)

A3C-DTSE (6 598, 92) (2.4 × 106, 4.9 × 106) (1.1 × 105, 0.9 × 104)

Actuated (6 529, 98) (7.7 × 106, 7.3 × 105) (2.2 × 105, 1.2 × 104)

C51-DTSE (6 610, 99) (2.0 × 106, 2.8 × 105) (9.6 × 104, 1.0 × 104)

