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Abstract 

Negative effects of traffic, like congestion, air and noise pollution are among the reasons why environmentally friendly 

solutions are promoted. Bike sharing (bs) is intended to strengthen cycling and public transport. Nevertheless, current 

transport models rarely consider cycling or even bs, in either detail or holistically. In this paper we present an agent 

based approach to model cycling and in particular bs within the multimodal simulation environment MATSim. 

Multimodal trips combining public transport and bs are included as well as within day rescheduling of bs trips as agents 

may not find a bike or empty return space (parking spot). To minimize such cases, choice probabilities were 

implemented, so that agents only start their bs trip, if sufficient bikes or parking spots are available. The modules 

presented in this paper were applied using a MATSim model of the city of Vienna. Agent based bs modelling is an 

inexpensive option to test the impact of a bike sharing system before implementation. 
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1. Introduction & Background 

As urbanization is increasing worldwide as is city density, 

travel speed of motorized vehicles is decreasing in many cities. 

At present, the average speed of cars in congested cities in 

London is about 19 km/h and in Berlin 24 km/h [1]. At such 

low travel speeds bicycle traffic is competitive, especially for 

short distances. Several cities and private investors implement 

bike sharing systems (bs) to offer a space efficient and 

environmentally friendly mobility solution. Bike sharing is a 

valid option to move quickly within the city, without the need 

of an own bicycle. Since the private car is still the most 

comfortable and convenient choice, additional effort has to be 

undertaken to make the healthy, quiet, energy-efficient and 

emission-free transport mode cycling more attractive. New 

options in terms of comfort and scope are now arising with e-

bikes, also for bs. Two common models exist for bs, station 

based, where docking stations are required to rent/return the 

bicycle, and free-floating systems. In the later case bicycles can 

be taken and returned anywhere within a service area although 

some public agencies impose parking regulations after bicycles 

clogged sidewalks and other public spaces. Free-floating 

bicycles are identified by GPS. Station-based systems (i.e. 

Vienna, Paris and Lyon) do not offer reservation options. 

Therefore, modelling of bs differs from the methodology for 

car sharing [2].  

As with other new technical systems, bs will only be successful 

if the advantages will outweigh. In order to predict the 

potential usage and success of bs, the system components 

(service area, bicycle fleet, station density, station capacity, 

rental fee, etc.), other transport modes and user behavior must 

be considered. Mode choice options, city planning and a 

bicycle friendly environment might further determine if a 

system will operate successfully. Previous studies have 

identified travel time reductions if public transport (pt) is used 

in combination with bs. Nevertheless reductions may not take 

place at destinations close to pt hubs [3, 4]. In Vienna, Austria, 

40% of bs users are female, and 80% are younger than 40 years 

[5]. Also in Australia (Melbourne, Brisbane) bs members are 

significantly younger but disproportionately male. The distance 

to the closest docking station is taken as a predictor for 

membership, and for convenience [6]. In Fargo, North Dakota, 

key success factors affecting the ridership of bs were analyzed 

[7] and did not differ greatly to factors influencing bicycle 

usage in general. Weather, temporal variables (time of day or 

week) and spatial variables (bicycle infrastructure, land-use…) 

influence the bs ridership. Influencing factors for cycling were 

also investigated by other researchers. Safety matters a lot. 

Four out of five persons are anxious about traffic accidents 

while riding their bicycle. Street lighting is seen as essential to 

increase safety [8, 9], if it is not area wide available [10]. Other 

research claimed additional factors which influence route 

choice and usage of bicycles such as land use, the 

characteristics of the motorized traffic to be encountered [11, 

12], population density, housing or employment, street 

connectivity [13, 14], cycle infrastructure [15, 16], pavement 

conditions [17, 18] or a combination of safety, comfort and 

speed [15, 16]. In Atlanta, USA, female and senior cyclists are 

more likely to take longer routes and the deviation from the 

shortest route depends on the presence of cycle infrastructure, 
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bicycle friendly streets, speed limits, confidence and comfort 

[19]. In Graz, Austria, bicycle travel speed, gender and fitness 

were identified as key parameters influencing cyclist’s route 

choice [10]. Song et al. [20] present a good summary of 

cyclist’s route choice attributes.  

While many criteria for bicycle traffic and bs are already 

known, cycling is still rarely included in transport models and 

systematic policy evaluation procedures. Nevertheless the 

relocation of bs bikes [21, 22, 23, 24, 25] and service quality 

[26, 27, 28, 29], were modelled in detail, which is not the focus 

of this paper. Numerous multimodal transport models for car 

traffic and pt exist, but bicycle traffic or bs is mostly sparsely 

or inaccurately included, and in particular without inclusion of 

a holistic view of inter- and multimodality. During this ongoing 

research another group of researchers at TU Berlin developed a 

multimodal bicycle traffic model in MATSim in parallel. 

Similar to the approach of this paper, relevant characteristics of 

infrastructure for cycling were added and the scoring function 

was updated. With multimodal developments the impact of a 

bicycle superhighway interacting with other means of transport 

was analyzed for India [30, 31, 32].  

For bs it is important to derive detailed information about the 

potential of such a system, therefore this paper introduces a 

module to simulate bs on a fine-grained infrastructure network. 

Within the framework not only the bs system itself is detailed, 

but also further complex coherences are included. This means 

criteria such as the transportation network, supply, 

infrastructure, pt system and schedules, settlement structure 

(origin-destination relationship), mode choice options and 

environmental features are considered. The modules presented 

offer to model bs as single mode as well as a tributary to high 

ranked pt, within multimodal context. 

2. Methodology 

To simulate bicycles and bike sharing (bs) the open source 

agent-based simulation software MATSim was enhanced by 

additional modules. In MATSim, each person (agent) is 

modelled by individual settings. The actions of agents can 

cause changes in their environment, which in turn can then 

cause them to alter their actions. Therefore, there is a feedback 

loop between agents’ decision making and the environment. 

The relaxed state of the co-evolutionary algorithm is reached if 

there is no noticeable change in the day plans [33, 34]. As long 

as the relaxed state is not reached, iterations are run. An initial 

day plan of an agent includes activities (e.g. home, work, 

shopping) and the mode and departure time. Since bad plans 

will lead to low utility, the remaining plans should level off in 

utility, as otherwise they will be discarded. Activity chains 

within a plan stay the same, but activity end times can be 

shifted together with mode choice. The newly developed 

bicycle and bs modules provide the simulation of bicycles as 

well as bike and e-bike sharing. This required the 

implementation of a station based system. Correlations 

between choices for bs are given within the module. When bs 

was chosen as mode, public transport (pt) and walking can also 

be used, but not vice versa.  Some extensions had to be made to 

the exisiting modelling of bicycle traffic. The new module 

allows to route and score bicycles according to infrastructure, 

user group and specifically chosen speed (see 2.1). 

Furthermore bs was built up from the bottom (see 2.2). For bs 

single bicycles are modelled so their usage and locations 

during the whole day can be analyzed. To validate the new 

module three test cases were used. A real world model of 

Vienna had been applied for sensitivity and plausibility tests 

(see 3).  

2.1. Bicycle routing and scoring 

 

Routing: In order to obtain a realistic spatial distribution, a 

routing was developed especially for cyclists. Each agent (p) is 

assigned a user group (u) and a bicycle type (conventional, e-

bike, road bike). The user group defines how important 

attitudes (ai) are for the routing and in further consequence the 

utility achieved. E.g. it determines how important a safe bike 

path is for the agent’s route choice. In addition, for each agent, 

a desired cruising speed (vp) is drawn from normal distribution 

(derived from measurement data), which depends on the type 

of bicycle and user group. Furthermore each edge (i) of the 

bike network receives an evaluation from 0-10 for all attribute 

groups (safety, comfort, environment, gradient and other) 

where 0 indicates best cycle conditions, 10 worst. Further each 

edge has a length and a maximum permissible infrastructure 

speed (vi). Every attribute group is multiplied by its user group 

share (Pa,u), the result is the bike-friendliness (bi,u).  This means 

every user group has its own value of bike-friendliness 

attributed for every edge, which gets multiplied by the edge 

length (li) and divided through speed (vi,p). The result is the 

personal weighting (wi,u,p) for every bike-edge. For speed the 

minimum of personal (vp) and edge speed (vi) is decisive. The 

calculation of the personal weighting is introduced in Formula 

(1) and (2). The Dijkstra-Algorithm uses the personal 

weighting, to calculate every agent’s best route between origin 

and destination. 

𝑤𝑖,𝑢,𝑝 =
𝑙𝑖

𝑣𝑖,𝑝

∗ 𝑏𝑖,𝑢 

 

 

(1) 

𝑏𝑖,𝑢 =  ∑ 𝑎𝑖 ∗ 𝑃𝑎,𝑢

5

𝑎=1

   

 

 

(2) 

Scoring: Within MATSim utility is used to determine if the 

equilibrium is reached. In simplified terms, positive utility is 

gained for performing activities and negative utility is received 

for travelling. Since most scoring functions already exist, only 

scoring for travelling by bicycle or bs is explained here. It is 

necessary to determine how good or poor a detected route is. 

This depends again on the route, user group and speed. If an 

agent finds poor conditions in terms of its preferences a lower 

score will be reached, than for good conditions.  

In order to cope with this the perceived travel time 𝑡𝑡𝑟𝑎𝑣,𝑖,𝑝𝑒𝑟𝑐 

was introduced. Our implementation matches to statements of 

Boekhoudt et al. [35] who introduced the concept of person 

dependent perception of travel time. In our case, this means 

that an edge with good cycling conditions, has a lower value 

than the real travel time, resulting in a higher utility and vice 

versa. The perceived travel time is calculated by 

𝑡𝑡𝑟𝑎𝑣,𝑖,𝑝𝑒𝑟𝑐 = 𝑡𝑡𝑟𝑎𝑣,𝑖 ∗  ∑ 𝑚𝑎𝑖
∗  𝑝𝑎,𝑢

5

𝑎=1

 

 

 

(3) 

where 𝑚𝑎𝑖
 depends on the characteristics of every travelled 

edge (see Formula 3). This means a route is scored with the 

help of the perceived travel time, keeping original departure 

and arrival times for activity scoring. The utility is calculated 

by summing up the perceived travel times of all edges and 

multiplying this by the marginal costs of travelling (𝛽𝑡𝑟𝑎𝑣𝑒𝑙). 

The marginal costs consist of time dependent costs, route 

determined costs and monetary costs. Monetary costs can be 

especially important for bs. This means separate utilities for 

bicycles, bs and e-bs may arise. For a more detailed 

explanation of the routing and scoring method and general 

utility formulas in MATSim see [8, 29, 33, 34]. 
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2.2. Station based bike sharing framework 

 
For the implementation of station based bs, every station is 

assigned to a network edge and agents must be able to reach 

this edge by the modes walk and bicycle. Every station has its 

coordinate, type (e-bike or conventional bike) and contains the 

number and id of available bicycles and the number of 

available parking spaces (empty boxes). For e-bikes physical 

values describing the charging curve need to be provided. The 

bs module reproduces renting and returning of a bicycle 

precisely. Interaction activities are included which arise from 

travelling by pt or bs. Such activities are inserted whenever a 

mode change between bs and pt is performed. So called legs 

contain e.g. information about the route and chosen mode from 

origin to destination. The initial input plan of an agent, is a 

simple plan, without detailed timing or routing. For bs this plan 

is transferred to a pre-processed bs plan (Fig. 1). 

 
Fig. 1. Methodology to generate a pre-processed bs plan 

 

Bs type, according to station choice: The distances between 

origin and the nearest station, and between destination and the 

nearest station are calculated in order to find the start and end 

station. After this step, the bs type can be derived. It depends 

on all found stations within the search radius and the beeline-

trip-distance from the previous to the next activity. An initial 

station for departure is found, if there is at least one station 

within the search radius, which is an input parameter, and can 

be defined by the modeler. If for both types, the same priority 

type was found, choice depends on likelihood and on access 

and egress distance, with advantage for e-bs. If only one start 

or end station was found bs is combined with pt (access or 

egress trip). Either start with bs (2) and end the trip with pt, or 

vice versa (3). Walk trips to and from a station as also the 

bicycle trip itself are routed. Station choice and routing, firstly 

result in the best possible bs plan, as at first available bikes or 

parking spaces are not considered and time reference is not 

used. Nevertheless, a further constraint can be set by the 

modeler, since it is possible to set a maximal distance, which 

will be accepted by the bs agent, for bs standalone use. If this 

distance is exceeded bs will be combined with pt, as the effort 

for bicycling would be too high, which is a response to the 

knowledge that cycling gets rejected whenever a specific trip 

length is exceeded. As this length depends on local and country 

circumstances, this length was implemented as an adjustable 

variable. Bs-pt-exchange-stations, shall only be stations near to 

high-ranked pt or hubs. Time-reference is added in a second 

step (see Fig. 2). The agent plan might be adapted whenever an 

activity ends. The validity of the pre-processed bs plan is thus 

verified. This means if the agent is about to leave a plan 

activity i.e. home, the conditional probability gets calculated. 

There are three options a) the agent keeps to the pre-processed 

plan, b) the agent still uses bs, but changes the start station 

and/or end station, due to a better chance of finding 

bikes/parking or c) the agent changes the mode, because it is 

unlikely that a bike/parking will be found. Whenever a bs 

station is reached by an agent, it is checked if bikes (taking), or 

parking spots (returning) are still available. If not, bs agents 

can perform choice options (wait, change mode, change 

station). The process (see Fig. 2) shows, that every step of bs is 

modelled. Whenever a bs agent ends an activity, this activity is 

checked if it is of type waiting, bs_interaction, or any other 

type (yellow). Every time a bs_interaction activity ends, bikes 

are returned if parking is available for them (violet) or taken if 

bikes are available (orange). If neither, possible choice 

strategies (change station/mode, wait) are selected. If any other 

activity than waiting or bs_interaction ends, the actual plan 

elements are checked for validity. When the initial station/s 

still is/are likely to have bikes or parking spots, the agent keeps 

its plan. If not, the station or mode can be changed (pink). 

Whenever a bike is taken or returned, the first agent of the list 

returns or takes a bike (white) and is removed from the waiting 

list. 

2.2.1. Probability of getting a bike or empty box 

 
Agents verify their bs trip as they leave their previous plan-

activity. The agents then search for all stations within their 

search radius and decide if they start a bs trip, dependent to the 

found available bikes at the origin station (t) and parking spots 

at their destination station (r).  In this case, the probability of 

selection, depends on the available bikes or parking spots. The 

probability that agent i selects an alternative j is given by utility 

Uij=f(βj  xij+ εij), where βj is the intensity and direction of the 

influence quantity at alternative j, and xij is the observed 

influence quantity of alternative j for all agents i, and εij  is the 

unobserved error term. Let’s assume a station with a defined 

station size (s) has two alternatives which can be chosen. In the 

case of taking a bike these two alternatives are taking a bike 

(tyes) or not taking a bike (tno), where  tyes  consideres the 

available bikes (nb) of a station and tno all empty boxes (neB), 

including a control-variable, accordingly ryes are the available 

parking spots and rno the filled boxes. We assume that the 

utility of each alternative is calculated by 

 
Taking:  
 

Returning:  

𝑈𝑡𝑦𝑒𝑠
= 𝑛𝑏  

𝑈𝑟𝑦𝑒𝑠
= 𝑛𝑒𝐵  

𝑈𝑡𝑛𝑜
= 𝑠 𝛼 − 𝑛𝑏 

𝑈𝑟𝑛𝑜
= 𝑠 𝛾 − 𝑛𝑒𝐵 

 

(4) 

The utility is calculated with formulas of (4) and (5), the result 

is shown in Fig. 3. The x axis states the available objects (yes). 

The y axis shows the belonging probability, this means how 

likely it is, that the agent will get a bike/parking at the station, 

different parameters for α, γ can be used. As both probabilities 

must match that an agent starts a bs trip, Pt ∧  Pr is valid. 

Therefore the probability is calculated by PtPr, as both 

probabilities must be achieved.  Let’s assume, only one start 

and end station was found within search radius. The start 

station has 25 bike boxes in total and 3 available bikes, the end 

station has 30 boxes and 5 empty boxes. With α is γ is 0.25, 

Pt is 45% and Pr is 95%, which yields Pt ∧  Pr is 43%. This 

means the agent has a 43% chance to start the bs trip. If there is 

more than one start or end station within search radius, the ones 

with the highest probabilities are taken into account. 
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TIME DEPENDENT PLAN ADAPTION/EXECUTION: 

 
#   Choice options are randomly distributed.  

     The highest likelihood is given to, where the highest utility is expected. Choices of modes depend on distance. 
 

Fig. 2. Flow chart of the time-dependent processes of the bs module. The pre-processed agent-plan is verified and possibly adapted. 

 

 

 
Fig. 3. Results of the probability of selection, considering 

different total numbers of bike boxes and α=γ values 

 

𝑃𝑖𝑗 =  
𝑒

𝑈𝑖𝑗

∑ 𝑒
𝑈𝑖𝑗𝑛

𝑗

        𝑃𝑡 =  
𝑒

𝑈𝑡𝑦𝑒𝑠

𝑒
𝑈𝑡𝑦𝑒𝑠 +𝑒

𝑈𝑡𝑛𝑜
 

 

 

(5) 

2.2.2. Station and bike update 

 
A bs station is updated whenever a bike is taken or returned, or 

if the activity waiting for an e-bike ends. Conventional bikes 

and e-bikes are treated differently, because of the battery which 

is essential for an e-bike, so e-bikes get updated every time an 

e-bike is taken. All e-bikes, which are situated at the station in 

focus are updated. Only bikes which are at least 10 % charged 

can be taken for travel purposes by the agents. Agents always 

take the e-bike with the highest state of charge. Whenever an e-

bike is returned, its charge status is updated, as it was 

discharged. If a minus value is detected, the agent who 

returned the bike will obtain additional travel time, which 

results in a higher negative utility for travelling, but certainly 

recharging never starts sub-zero.  

2.2.3. Charging and discharging 

 
E-bikes have a charging and discharging energy flow. A 

charging curve was deposited, which takes the quantities from 

the input file. Every single bike is modelled as an own object. 

This means for e-bikes the quantities for charging must be 

stored in the input file. Every single bike is modelled as an 

own object, and may have own battery attributes. This means it 

is possible to simulated different battery types as well. 

For the discharging process, a simplified linear loss was 

assumed. In reality discharging is dependent on factors such as 

battery support, gradients, travel speed, weight of the user, 

head wind and others, however, we only take the average 

scope into account, which can be set as input value.  

Formula (6) was implemented for charging, which represents a 

UIa charging curve for Lithium-Ion batteries. Ebery bike is an 

own object, as a result the location of bs bikes, the daily load 

factor and usage, the kilometers travelled per day and bike, etc. 

are possible to be analyzed.  
 

SOC =
q(t)

Q
     or   𝑆OC =  1 − e− 

t

R∗C 
 

(6) 
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2.2.4. Choice options 

 
Let’s assume the agent uses bs, but when he arrives at the 

station neither a bike/parking spot was found. If so, agents can 

choose different choice strategies. There are three choices 

available, change station, change mode or wait. The type is 

chosen randomly, with respect to certain boundary conditions 

(i.e. waiting queue, trip length). Programming becomes more 

complex if pt was also used by the agent in the course of a trip. 

Some pre-processing steps are thus necessary. For subsequent 

iterations, it must be ensured, that all bs interactions or waiting 

activities will not be used as activities to which an agent 

wishes to travel to, whenever a mode change is prevalent.  

2.2.5. Waiting  

 
If waiting was chosen, the agent is added to the stations 

waiting list. Here the first in first out principle was applied, but 

never more than 2 agents will simultaneously wait at one 

station. Waiting is implemented as five consecutive activities 

of 3 minutes of waiting and these are added as activities after 

the actual activity. If the entire waiting time (15 min) has been 

spent fruitlessly, waiting is aborted. For an agent waiting to 

take a bike, a mode change is conducted. This course of action 

is the same for returning a bike, but if no bike was taken during 

the latency time, mode choice is not an available option. The 

agent could not return his bike and will not achieve good utility 

for the plan. This is depicted by a very slow walk to the next 

activity. If, during plan handling, waiting was found and the 

waiting time is less than 15 min, the e-bike station of this agent 

gets updated, because if an unloaded e-bike was present, this 

bike might meanwhile be sufficiently charged. If the maximum 

waiting time was reached an agent waiting to return a bike, 

will abort waiting, resulting in a low utility. For an agent 

waiting for a bike, if a bike/e-bike is still not available a mode 

change will be conducted. 

2.2.6. Relocation 

 

As relocation might decide if a bs system will work, a 

framework for relocation was implemented. The used 

methodology is simple and allows to relocate bicycles in a 

given time interval. Nevertheless no real relocation traffic is 

generated. Within the given interval either the most saturated 

or the emptiest station is crucial for the start of the process. 

The simple logic exchanges bicycles from the emptiest and to 

the fullest stations or vice versa, only considering beeline 

distance for a time offset, but no network load. This means 

between collecting the bicycles and backfilling them a time 

offset is considered. The relocation logic was not the key of 

this work. However, the method of relocation has been used as 

satisfactory heuristic. 

2.3. Validation of the bike sharing functionalities 

 
The module was fault checked, refined and tested on 

plausibility, using validation examples. One example with only 

3 stations, but a detailed network description focused on the 

routing and taking, returning and charging process review. 

This means stations, bikes and the routing algorithm were 

proved. Another example with 5 stations was constructed to 

examine those cases where agents do not find bikes or parking 

spots and are then first added and later on removed from the 

waiting list. The waiting list handling was checked with this 

example. The third validation example had 17 bs stations and a 

greater catchment area. It was used to prove the station 

selection and derivation of bs types (if bs is used combined 

with pt or not). Further to this plan resetting was also tested. 

All examples were modelled multi and intermodal including 

bike, walk, cars and pt. These examples were all used to 

examine adaption within the day plan. Since agent decisions to 

change their plans during the ongoing simulation depend on 

interaction with other agents, time dependency and changes 

within agent plans was an issue we examined very closely.  

 

As free-floating bs has also recently been introduced with 

increasing frequency in cities, it was implemented too. For free 

floating bs, bikes can normally be reserved beforehand. In our 

tool this happens once the agent leaves a plan activity. The 

nearest bike is taken, if it is within the search radius. If not a pt 

trip gets conducted. As this process is simpler than station 

based bs, it is not described here in detail. 

3. Real world application, Vienna 

Both the bicycle module and the bike sharing module were 

applied for a model of the City of Vienna. Therefore a base 

case, with the means of transport car, public transport (pt), 

walk and bicycle was developed and calibrated. The aim of the 

model was to perform measure sensitivity tests for both 

developed modules. In this section results of three sensitivity 

tests of the Vienna model are shown. The first test shows the 

routing behavior results, the second test shows the sensitivity 

of both probability and relocation effects, and the third test 

shows the mode choice sensitivity. 

3.1. Routing results 

 
Three different user groups were defined for the model. One 

with high safety needs, one with equally important attributes 

and one with low safety need. Attribute categories were not 

implemented in a high level of detail, this means an estimation 

was done only dependent on the bicycle infrastructure type. 

For the Vienna model no slope was used. This means the 

algorithm explained in section 2.1 also works if just little data 

is available. If no data is available, the routing would deliver 

the shortest path in terms of travel time. 

 
Fig. 4. Routing results of BikeCitizens, Google and the model 

Source: basemap.at 
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Figure 4 shows results of different routing tools, compared to 

the model output. BikeCitizens an App, developed for bicycle 

routing and tracking, allows to route with cozy, fast and 

normal cycling behavior, and stated four routes. The well-

known Google routing, states one main route (red) and two 

routing alternatives. The model output presents four options, 

the drawn through line represents the highest usage. As it can 

be seen similar routes arise, but divergence exists between all 

routings. 

 
Fig. 5. Gains and losses due to the fast cycle connection in the 

south of Vienna. 

 

Additionally a use case was simulated and analyzed, where fast 

cycle connections were opened in the model. With this 

example, the losses and gains within the network could be 

detected. Interestingly having a fast cycle connection brings 

gains especially very close the connection but the effects reach 

way further.  Figure 5 shows gains and losses of the south 

direction. 

3.2. Effects of the relocation interval and likelihood of 

starting a bike sharing-trip 

 
With a single iteration where all agents used bs, both the 

relocation interval (R, in seconds) and likelihood of finding a 

bicycle/empty box (P) could be analyzed. Therefore ten 

simulation runs were performed, each of them had different 

values of R and P.  

Figure 6 shows the results of the percentage of taking and 

returning actions, in respect to the initial iteration. The initial 

iteration has no chronological time handling, therefore station 

size and load is not considered. This means the initial iteration 

states the maximal possible bike sharing trips and only 

considers stations and search radius.  

The left side of Figure 6 shows the effect of P. The lower the 

number of bicycles and boxes must be for agents to start their 

bike sharing trip, the more agents use bike sharing. 

Nevertheless the lower this number is, the more unfruitful 

interaction (no bicycle, no empty box) are generated as well.  

The denied interactions can be seen on the right side of the 

figure. It could be proved that a shorter relocation interval 

brings possible benefits for the bs-system if there is a high 

utilization. This means with a shorter interval both, more 

fruitful interactions can be performed and less impossible 

interactions were achieved (see e.g. arrows in Figure 6).  

 

 
Fig. 6. Bs interaction results, of full bs iteration only 

3.3. Mode choice sensitivity 

 
Using different simulation settings, measure sensitivity tests 

and the effects on bs were verified and analyzed. To compare 

different effects, P was set to 0.05, and R to 1800 for all 

subsequently simulated cases. For the simulation result shown 

here only a 1% demand sample was used, and public transport 

was not routed. For the analysis of the relaxed state five cases 

were simulated: 

a) Base case: The disutility for travelling was retained of the 

base simulation, representing the Vienna modal split. 

b) Doubled pt disutility case: Disutility for public transport 

(pt) of the base case was doubled. 

c) Doubled car disutility case: Disutility for car traffic of the 

base case was doubled.  

d) E-bike sharing: Same disutility values as the base case, but 

using e-bike sharing instead of conventional bs. 

e) Additional 10 stations: New stations were implemented in 

the northern districts (21st and 22nd) of Vienna. 

 
Fig. 6. Hydrograph of departures for the cases a), b), c) of the 

Vienna model, using a 1% sample 

Data: data.gv.at 
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As expected, in b) pt usage and in c) car usage declines 

compared to a). Further as a doubled pt disutility in b) has 

effects on bs-pt interaction too, bs usage is highest in c), which 

can be seen in Figure 6. The hydrograph shows departures for 

every means of transport. This means if more than one public 

transport line was used more than one departure is present.  
The effects of newly implemented stations e) lead to a general 

usage gain, so does the transformation of conventional bike 

sharing to e-bikes d), as e-bikes offer more comfort and a 

higher riding speed.  

In values this means that compared to the base case, bike 

sharing usage increased by 42%, 23% and 17% for e), d) and 

c) respectively. For the doubled pt disutility b) bike sharing 

usage declined by 37%. Subsequently some results for the 

additional 10 stations (e) are shown. 
 

 
Fig. 7. Map of the original stations of bike sharing in Vienna 

(yellow, not all shown) and additional 10 stations (red) 

 

For the new stations (e), as shown in red in Figure 7, a positive 

effect of bike sharing was achieved (see Figure 8). This means 

more stations brought more bike sharing usage, a very slight 

increase in public transport (pt) and walk trips, and a reduction 

in car trips. Therefore it is important to implement bike sharing 

intermodal. This means at least in the transport model a benefit 

of new station, even if the locations of the stations are not 

densely distributed, was found. 

 

 
Fig. 8. Share of means of transport for the base case (a) and the 

additional ten stations case (e), 

4. Conclusion 

The work of this paper introduced two new MATSim modules 

which allow to simulate bicycle traffic, and bike sharing in 

combination with other means of transport. The bike sharing 

module allows agents to perform intermodal trips or 

multimodal dayplans. In their daily travel plans the travel 

modes walking, bike sharing and public transport can be 

combined and mixed up. Several enhancements were made to 

extend MATSim so that bs can be tested within a multimodal 

and intermodal environment.  

The methodology of the implementation, measure sensitivity 

and hypothesis tests is described within scope of the work 

presented in this paper. Further bs and e-bs were applied for a 

simulation model of the City of Vienna, Austria. In Vienna a 

conventional station based bike sharing system, as 

implemented in the base case, exists.  

From the present position and outlook the results of the 

simulated cases, and hypothesis, and measure sensitivity tests 

that are being carried out appear to be very promising. The 

bike sharing module was developed to simulate bike sharing in 

a very high level of detail for gaining very precise. With those 

two modules holistic models can be developed. This detailed 

depiction brings numerous advantages, the downside is the 

computation effort, as large scale applications are only 

operational at very high computation costs. 

Since parameters for routing and utility calculation were only 

surveyed in a pretest, with focus on the implementation and not 

on the simulation results [10], parameter estimation is 

necessary further work. In this paper it was not the idea to 

focus on parametric rating, since up to now the module design, 

implementation, computation and sensitivity tests had priority. 

This means parametric fitting would be a further step, and one 

which will depend on specific personal but also location-

related behavior.  

However, the current implementation allows already several 

scenarios of practical relevance such as changes in modal split 

due to bs and bs as tributary to strengthen public transport, can 

be tested. It would also be possible to calculate occupancy 

rates of bicycles and load factors. By testing these scenarios a 

lack of suitable bs stations or not well used ones can also be 

identified.  
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