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Abstract 
This article discusses empty vehicle redistribution algorithms for PRT and autonomous taxi services from a passenger 

service perspective. In modern literature reactive methods such as nearest neighbours are commonly used. In this article 

we first formulate the general matching problem on a bipartite graph of available vehicles and stations. In addition, we 

propose an index-based proactive redistribution (IBR) 18,19 algorithm based on predicted near-future demand at stations. 

The results of different redistribution methods implemented on a simple line test case show that none of the proposed 

methods are optimal in all cases. Test results of six variations of combined proactive and reactive strategies on a test 

case in Paris Saclay, France with 20 stations and 100 vehicles are given. The combined Nearest Neighbour / IBR 

provides a promising solution for both peak and off-peak demand, significantly outperforming all other methods 

considered, in terms of passenger waiting time (both average and maximum) as well as in terms of station queue lengths. 
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1. Introduction 

Personal Rapid Transit (PRT) is an on-demand transportation 

system that uses a set of small driver-less (and often electric) 

vehicles to transport people on-demand from point to point (or 

station to station). In contrast to traditional (mass) 

transportation services which serve a fixed route at fixed times 

and where passenger trips often require transfers, PRT offers a 

direct non-stop transit service between off-line PRT stations, 

similar to taxi services. Research within PRT1, has traditionally 

assumed guide-ways (elevated or not), exclusively used by 

PRT vehicles, e.g. Morgantown PRT2, Heathrow3 etc.  

Given the recent rapid development of self-driving (also called 

autonomous) vehicles, the need for guideways is reduced, as 

autonomous taxis will be able to use existing roadways (when 

the traffic is not too congested), and thus provide door-to-door 

public transport services. 

In addition, the current trend towards ”Transport as a service” 

(TaaS) or ”Mobility as a Service” (MaaS) where cars (and 

bicycles, etc.) are shared using increasingly convenient on-line 

platforms, revolutionises the market for transportation of 

people, and provides new ways to match planned and 

unplanned travel demand with transport services. In the 

remainder of this paper we consider PRT and autonomous taxi 

services to be equivalent with respect to routing strategies. 

An essential prerequisite for any such service is the efficient 

operation of the vehicle fleet, maximising the service to the 

passengers while minimising the cost to the operator(s). 

One component is the way in which vehicles are assigned to 

passengers and how they are redistributed in the network to 

optimally provide this service. In both PRT and autonomous 

taxi systems, the service is demand-responsive, where most 

passengers request immediate service. Perfect information 

about future requests is therefore not available, but statistical 

information about future requests may be available from 

historical data. In addition, the passenger demand is often 

asymmetric across the network and over time, causing 

imbalances between vehicle supply and passenger demand in 

the system. Therefore, it is necessary to redistribute the empty 

vehicles based on demand and supply attributes to trim the 

system. 

The empty vehicle redistribution problem in PRT systems can 

be formulated as a dynamic version of the Vehicle Routing 

Problem (VRP), which is a generalization of the Travelling 

Salesman Problem (TSP). Both problems are NP hard, and 

especially for the dynamic (time-varying) versions, heuristics 

are usually proposed for their solution. 

The methods of empty vehicle redistribution can be divided 

into two main methods: reactive redistribution (when the call is 

made at the moment of passenger arrival) and proactive 

redistribution using to meet demand (redistribution based on 

future predicted demand). 
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Most reactive methods are based on nearest neighbour 

heuristics. Such methods of calling the nearest available 

vehicle to a passenger are used by Fagnant4, Kockelman5, Bell 

and Wong8, Andreasson1, 13, 14, 15, Lees-Miller3, 9, 10, Fatnassi et 

al 12,11 and Kek16. These methods may be modified to send the 

vehicle to the longest waiting passenger in the system (it can be 

both current waiting time and predicted waiting time at the 

moment the vehicle will arrive). 

The proactive methods use the statistics of supply and demand 

in different stations or regions of the city. These are used to 

predict the necessary number of the vehicles in each station 

(Fatnassi et al 12, 11, Anderson7). Such methods may sort the 

stations by some predicted criteria such as available vehicles, 

waiting times etc. (Kek16), by sending vehicles from stations 

with vehicle surplus to stations with vehicle deficit 

(Andreasson1, 13, 14, 15, Hanna et al6), or by indexing of the 

stations18,19. 

In this article we focus on reactive redistribution strategies as 

well as proactive redistributions.  

The remainder of the paper is organised as follows. First we 

formulate the dynamic vehicle redistribution problem, then we 

describe an index-based redistribution algorithm (IBR) as well 

as the reference algorithms we compare it with. After that we 

formulate the matching problem between empty vehicles and 

serving stations and show on line network, that there are no 

optimum in pure strategies exist. In the following section we 

compare the algorithms (and combinations of algorithms) on a 

proposed autonomous taxi network in Paris Saclay, France and 

discuss the results. 

The last section discusses limitations of this work, future 

research directions and conclusions. 

2. Vehicle redistribution methods 

2.1. Problem formulation 

 Given a set of stations ‹S›, for each station s ϵ S we 

have some statistics about future arrivals (variable 

expectancy of number of arrival passengers NS(T1.T2) 

in time periods (T1.T2). 

 For s1,s2 ϵ  S in every start time moment t we have the 

travel time T[s1,s2](t) between the stations. We assume 

the travel times to be constant for each optimization 

time interval. 

 For the set of vehicles ‹V›, each vehicle v ϵ V has two 

trips, “current” and preliminary “next”, based on 

waiting passengers, with attributes ‹time of arrival, 

destination station, passenger›. 

 We have a set of passengers ‹P›. For each passenger p ϵ 

P we have the current waiting time tp. 

 In each station s ϵ S there is a set of passengers Ps and 

the vehicle association set ‹Vs
a›, which contains the 

vehicles moving towards this station to take 

passengers. The passenger surplus/deficit parameter Ps
a 

can be calculated as Ps
a =|‹Ps›| - |‹Vs

a›|. The station 

does not have any constrains on the number of 

passengers that can wait in the queue or on the number 

of vehicles it can accommodate. 

In this paper we focus mostly on the minimization of the 

average and maximum passenger waiting times. 

2.2. Index-based redistribution algorithm 

 
In order to take into account the non-linear passenger 

preferences for the waiting time, as well as to simplify the 

calculations for potential passenger heuristics (for example, to 
introduce risk aversion), we introduce a passenger (dis-)utility 
function u(t), depending on the passenger waiting time. In this 
article we use the function u(t) = et-1. The passenger dis-utility 
increases exponentially with the waiting time, meaning that the 
algorithm will strongly prioritise passengers with long waiting 
times.  

The passenger arrival process is modelled as a stationary 
Poisson point process. The demand data provides the passenger 
arrival rates in every station during different time periods. The 
probability of at least one passenger arrival during the time 
period (t1; t2) is defined as Parr > 0(t1; t2).  

For every station we introduce the ”station index”, which is 

calculated as a measure of expected maximum passenger dis-

utility at the time of pick-up with the nearest vehicle, including 

the time it takes for the vehicle to arrive at the station. The 

station index calculation is based on passengers already arrived 

as well as on ”virtual” passengers will arrive in certain time 

periods with Poisson arrivals. For every station s ϵ S we 

determine the nearest available vehicle vs
nearests ϵ V (given its 

current or next trip). Given the current time moment t1 we 

calculate that vs
nearests will arrive to the station at the time 

moment t2. For every station the “station index” is then 

calculated as follows 18,19: 
1. If Ps

a > 0 (vehicle deficit). Let the maximum waiting 
time among the passengers be T = maxpϵPs tp. The station index 
is defined as u(t2−t1+T). In other words, the station index is 
defined as the disutility of the longest waiting passenger at the 
station, at the time of his predicted departure. 

2. If Ps
a = 0 (balanced) The index equals the maximal 

expected disutility of the first arriving passenger 
 
                          maxt1 < τ<t2 [Parr>0(t1,τ)u(t2−τ)]. )]. 

3. If Ps
a = −X (vehicle surplus of X vehicles). 

Considering the waiting time expectancy TX of the X 
passengers arriving at this station for the Poisson process. If 
t 1 + TX ≥ t2 the index = 0, else it is calculated as in Ps

a = 0 
(balanced) case, changing the start time from t1 to t1 + TX . In 
other words, in case of non-positive passenger surplus, the 
index equals the probable disutility of the first arriving 
passenger at the time of his departure 
To generalize the three cases above, the station index is a 

measure of expected maximum passenger disutility at the time 

of pick-up, including the time it takes for the vehicle to arrive 

at the station. 

2.3. Algorithms of redistribution 

 

The methods of empty vehicle redistribution used in this article 

are described in the following list 

 Sending/calling algorithms (reactive redistribution 

methods) 
 
– Basic allocation (BA). If there are passengers and empty 

vehicles in the same station, the vehicle will be assigned to the 

longest waiting passenger. (No redistribution of empty vehicles 

to other stations)  
– Simple Nearest Neighbours (SNN). Calling the nearest empty 

vehicles based on longest waiting passenger time in the current 

moment. 

– Heuristic Nearest Neighbours (HNN). Reallocation of nearest 

empty vehicles is based on longest waiting passenger time in 

the vehicle arriving moment. This method attempts to improve 

upon SNN by including the time it takes for a vehicle to move 

to the waiting passenger.  
– Send The Nearest (STN). Reallocation of nearest empty 

vehicles is based on the station with waiting passengers 
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ranging on the time from the nearest available vehicle to the 

station.  
 Redistribution algorithms (proactive redistribution 

methods) 

– Index-based Redistribution (IBR). The redistribution based 

on maximum station index described and implemented by 

Babicheva et al 18,19. 

– Surplus/Deficit vehicle redistribution (SDR). The 

redistribution from the station with the maximum vehicle 

surplus to the station with the maximum vehicle deficit. 

 

2.4. The SNN, IBR and STN algorithms evaluation 

In this section we first evaluate the SNN, IBR and STN 

algorithms mathematically on a simple linear network, to see if 

any of the methods dominates the other in terms of average and 

maximum waiting time. Let us consider a single line network 

with two stations and two vehicles (Figure 1). Each station has 

one passenger waiting for a vehicle. The driving time between 

the two stations is 5 minutes. We will now evaluate a number 

of cases with different placement of vehicles and waiting times 

for the passengers. 

 

 

 
 

 

Fig. 1. The sample line network  

2.4.1. The first case of vehicle placement 

 

The first case is shown in the Figure 2. The first vehicle is 

placed at 3 minutes ride time from station 1 and the second 

vehicle is placed between station 1 and station 2, with a ride 

time of 1 minute to station 1 and 4 minutes to station 2. The 

three algorithms are now evaluated and compared to see which 

algorithm produces the best maximum waiting time, and the 

best average waiting time for the passengers. 

 

 
 

Fig. 2. The sample line network. Case 1 

 

The SNN algorithm will in each optimisation step serve the 

longest waiting passenger first with the nearest empty vehicle. 

The longest waiting passenger is in station 1, and the nearest 

vehicle is vehicle 2, which will thus be assigned to the 

passenger in station 1. Then there is one waiting passenger in 

station 2 that has not yet been assigned. To this passenger the 

remaining unassigned empty vehicle 1 will be assigned. 

Therefore, the waiting times for the passengers, at time of 

departure will be:  
- For the passenger in station 1: 6 minutes (5 min + 1 min 

drive time)  

- For the passenger in station 2: 12 minutes (4 min + 8 min 

drive time)  
Thus for SNN the maximum waiting time would be 12 minutes 

and the average waiting time 9 minutes.  
The STN algorithm will for each optimisation step evaluate all 

the vehicle-station distances (in drive time) and assign the 

nearest vehicle-station pair. In this case,  
- the V1-St1 distance is 3 minutes,  
- the V1-St2 distance is 8 minutes,  
- the V2-St1 distance is 1 minute,  
- the V2-St2 distance is 4 minutes.  
Thus, the algorithm will assign vehicle 2 to the station 1.  
In the next optimisation step, the algorithm will assign the 

remaining vehicle 1 to the remaining passenger in station 2.  
The dispatching scheme in this case is therefore the same as for 

SNN. Thus, the waiting times for the passengers, at time of 

departure will be:  
- For the passenger in station 1: 6 minutes (5 min + 1 min 

drive time)  
- For the passenger in station 2: 12 minutes (4 min + 8 min 

drive time)  
Thus for STN as in SNN the maximum waiting time would be 

12 minutes and the average waiting time 9 minutes.  
The IBR algorithm will sort all the stations by their index as 

defined in section 2.2, and assign the nearest vehicle to the 

station with the highest index.  
The index for station 1 is the (dis-)utility of the longest waiting 

passenger in this station including the time it takes for the 

nearest vehicle to get to the station. It will take 1 minute for the 

nearest vehicle to get to station 1 (vehicle 2), thus the index 

will be equal u(5 + 1) = u(6). The second station index is    

u(4+ 4) = u(8).  
The utility function is monotonously increasing thus            

u(8) > u(6). Based on the algorithm, the station with the 

maximal index (station 2) will be served with the nearest 

vehicle (vehicle 2).  
In the next optimisation step, the station 1 will be served with 

vehicle 1.  
Thus, the waiting times for the passengers, at time of departure 

will be:  
- For the passenger in the station 1: 

8 minutes (5 min + 3 min drive time)  
- For the passenger in the station 2: 

8 minutes (4 min + 4 min drive time)  
Thus for IBR the maximum waiting time would be 8 min and 

the average waiting time 8 min.  
Therefore, in case 1 the IBR method shows the best results for 

both maximal and average passenger waiting times. 

2.4.2. The second case of vehicle placement 

 

The second case is shown in the Figure3. The second vehicle is 

placed at 7 minutes ride time from station 1 and the first 

vehicle is placed at 1 minute ride time from station 1. 

 

 
 
Fig. 3. The sample line network. Case 2 
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The SNN algorithm will assign the vehicle 1 to the station 1, 

and the vehicle 2 to the station 2.  
Therefore, the waiting times for the passengers, at time of 

departure will be:  
- For the passenger in station 1:  

11 minutes (5 min +   6 min drive time)  
- For the passenger in station 2:  

16 minutes (4 min + 12 min drive time)  
Thus for SNN the maximum waiting time would be 16 minutes 

and the average waiting time 13.5 minutes.  
The STN algorithm will assign vehicle 1 to the station 2 and 

the vehicle 2 to the station 1. 

Thus, the waiting times for the passengers, at time of departure 

will be:  
- For the passenger in station 1: 12 minutes (5 min + 7 min 

drive time)  
- For the passenger in station 2: 5 minutes (4 min + 1 min 

drive time)  
Thus for STN the maximum waiting time would be 12 minutes 

and the average waiting time 8.5 minutes.  
The IBR algorithm will send the vehicle 1 to the station 1 and 

the vehicle 2 to the station 2. The dispatching scheme in this 

case is therefore the same as for SNN. Thus, the waiting times 

for the passengers, at time of departure will be:  
- For the passenger in station 1:  

11 minutes (5 min + 6 min drive time)  
- For the passenger in station 2:  

16 minutes (4 min + 12 min drive time)  
Thus for SNN and IBR the maximum waiting time would be 

16 minutes and the average waiting time 13.5 minutes. There-

fore, in case 2 the STN method shows the best results both in 

maximal and average passenger waiting times. 

2.4.3. The third case of vehicle placement 

 

The third case is shown in the Figure4. The first vehicle is 

placed between station 1 and station 2, with a ride time of 1 

minute to station 1 and 4 minutes to station 2. The second 

vehicle is placed at 5 minutes ride time from station 2. 

The SNN algorithm will send vehicle 1 to the station 1 and 

vehicle 2 to the station 2.  
Therefore, the waiting times for the passengers, at time of 

departure will be:  
- For the passenger in station 1:  

   6 minutes (5 min + 1 min drive time)  
- For the passenger in station 2:  

   9 minutes (4 min + 5 min drive time)  
Thus for SNN the maximum waiting time would be 9 minutes 

and the average waiting time 7.5 minutes.  
The STN algorithm will send vehicle 1 to the station 1 and 

vehicle 2 to the station 2. 

 
 
Fig. 4. The sample line network. Case 3 

 

The dispatching scheme in this case is therefore the same as for 

SNN.  
Thus, the waiting times for the passengers, at time of departure 

will be:  

- For the passenger in station 1: 6 minutes (5 min + 1 min 

drive time)  
- For the passenger in station 2:  

   9 minutes (4 min + 5 min drive time)  
Thus for SNN and STN the maximum waiting time would be 9 

minutes and the average waiting time 7.5 minutes.  
The IBR algorithm will send vehicle 1 to the station 2 and the 

vehicle 2 to the station 1.   
Thus, the waiting times for the passengers, at time of departure 

will be:  
- For the passenger in station 1:  

   15 minutes (5 min + 10 min drive time)  
- For the passenger in station 2:  

           8 minutes (4 min + 4 min drive time)  
Thus for IBR the maximum waiting time would be 15 minutes 

and the average waiting time 11.5 minutes.  
So, in case 3 the STN and SNN methods shows best results 

both in maximal and average passenger waiting times. 

2.4.4. The fourth case of vehicle placement 

 

The fourth case is shown in the Figure5. The first vehicle is 

placed between station 1 and station 2, with a ride time of 4 

minutes to station 1 and 1 minute to station 2. The second 

vehicle is placed at 2 minutes ride time from station 2. 

The SNN algorithm will assign vehicle 1 to the station 1 and 

vehicle 2 to the station 2. Therefore, the waiting times for the 

passengers, at time of departure will be: 

- For the passenger in station 1:  

   6 minutes (5 min + 4 min drive time) 

- For the passenger in station 2:  

   9 minutes (4 min + 2 min drive time) 

Thus for SNN the maximum waiting time would be 9 min and 

the average waiting time 7.5 min. 

 

 
 

Fig. 5. The sample line network. Case 4 

 

The STN algorithm will assign vehicle 1 to the station 2 and 

the vehicle 2 to the station 1.  
Thus, the waiting times for the passengers, at time of departure 

will be:  
- For the passenger in station 1:  

   12 minutes (5 min + 7 min drive time)  
- For the passenger in station 2:  

   5 minutes (4 min + 1 min drive time)  
Thus for STN the maximum waiting time would be 12 minutes 

and the average waiting time 8.5 minutes.  
The IBR algorithm will assign vehicle 1 to the station 1 and 

vehicle 2 to the station 2.   
The dispatching scheme in this case is therefore the same as for 

SNN. Thus, the waiting times for the passengers, at time of 

departure will be:  
- For the passenger in station 1:  

   6 minutes (5 min + 4 min drive time)  
- For the passenger in station 2:  

   9 minutes (4 min + 2 min drive time)  
Thus for SNN and IBR the maximum waiting time would be 9 

minutes and the average waiting time 7.5 minutes.  
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So, in case 4 the IBR and SNN methods shows best results 

both in maximal and average passenger waiting times. 

 

2.4.5. Summary 

 

As shown in table 1, there is no single best algorithm which 

suits all evaluated cases. For example, the IBR algorithm was 

the best in cases 1 and 4, the SNN algorithm — in cases 3 and 

4 and STN algorithm — in cases 2 and 3. This demonstrates 

that even in a very simple evaluation case, different situations 

need different algorithms. We therefore conclude that a mix of 

algorithms may provide a more robust strategy, less sensitive to 

particular demand characteristics and vehicle distributions on 

the network. Moreover, we note that the greedy type of 

assigning vehicle-passenger pairs sequentially often leads to 

suboptimal solutions. 

 

Table 1. Average and maximal waiting times, in min  

 

 Case 1 Case 2 Case 3 Case 4 

 Avg Max Avg Max Avg Max Avg Max 

IBR 8 8 13,5 16 11,5 15 7,5 9 

SNN 9 12 13,5 16 7,5 9 7,5 9 

STN 9 12 8,5 12 7,5 9 8,5 12 

 

3. The matching problem 
 

After determining for each station a parameter that depends on 

the chosen redistribution strategy (station index, number of 

passengers, waiting time of the maximum passenger, or the 

minimum distance to an available vehicle with the presence of 

passengers at a given station) and the set of vehicles available 

for redistribution, the ”greedy” methods based on step-by-step 

matching between the first-sorted elements can be considered, 

for example, to send the nearest available vehicle to the station 

with the largest index.  
This method can show good convergence, but it is unlikely to 

always reach the optimal solution. In addition it may cause 

unnecessary runs of empty vehicles. To improve the solution 

we represent the data of the 2 sets in the form of a bipartite 

graph, where the edges are the travel times from the available 

vehicles to the stations that need to be served. First, the stations 

are ranked according to their priority (index, passenger waiting 

times or distance for the nearest available vehicle). Let it be 

required to find matching vehicles to the N top ranked stations 

in the network.  
To achieve a minimum average waiting time for passengers, it 

is required to find matchings minimizing the total sum of the 

used edges. 

In general, this problem is NP-hard, but for some specific cases 

polynomial solutions exist. For example, if the number of 

serving stations is equal to the number of available vehicles, 

the Hungarian algorithm23 can be used.  

In this article we investigate some heuristic methods of the 

matching problem solution. In every call of the matching 

function in the network based on the statistics about the 

stations we will serve the top N stations in area of the first-

order station. The number of matchings can never exceed the 

number of available vehicles. 

We use the following example to show that the greedy 

algorithm may not provide the optimal solution. Let us choose 

the SNN strategy based on maximal passenger waiting time.  

Fig. 6 shows the sample network with 2 stations and 2 

available vehicles that can be represented as bipartite graph in 

Fig. 7. 

 

 
 

 
 

Fig. 6. The sample network 

 

Greedy solutions can be used in two different approaches: in 

each step we can choose a passenger with maximal waiting 

time or we can choose the vehicle with shortest path to any of 

the waiting passengers. In the first case the longest waiting 

passenger is at station 1, so the nearest vehicle (2) will serve it. 

The next longest waiting passenger at station 2 will then be 

served by vehicle 1. Total waiting time is (5 + 2) + (4 + 8) = 19 

minutes and total run of empty vehicles are 8 + 2 = 10 minutes. 

In the second case the second vehicle will be chosen for 

serving a passenger on the station 1, because it has shortest 

time to reach nearest passenger. The next step the first vehicle 

serves a passenger on the station 2. This scenario gives us the 

same result as in the first case.  
The optimal solution would assign vehicle 2 to station 2, and 

vehicle 1 to the station 1, and the departure waiting times will 

be 8 minutes and 7 minutes for the stations 1 and 2 

respectively. Thus, both average waiting time and maximal 

waiting time will be smaller. 

 

3.1. The Greedy+Hungarian matching algorithm 

 

In order to avoid the NP-complexity of this problem, it is 

proposed to use the 2-steps method. 

 

 

 

 

 

 

 

 
Fig. 7. The bipartite graph 

 

In the first step we call the greedy strategy for pre-assignment 

of the available vehicles to the station. 

In the second step the set obtained with N stations and N 

vehicles will be the input of the Hungarian algorithm. The 

computational complexity of this complex algorithm is 

estimated as follows. Let the number of requests be NR and the 

number of free vehicles be NC. The first step requires two 

sorting operations T1 = O(NR log NR + NC log NC ).                

Let NH = min(NR; NC). The second step will require                 
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T2 = O(N3
H) which is the final computational complexity of 

algorithm, because T2 >> T1, i.e. polynomial hard. 

 

4. Evaluation of the greedy mixed algorithms 

 
In this section we compare the algorithms presented in the 

previous section, using data from a study case in Paris Saclay, 

France. The area has been selected as the French test bed for 

testing and evaluating autonomous vehicle services. The 

proposed autonomous taxi network connects the main 

campuses to the Massy public transportation hub (SNCF long 

distance trains, RER commuter trains).  
In the remainder of this section we evaluate the mixed vehicle 

redistribution algorithms on the network, given a fixed fleet 

size of 100 vehicles. In every decision moment (every time  

step) we choose between the methods with fixed probabilities,  

bigger for reactive and smaller for proactive methods. 

The off-peak passenger demand between the 20 stations with 

the maximal distance around 10 kilometers was obtained from 

the Ile de France Transport Authority (STIF), using data for 

current passenger demand for the area. The results presented 

below were obtained as an average over 100 simulation runs.  
In Table 1 the main results for the mixed methods are 

presented. 

The results obtained show that the scenario with mixed SNN + 

IBR methods produce the lowest values across the table for 

maximum waiting time 5.1 minutes and average waiting time 

0.25 minutes.  
The rush hour demand data also shows that the IBR+SNN 

method shows the best results on maximal and average waiting 

times and the total queue length in the end of the simulation. 

 

Table 2. Comparison between different redistribution methods for the off-peak demand. 

Strategy BA SNN SNN,SDR SNN,IBR HNN HNN,SDR HNN,IBR 
        

Maximal waiting time, min 60 8.4 7.9 5.1 10.7 9.6 6.2 
        

Average waiting time, min 20 0.78 0.77 0.25 1.13 1.10 0.36 
        

Average queue, passengers 398 47 46 15 68 66 22 
        

Total vehicle run, min 609 3416 3327 9305 3317 3342 8975 
 

 

 

Table 3. Comparison between different redistribution methods for the rush hour demand. 

Strategy BA SNN SNN,SDR SNN,IBR HNN HNN,SDR HNN,IBR 
        

Maximal waiting time, min 50 14 13.5 13 30 25 23 
        

Average waiting time, min 31 3.3 3.2 2.4 7 6.2 4.7 
        

Average queue, passengers 872 31 30 21 95 72 57 
        

Total vehicle run, min 262 7376 7649 9451 7331 7385 9922 
        

5. Evaluation of multi-matching algorithms 

Based on the results from the previous section, the mixed 

SNN+IBR method was proposed for the multi-matching 

method base. In order to evaluate the algorithms, we choose a 

fleet-size of 60 vehicles. The program base for the modelling 

and evaluation of the algorithms was the VIPSIM project by 

VEDECOM, a tool for simulation of mobility service 

networks, to define, test and evaluate operation strategies 

embedding all the relevant economic factors, including the 

quality of service for users. 1.  
In this section we consider three algorithm versions to 

compare. One-step mixing is a redistribution algorithm, 

according to which, each time a single decision on 

redistribution of a single vehicle is about to be made, we 

choose randomly (according to predefined probabilities) one of  

the redistribution methods described above (which includes  

itself its own criteria for ranging stations and vehicles). This 

algorithm is then used to determine the top-rated station, and 

match this station to one available vehicle, which is then 

redistributed to this top-rated station. This algorithm is 

computationally expensive since it only assigns a single 

vehicle to a station at each step. 1.  
In the greedy mixing and greedy-Hungarian algorithms, in 

each step we choose one redistribution method and assign all  

 

available vehicles to stations. In greedy mixing we do step by 

step assignment between the top-rated station and the nearest 

available vehicle to it, in the greedy-Hungarian algorithm we 

minimize the total run distance in order to serve all the top-

rated stations. These two algorithms are less computationally 

expensive than the one-step mixing as they assign all available 

vehicles at each algorithm step. 

The results obtained show that the Greedy-Hungarian matching 

strategy improves average waiting time in relation to just 

Greedy mixing. However, in terms of waiting times and queue 

lengths the one-step mixing outperforms both the greedy 

mixing and the greedy-Hungarian method, albeit at a 

computational cost of having to re-run the redistribution 

algorithm for each available vehicle.  
It is necessary to mention that although the GRID solution 

(checking of all the possibilities, not considered here due to its 

NP-complexity) may give a global optimum solution at any 

step, total simulation still could deviate from optimum. For 

example, if we apply the SNN strategy to every vehicle, there 

will not be any vehicles available to employ proactive the IBR 

strategy, and thus the strategy would fail to meet higher future 

demand at any station. Balancing applying redistribution 

strategies to meet current demand versus reserving some empty 

vehicles to be redistributed later to meet future demand, is an 

important issue for further research.                                                                                                                                 
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Table 4. The comparison between different redistribution methods for the off-peak demand.  
 
Matching strategy One-step mixing Greedy mixing Greedy-Hungarian algorithm 
    

Maximal waiting time, min 6.3 7.2 7.1 
    

Average waiting time, min 0.51 0.94 0.59 
    

Average queue at the end, passengers 0 5 6 
    

 

 
 

 
 

 
 

 

 
 

6. Discussion and conclusions 

In this article, we investigate empty vehicle redistribution 

algorithms for PRT or autonomous taxi services, primarily from 

a passenger service perspective. Using a simple case, we first 

evaluate three algorithms for four different cases of initial 

vehicle placements and demonstrate that none of the algorithms 

dominates, and that greedy types of algorithms by themselves 

often reach suboptimal outcomes. We then introduce the 

matching problem and the multi-matching algorithms. We 

evaluate six variations of greedy algorithm combinations on a 

test case in Paris Saclay, France. The results show that especially 

the combination of Simple Nearest Neighbours + Index Based 

Redistribution provides very promising results. Then we 

evaluate multi-matching algorithms on the same network. While 

the Greedy-Hungarian multi-matching algorithm improves on 

the well-known Hungarian method to get better results both in 

empty run time and in average waiting time, the one-step mixing 

shows the best results. All three multi-matching algorithms 

outperform the single matching algorithms. 
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