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Abstract 

Power systems are moving towards smart grids through the incorporation of new digital technologies and equipment that 

increases the system complexity. The power systems become more prone to many types of failures such as cyber-attacks 

and sensors failure. Therefore, efficient fault analysis is essential to maintain normal grid operations. In this research, an 

intelligent technique is proposed to detect, classify, and understand the propagation behaviors of the short circuit faults 

induced in an IEEE 39-bus system. The proposed method is also capable of identifying faults causes and consequences, 

and suggesting remedial actions. The IEEE 39 bus system is modeled under normal and faulty conditions. A number of 

datasets are created from the smart grid model, which are then processed separately by Discrete Wavelet Transform (DWT) 

for fault detection. After that, statistical features are extracted from the coefficients generated by the DWT. The most 

significant features are identified by the Random Forest algorithm, producing reduced features matrices, which are used 

to train and test four supervised machine learning techniques, namely: Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), Bagged and Boosted Trees. The Frequency at the synchronous generators is found to be the best input 

to the classifiers based on the highest predictive accuracies attained by the classification techniques. The SVM achieved 

the highest average predictive accuracy of 98.4% and an F1 score of 0.98; therefore, it is selected as the best technique for 

fault classification. In addition, Bayesian Belief Networks (BBN) are built for fault propagation. The BBN can identify 

the fault location and the impacted buses through probability theory. Finally, a dynamic Fault Semantic Network (FSN) is 

constructed. The FSN utilizes the fault information and knowledge acquired by the Classifier and BBN for causes and 

consequences analysis and repair actions.   
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1. Introduction 

Smart Grids (SGs) are very complex systems mainly intended 

for information and power transfer between generation units and 

consumers. The system complexity is increasing continuously 

through the incorporation of new digital and intelligent devices, 

equipment and technologies, which makes the grid more prone 

to failures such as equipment malfunction and cyber-attacks. The 

power system requires to be well monitored in order to avoid any 

disturbances to normal grid operations. Therefore, expanding our 

fault knowledge is essential to mitigate the causes of the failures 

in the grid efficiently. 

There are many different techniques used to detect, classify and 

locate faults in a smart grid. Various variables measured in the 

grid, such as the voltage difference and current amplitude, have 

been used for fault analysis in smart grids [1, 2]. Supervised 

machine learning techniques has also been implemented to 

classify and/or locate faults. Artificial Neural Network (ANN), 

Support Vector Machine (SVM), Decision Trees, Fuzzy 

Inference System (FIS), Markovian Models and many other 

techniques has been used to avoid any disturbances to grid 

normal operations. The supervised machine learning techniques 

are sometimes fused with a signal processing technique, which 
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increases the model ability to analyze the rapid changes 

occurring in the system. Aslan combined Discrete Fourier 

Transform (DFT), a signal processing technique that transforms 

the signals from the time domain into phasors in the frequency 

domain and an ANN for fault classification [3]. Another signal 

operator called Teager Energy Operator (TEO) has been 

integrated with FISs for fault detection and faulty phases 

identification [4]. “The TEO is a non-linear signal operator that 

could be used for extracting the energy of a signal” [4]. 

Moreover, a hybrid technique based on a moving average filter, 

a low pass filter that calculates the average of a signal, and a 

Random Forest (RF) has been employed for fault classification 

[5]. However, these signal processing techniques usually miss 

the rapid fluctuations occurring in power systems, which the 

Wavelet Analysis (WA) can detect at the exact time of 

occurrence; due to its capability of detecting even the rapid small 

changes (transients) usually occurring in power systems [6].WA 

transforms a signal from the time domain to the time-frequency 

domain through the dilation and compression of a wavelet, called 

the mother wavelet, which decomposes the signal into 

approximate and detail coefficients. Wavelet Analysis, 

specifically the Discrete Wavelet Transform (DWT), has been 

widely used for fault detection due to its capability to reduce the 

volume of the input data better than the other types of WA [7-

14]. 

However, there remains a number of research gaps in fault 

analysis in smart grids. The existing work focused mainly on 

fault detection, classification and location. The proposed 

techniques did not perform any root cause analysis and is 

incapable of suggesting remedial actions. This paper proposes a 

new intelligent technique for probabilistic fault propagation 

analysis, causes and consequences identification and repair 

actions. The technique starts with fault detection and 

classification through Discrete Wavelet Transform and four 

supervised machine learning techniques, namely: Support 

Vector Machine, K-Nearest Neighbors, Bagged and Boosted 

Trees. The fault information provided by Wavelet analysis and 

the Classifiers is utilized for fault propagation performed by 

Bayesian Belief Networks (BBNs). Both the Classifier and BBN 

provide the dynamic Fault Semantic Network (FSN) with the 

information and knowledge required to identify the fault causes 

and consequences, and finally, suggest remedial actions.  

The paper is divided into three sections: Methodology, Results 

and Discussion, and Conclusion. The theory behind each 

selection and step performed in the suggested analysis is 

explained in the Methodology section. An analysis of the 

attained results is provided in Results and Discussion section 

followed by the main findings and recommendations in the 

Conclusion. 

2. Methodology 

2.1. Transmission Grid System Simulation 

 

The study begins with modelling a smart grid on EMTP-RV 

software. EMTP-RV is a simulation and analysis software for 

power system transients. This computer program is used for the 

simulation of electromagnetic, electromechanical and control 

systems transients in electrical power systems. An  IEEE 39-bus 

benchmark [15] is built for the fault analysis, which consists of 

39 buses, 10 synchronous generators, 34 transmission lines, 12 

transformers and 19 Three-Phase loads. The system is operating 

at four voltage levels: the generation is done at 20 kV, the 

transmission is done at 500 kV with the exception of Bus 12 and 

20 which are rated at 25 kV and 300 kV, respectively. The total 

generation capacity is 6250 MW, and the total active and reactive 

loads are 6150 MW and 1800 MVar. Static loads are assumed in 

the model. The system is regulated close to 60 Hz and the voltage 

levels in the grid are maintained between 0.95 and 1.05 of the 

nominal grid rating under normal conditions. Error! Reference 

source not found. 1 presents the 500 kV New-England 

Transmission Grid network considered in the study, i.e., the 

IEEE 39-bus system. The simulation is run for one second where 

all faults are induced at 0.5 seconds and lasted for 0.1 seconds. 

Data were collected for normal and faulty conditions by inducing 

symmetric and asymmetric short circuit faults including Line-to-

Ground (LG), Double-Line-to-ground (LLG), Triple-Line-To-

Ground (LLLG), Line -to -Line (LL) and Triple Line to Line 

(LLL) faults. The faults are induced at the transmission buses 

and in the middle of the transmission lines. The data collected 

from the simulated model are the voltage measurements at all the 

buses and generators’ current and frequency measurements for 

the synchronous generators. The three phase voltage 

measurements at four buses under normal conditions are 

presented in Figure 2. When a LG fault in phase a is induced at 

bus 3, the voltage for phase a drops to zero and affects the other 

buses according to how close the buses are to the faulty bus, 

which could be clearly seen in Figure 3. 

2.2. Fault Detection 

 

To detect the induced faults in the grid, a signal processing 

technique is used to analyze the output of the grid simulation. 

The signal processing technique is Wavelet Analysis (WA), 

which is a multi-resolution analysis that transforms the signals 

in each dataset from the time into time-frequency domain.  

In wavelet transform, a wavelet, derived from the mother 

wavelet (MW), is dilated and translated over the input signal to 

generate approximate and detail coefficients. Discrete Wavelet 

Transform (DWT), is utilized for fault detection and feature 

extraction. Figure 4 illustrates the decomposition process, where 

low and high pass filters produce approximate and detail 

coefficients. The approximate coefficients continue to break 

down into other sets of approximate and detail coefficients as the 

level of decomposition increases. 

The wavelets used in this analysis (𝜓𝑎,𝑏(𝑡)) are derived from a 

mother wavelet (𝜓(𝑡)) by Equation (1): 

 

𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
𝜓(

𝑡−𝑏

𝑎
)    (1) 

 

where a and b are the wavelet scale and translation over the 

signal. In DWT, the scaling and shifting parameters are 

discretized and set to powers of 2: 𝑎 = 2𝑗 , 𝑏 = 2𝑗 × k [7]. The 

wavelet equation changes to Equation (2). 

 

𝜓𝑗,𝑘(𝑡) =
1

√2𝑗
𝜓(

𝑡

2𝑗 − 𝑘)   (2) 

 

The parameters j and k represent the level of decomposition and 

location. The detail coefficients that will be utilized in the fault 

classifier are derived by [7]: 

 

𝑑𝑗,𝑘 = ∫ 𝑥(𝑡)𝜓𝑗,𝑘
∗(𝑡)𝑑𝑡 =< 𝑥(𝑡),

∞

−∞
𝜓𝑗,𝑘(𝑡) >  (3) 

 

where 𝑥(𝑡) is the input signal in the time domain and 𝜓𝑗,𝑘
∗(𝑡) is 

the complex conjugate of 𝜓𝑗,𝑘(𝑡). 
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Fig. 1.  IEEE-39 Bus Transmission Grid System [15] 
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Fig. 2. Three-Phase Bus Voltage at Bus 3, 17, 27 and 39 under 

normal conditions 

 

 
Fig. 3. Three-Phase Bus Voltage at Bus 3, 17, 27 and 39 when a LG 

fault in Phase (a) is induced at Bus 3 

 

 
Fig. 4. (a) Decomposition into detail and approximate coefficients  

  (b) Decomposition of a signal 'x' up to level 3 [16] 

 

The DWT multi-resolution signal decomposition is 

mathematically expressed by Equation (4): 

 

𝑠(𝑡) = ∑ 𝑎𝑀,𝑘
1

√2𝑀
𝜑 (

𝑡

2𝑀 − 𝑘) + ∑ ∑ 𝑑𝑗,𝑘
1

√2𝑗
𝜓(

𝑡

2𝑗 −𝑘
𝑀
𝑗𝑘

𝑘) ≜ 𝐴𝑀(𝑡) + ∑ 𝐷𝑗(𝑡)𝑗    (4) 

 

where 𝑎𝑀,𝑘   are the approximate coefficients at level M and 𝜑(𝑡) 

is the scaling function [10]. The signal in the time domain, 𝑠(𝑡), 

is decomposed through DWT into approximate 

coefficients, 𝐴𝑀(𝑡) , and a series of detail coefficients, ∑ 𝐷𝑗(𝑡)𝑗 , 

at level M [10]. There are many types of mother wavelets that 

are utilized for various purposes. The Daubechies (Db) wavelet 

family is known for its high effectiveness in detecting faults in 

power systems [17]. Many studies have used Db4 as a mother 

wavelet for their analysis, which has shown good results in terms 

of accuracy and time [7-10, 12-14]. Therefore, Db4 is employed 

in this research for fault detection. Another important parameter 

that needs to be selected carefully when performing wavelet 

analysis, is the level of decomposition. To make sure all the fault 

transients are captured and included in the analysis, the 

maximum level of decomposition is computed by Equation (5). 

 

𝐿 = [log2
𝑁

𝐹−1
]    (5) 

 

where L, N and F represent the maximum level of 

decomposition, length of the input signal and the filter size of the 

MW [10]. The maximum level of decomposition is found to be 

7.  

2.3. Feature Extraction 

 

The performance of the classifiers depends on the quality of the 

input features extracted from the coefficients generated by DWT. 

Therefore, the input features should be capable of representing 

the system condition accurately. According to Yu et al., the 

following features are effective in fault detection and 

classification [10]: 

 The maximum detail coefficient 

 The minimum detail coefficient 

 The mean of detail coefficients 

 The standard deviation of detail coefficients 

 The skewness of the detail coefficients 

 The energy of the detail coefficients 

The entropy of the DWT coefficients has also been used by 

Adewole et al. [7]. For this work, entropy will be extracted from 

the gathered data besides the list of features suggested by Yu et 

al. [10]. In addition, the following statistical features are 

considered: 

 The kurtosis of the detail coefficients 

 The median of the detail coefficients 

 The Root Mean Square (RMS) of the detail 

coefficients 

These ten features are extracted from the detail coefficients from 

level one to seven and the approximate coefficients at level 

seven. Table 1 summarizes all the important parameters selected 

for feature extraction.  

 
Table 1: Feature Extraction Parameters 

Input 

1. Three-Phase Voltage at all Transmission 
Buses 

2. Three-Phase Currents at Generator 

Terminals 
3. Three-Phase Transmission Line Currents 

4. Frequency of Synchronous Generators and 

at Grid Interconnection 

Mother 

Wavelet 
Db4 

Level of 

Decomposition 

1-7 (Detail Coefficients), 7 (Approximate 
Coefficients) 

Extracted 

Features 

1. The maximum coefficients 

2. The minimum coefficients 

3. The mean of Coefficients 
4. The standard deviation of coefficients 

5. The skewness of the coefficients 

6. The energy of the coefficients 

7. The log energy entropy of the coefficients 

8. The Kurtosis of the coefficients 

9. The median of the coefficients 
10. The Root Mean Square (RMS) of the 

coefficients 
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2.4. Sensitivity Analysis 

 

After extracting the features from the input signals, a supervised 

machine learning technique is used to select the most important 

features for fault classification. One of the most popular 

techniques employed for feature ranking is the Random Forest 

(RF). The RF is an ensemble of Decision Trees (DTs) where 

multiple de-correlated trees are used to find the most probable 

output class. At the root node of each tree, a bootstrap (sampling 

with replacement) of the extracted features is input to each DT 

to find out the fault type through a series of yes/no questions. 

The features at each node that achieves the greatest reduction in 

Gini impurity split the data into internal or leaf nodes. Gini 

impurity is the probability of a feature causing output 

misclassification, which is calculated by Equation (6). 

 

𝐼𝐺(𝑛) = 1 − ∑ (𝑝𝑖)
2𝐽

𝑖=1     (6) 

 

where n, J and 𝑝𝑖 represent the node, number of classes at the 

node and the fraction of the input data present in each class. The 

features producing low reductions in Gini Impurity receive low 

rankings and are removed from the input datasets. 

2.5. Fault Classification 

 

The Reduced Features Matrices generated by the RF from each 

input dataset is used to train and test four different classifiers. 

The utilized supervised machine learning techniques are the 

Support Vector Machine (SVM), Bagged and Boosted Trees and 

K-Nearest Neighbors (KNN). 

2.5.1. Support Vector Machine 

 

Support Vector Machines can classify faults by first mapping the 

data in non-linear patterns into high dimensional space, where 

the data becomes linearly separable, through a kernel function 

[18]. A hyperplane is then designed to divide the data into 

different classes. This hyperplane is identified by finding the 

maximum margin from all the data in the different classes [19]. 

The margin is the sum of the minimum distances between the 

data in all the classes and the hyperplane. Quadratic and Cubic 

SVMs are used for fault classification in this study. 

2.5.2. Bagged Trees 

 

Two types of ensembles of DTs are used to classify the faults in 

the system, which are the Bagged and Boosted Trees. Bagged 

Trees are similar to the RF, but differs in the way each model 

select the random sample data at each tree. In RF, each DT 

receives a random sample of features, while in Bagged Trees, 

random samples of observations including all the extracted 

features are utilized as inputs. Table 2 shows the Bagged Trees 

parameters selected for each input dataset in the analysis. 

 
Table 2: Bagged Trees Selected Parameters 

Input Parameters 

Frequency of synchronous 

generators  

Max Number of Splits: 5,463 

Number of learners: 30 

Learning Rate: 0.1 

Three-Phase Voltage at all 

Transmission Buses 

Max Number of Splits: 57,371 

Number of learners: 30 
Learning Rate: 0.1 

Three-Phase Voltage at all Buses 

Max Number of Splits: 74,591 

Number of learners: 60 
Learning Rate: 0.1 

Three-Phase Currents at 

Generator Terminals 

Max Number of Splits: 3000 

Number of learners: 60 

Learning Rate: 0.1 

Three-Phase Transmission Line 

Currents 

Max Number of Splits: 69,665 

Number of learners: 40 
Learning Rate: 0.1 

2.5.3. Boosted Trees 

 

Boosted trees are used for fault classification, which differs from 

the Bagged trees in DTs arrangement and the model mechanism 

for classifying faults. DTs in a Boosted Tree are arranged in 

series, where weights of input samples and outputs/predictors are 

adjusted at each tree by learning from the errors produced by the 

previous tree. The parameters of Boosted Trees employed for 

fault classification of each input are presented in Table 3. 

 
Table 3: Boosted Trees Selected Parameters 

Input Parameters 

Frequency of synchronous 
generators  

Max. Number of splits: 100 

Number of Learners: 70 

Learning rate: 1 

Three-Phase Voltage at all 

Transmission Buses 

Max Number of Splits: 100 

Number of learners: 70 
Learning Rate: 0.1 

Three-Phase Voltage at all 
Buses 

Max Number of Splits: 100 

Number of learners: 70 

Learning Rate: 0.1 

Three-Phase Currents at 
Generator Terminals 

Max Number of Splits: 100 

Number of learners: 60 

Learning Rate: 0.1 

Three-Phase Transmission Line 

Currents 

Max Number of Splits: 100 
Number of learners: 70 

Learning Rate: 0.1 

2.5.4. K-Nearest Neighbors 

 

KNNs are built to train and test the data for fault classification. 

KNN classify the input data into different classes by the majority 

vote of its neighbors. The input is mapped into an output by the 

most common output among its k nearest neighbors measured by 

a distance function [20]. The KNN used in this work utilizes 

correlation distance function and a squared inverse distance 

weight. Different numbers of neighbors are selected for each 

input depending on the nature of each input dataset, Error! 

Reference source not found.. 

 
Table 4: Number of Neighbors in KNNs 

Input Parameters 

Frequency of synchronous 

generators  

20 

Three-Phase Voltage at all 

Transmission Buses 

10 

Three-Phase Voltage at all 
Buses 

10 

Three-Phase Currents at 

Generator Terminals 

10 

Three-Phase Transmission 
Line Currents 

10 

 
All of the parameters are selected through trial and error. The 

outputs of each classifier are represented by numerical values 

that indicate normal conditions and fault types, Table 5. 

Table 5: Outputs/Predictors of all Datasets 

Class Output Representation 

0 No Fault Exists (Normal) 

1 LG(a) 

2 LG(b) 
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3 LG(c) 

4 LL (ab) 

5 LL (ac) 

6 LL (bc) 

7 LLG (ab) 

8 LLG (ac) 

9 LLG (bc) 

10 LLL 

11 LLLG 

2.5.5. Training and Testing 

 

The classification training has been performed with 10-folds 

cross validation. The total observations in each dataset, Table 6, 

were divided into 10 equal folds, and only one-fold was used for 

assessing each classifier at a time. This process is repeated for 

10 times until each unique group has been used as a test set, 

which gives a better indication of the model performance on 

unseen data compared to the hold-out validation. In hold-out 

validation, the data is split into training and testing sets; 

therefore, the model is tested by a fixed sample of data. 

 
Table 6: Total Number of Observations 

Reduced Feature Matrices 

Extracted From 

Number of 

Observations 

Frequency of synchronous 

generators 
5,465 

Three-Phase Voltage at all 

Transmission Buses 
57,373 

Three-Phase Voltage at all Buses 74,593 

Three-Phase Currents at 

Generator Terminals 
20,491 

Three-Phase Transmission Line 
Currents 

69,667 

2.6. Fault Propagation 

 

In order to eliminate the occurring faults in the grid efficiently, 

the propagation behaviors of the faults should be studied first. 

Therefore, a probabilistic graph, Bayesian Belief Network 

(BBN), is designed specifically for a fault to show how a fault is 

spread throughout the system. The BBN is a probabilistic graph 

that represents conditional dependencies between the process 

variables using a Directed Acyclic Graph (DAG). The model 

consists of nodes representing different process variables such as 

buses’ voltages and currents. These nodes are connected through 

arcs that represent the probabilistic dependencies. The 

probabilities are calculated in the BBN Inference Engine through 

Equation (7). This Equation is used by the BBN to discover the 

posterior probabilities between the variables for fault 

propagation.  

 

𝑃(𝑋1, … , 𝑋𝑁) = ∏ 𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))𝑁
𝑖=1    (7) 

The BBN is selected for determining the impact of a single fault 

on the whole system due to its capability of modelling and 

reasoning uncertainty in the system. Furthermore, this 

probabilistic graph can consider both subjective probabilities, 

usually obtained from experts in the field, and probabilities 

based on observed data. The BBN can also revise the 

probabilities through new data. 

 

To construct the BBN and identify the prior and conditional 

probabilities, a learning algorithm is required [21]. The K2 

algorithm is chosen to build the BBN. The K2 algorithm is a 

greedy search algorithm that build the BBN structure and learn 

the parameters through learning input data. This learning 

algorithm selects the BBN structure that maximizes prior 

probabilities at the parent’s nodes using observed data [21].  

After designing the BBN structure, the Junction Tree Algorithm 

transforms the BBN into an undirected Acyclic Graph to allow 

efficient inferences for fault information and knowledge 

acquisition performed by the BBN inference engine. The 

Junction Tree Algorithm transforms the BBN into an appropriate 

data structure while keeping the joint probabilities fixed, and 

ensuring that the marginal probabilities can be computed. The 

BBN learning framework is demonstrated in Figure 5. The 

Inferences done by the BBN can provide the most probable fault 

location and the probabilities of observing disturbances in the 

surrounding buses. 

 

Fig. 5. BBN learning framework [22] 

2.7. Normal Grid Operations Restoration 

The fault information and knowledge attained by the Classifiers 

and BBNs are utilized by the dynamic Fault Semantic Network 

to identify the causes and consequences of the faults and suggest 

repair actions. Semantic Networks are networks that reveal the 

interactions between objects [22]. The structure of Semantic 

Networks is illustrated in Figure 6. The FSN is a way of 

representing our fault knowledge by the relationships between 

the objects, which are the faults/causes/consequences. The FSN 

models and describes faults by symptoms, enablers, variables, 

causes, consequences and remedial actions [22]. The knowledge 

represented by the FSN could be updated either manually or 

through observed data, which makes the technique dynamic and 

adaptable to any changes in the system. 

 
Normally, when a fault occurs in the electric grid, either the 

protection system consisting of electrical devices such circuit 

breakers are initialized or the grid operator would take the 

necessary remedial actions based on the Standard Operating 

Procedures (SOPs). The dynamic FSN proposed in this study 

would provide the operator with any fault causes and 

consequences, and suggest repair actions that are set by experts 

and updated through observed data. Therefore, the Grid Operator 

do not need to get back to the fixed SOPs for mitigating actions 

required to restore normal grid operations. Furthermore, the FSN 
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is adaptable to any changes in the system, which makes it a better 

reference for fault elimination. The proposed method can 

accelerate the remedial processes with limited resources. 

 

 
 

Fig. 6. Semantic Network Structure [22] 

3. Results and Discussion 

3.1. Fault Detection 

 

The first step was to decompose the input signals into 

approximate and detail coefficients through DWT on MATLAB. 

The voltage signal decomposition into detail and approximate 

coefficients from level one to seven is shown in Fi 7. Detail 

Coefficients at levels one to five were capable of detecting the 

fault at the exact time of occurrence through large deviations.  

 

3.1.1. Feature Extraction and Sensitivity Analysis 

 

Features were extracted from the detail and approximate 

coefficients for fault classification. Sensitivity analysis is then 

performed by the RF on Salford Predictive Modeler (SPM). Fig. 

7.  DWT Level 7 decomposition results of the Phase (a) 

Voltage signal at Bus 2 when a LG (a) fault is induced at 

Bus 2 
 

Table 7: Cut-off relevancies for the input datasets 

Input Cut-off Relevancy (%) 

Frequency of synchronous 
generators 

19 

Three-Phase Voltage at all 

Transmission Buses 

5 

Three-Phase Voltage at all Buses 16 

Three-Phase Currents at 
Generator Terminals 

6 

Three-Phase Transmission Line 

Currents 

11 

 lists the cut-off relevancies values for each input. Features with 

relevancies lower than the minimum percentage were eliminated 

to improve classification accuracy. 

 

Fig. 7.  DWT Level 7 decomposition results of the Phase (a) Voltage 

signal at Bus 2 when a LG (a) fault is induced at Bus 2 

 

Table 7: Cut-off relevancies for the input datasets 

Input Cut-off Relevancy (%) 

Frequency of synchronous 

generators 

19 

Three-Phase Voltage at all 
Transmission Buses 

5 

Three-Phase Voltage at all Buses 16 

Three-Phase Currents at 

Generator Terminals 

6 

Three-Phase Transmission Line 

Currents 

11 

3.1.2. Fault Classification 

 

The reduced features matrices generated by the Random Forest 

are used to train and test the four classifiers. Figures 8-12 show 

the predictive accuracies, which are calculated by Equation (8), 

achieved by each classifier using the original and reduced 

features matrices for each input. The predictive accuracies 

attained by the reduced matrices are greater than the accuracies 

obtained by the original matrices for all inputs. 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
∗ 100   (8) 

 

 
Fig. 8. Predictive accuracies for frequency of synchronous 

generators 
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Fig. 9. Predictive accuracies for three-phase voltage at all buses 

 
Fig. 10. Predictive accuracies for three-phase voltage at 

transmission buses 

 
Fig. 11. Predictive accuracies for three-phase current at generators 

terminals 

 
Fig. 12. Predictive accuracies for three-phase line currents 

3.1.3. Best Input Selection 

 
The predictive accuracies achieved by the classifiers using the 

reduced features matrices generated from each input are 

compared for best input selection. Figure 13 exhibits the 

predictive accuracies obtained from the inputs shown in Table 8. 

All classifiers achieved higher predictive accuracies using the 

frequency of synchronous generators dataset. Zhang et al., who 

modeled a 39-bus grid system, found that the frequency of 

synchronous generators data leads to high effectiveness in fault 

detection and classification [23]. Therefore, the frequency of 

synchronous generators input is used for further analysis. 

 

 
Fig. 13. Predictive accuracies using reduced features matrices for 

all inputs 

Table 8: Input datasets from the simulated model 

Input 

1. Frequency of Synchronous Generators 

2. Three-Phase Voltage at Transmission Buses 

3. Three-Phase Voltage at all Buses 

4. Three-Phase Currents at Generator Terminals 

5. Three-Phase Transmission Line Currents 

3.1.4. Best Classifier Selection 

 
These predictive accuracies alone are not good indicators of the 

model performance in classifying faults due to the presence of 

imbalanced data and multiple classes/outputs. Therefore, the 

confusion matrix is utilized for an accurate model comparison. 

Due to classes imbalance present in the data, which occurs when 
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an unequal number of observations are used to classify each 

output class, and having more than two outputs, the F1 score is 

calculated for best model selection. The F1 score uses the 

information provided by the confusion matrix to assess the 

performance of the classifiers. The confusion matrix shows the 

model performance in classifying all the outputs through 

observed data. The matrix identifies the number of correctly 

classified and misclassified observations. The matrix can also 

show the rate at which the model performed the classification 

correctly (Positive Predicted Value) and the rate of 

misclassification (False Discovery Rate). The Figures below 

show the confusion matrices for the four supervised machine 

learning techniques utilized for fault classification using the 

frequency input. 

 

 
Fig. 14. Quadratic SVM confusion matrix 

 

 
Fig. 15. Cubic SVM confusion matrix 

 

 
Fig. 16. KNN confusion matrix 

 
Fig. 17. Bagged Trees confusion matrix 

 
Fig. 18. Boosted Trees confusion matrix 

 

The information contained in the confusion matrix are used to 

calculate the F1 score, which is a metric used to quantify the 

performance of each classifier in predicting each class. The F1 

score is the harmonic mean of precision (Ratio of correctly 
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predicted positive observations to the total  observations for a 

class) and recall (Ratio of correctly predicted positive 

observations to all the correct and incorrect predictions for each 

output), which is calculated as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
    (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   (9)  

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)                  (10) 

 

The Total positive and False Negative of each class/output are 

attained from the confusion matrix of each classifier. The True 

positive represents correctly identified predictions for each 

output, and False Negative is the incorrect predictions for each 

class. The True positives are the diagonal observations 

highlighted in green by the Confusion Matrix. Moreover, the 

False Negatives are the red observations presented in each 

column for all classes in the Confusion Matrix. Table 9 presents 

the calculated F1 score for the five classifiers. 

 
Table 9: Average predictive accuracy and F1 score of each 

classifier 

Classifier 

Average 

Predictive 

Accuracy (%) 

Average F1 

Score 

Quadratic SVM 98.4 0.98 

Cubic SVM 98.4 0.97 

KNN 96.8 0.97 

Bagged Trees 96.2 0.97 

Boosted Trees 97.4 0.97 

 
The Quadratic SVM achieved the highest average F1 score. 

Therefore, the Quadratic SVM is selected for fault classification 

based on the highest F1 score and predictive accuracy attained 

by the model. The SVM is expected to show good performance 

in terms of correct classes classifications due to the SVM’s 

ability to map non-linear input data into a high dimensional 

space where the data becomes linearly separable.  

3.1.5. Fault Propagation 

 
Many Bayesian Networks are built for different short circuit 

faults that could discover the impact of a fault on the whole 

system. Moreover, any fault occurring at a bus in the network 

can affect the other buses at different severities depending on 

how close the buses are to the faulty bus. A BBN is built for a 

LG fault to show the way a fault can spread in the smart grid. 

The constructed DAG for a LG fault in phase a is presented in 

Figure 19.  

 

 
 
Figure 19: Constructed BBN for a LG fault in Phase (a) 

 
After building the BBN structure and learning the necessary 

parameters through observed data using the K2 algorithm, the 

BBN is transformed into an undirected acyclic graph by the 

Junction Tree Algorithm for inferences held by the BBN 

inference Engine. The following inferences were done with 

different fault scenarios for fault propagation: 

 
Fault Propagation BUS 16 

 What is the probability of observing disturbance in Bus 

24, given a fault on Bus 16 has  occurred? 

 P (FB24 | FB16) = 99.6% 

 What is the probability of observing disturbance in Bus 

1, given a fault on Bus 16 has occurred? 

 P (FB1 | FB16) = 89.33% 

 What is the probability of observing disturbance in Bus 

29, given a fault on Bus 16 has occurred? 

 P (FB29 | FB16) = 93.63% 

 What is the probability of observing disturbance in Bus 

28, given a fault on Bus 16 has occurred? 

 P (FB17 | FB16) = 94.18% 

 

Fault Propagation BUS 29 

 What is the probability of observing disturbance on Bus 

24, given a fault on Bus 29 has occurred? 

 P (FB24 | FB29) = 88.89% 

 What is the probability of observing disturbance on Bus 

1, given a fault on Bus 29 has occurred? 

 P (FB1 | FB29) = 0% 

 What is the probability of observing disturbance in Bus 

16, given a fault on Bus 29 has occurred? 

 P (FB16 | FB29) = 89.59% 

 What is the probability of observing disturbance in Bus 

17, given a fault on Bus 29 has occurred? 

 P (FB17 | FB29) = 94.13% 

 

The inferences performed by the BBN can be verified by 

referring to the buses locations in the IEEE 39-bus system. The 

following inferences are tested by the system topology in Figure: 

 

 What is the probability of observing disturbance in Bus 

24, given a fault on Bus 16 has occurred? 

           P (FB24 | FB16) = 99.6% 

 What is the probability of observing disturbance in Bus 

1, given a fault on Bus 29 has occurred? 

          P (FB1 | FB29) = 0% 

 

The involved buses in the first inference are presented in red 

circles, Figure 20. The two buses are close to each other, which 

proves that the high probability revealed by the BBN is logical. 

Bus 1 and Bus 29 are far away from each other as illustrated in 

Figure 20; therefore, Bus 1 is expected to operate normally when 

a fault is detected in Bus 29, which is proved by the extremely 

low posterior probability calculated by the BBN inference 

Engine.  The posterior probabilities provided by the BBN will 

help the FSN in the causes and consequence analysis and repair 

actions. 
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Figure 20: System Topology [15] 

3.1.6. Normal Grid Operations Restoration 

 
The dynamic FSN utilizes the fault information and knowledge 

obtained by the previous steps for causes and consequences 

analysis and repair actions. The FSN comes in the form of 

dynamic tables linked together as shown in Tables 10-12. The 

FSN presents the symptoms, hypotheses, diagnosis and repairs. 

Each has a weight value that determines the frequency of 

contribution in the analysis. The weight values presented in 

Error! Reference source not found. are initial values that need 

be updated either by experts or historical data. Moreover, the 

symptoms are the measurements sensors used to detect any 

abnormal behavior in the smart grid that initializes the analysis 

performed by the FSN. Hypotheses are the possible causes for 

the detected fault. The diagnosis are the sensors and features 

(found in separate tables linked to the main table) utilized for 

detecting the causes of a fault, which determine the corrective 

actions required to restore normal grid operations. An example 

is shown below, where an abnormal behavior is detected by the 

frequency sensor. The FSN asks the Classifier to reveal the fault 

type, which is found to be LG fault in phase a, and initializes the 

BBN trained for this fault type. This fault is mapped to a number 

of hypotheses, which are heavy wing and falling tree (H1 and 

H2). H1 and H2 are diagnosed by D1 and D2. On board weather 

stations (S1) are used to obtain the wind speed and direction (F2) 

to detect heavy wind. UAV drones (S5) use Light Detection and 

Ranging (LiDAR) feature (F4) to detect tree contact. If heavy 

wind and falling tree are detected in the smart grid, the FSN 

suggests Tripping Circuit Breakers in the Zones of Protection 

(R2) and Tree trimming and vegetation removal around power 

lines (R7) as repair actions. 

 
Table 10: Dynamic Fault Semantic Network 

Symptom S_ID Symptom 
Wei

ght 

Semantic 

Network 

(BBN) 

Fault 

Type 

Hyp

othe

ses 

 1 Frequency 
0.5

0 

BBN_LG_

B 
LG (a) 

H1, 

H2 

 2 Voltage 
0.4

0 
   

 3 Current 
0.1

0 
   

Hypothes

is 
H_ID Hypothesis 

Wei

ght 
  

Dia

gno

sis 

 1 Heavy Wind 
0.3

1 
  D1 

 2 Falling Tree 
0.0

4 
  D2 

Diagnosis D_ID 
(Sensor, 

Features) 

Wei

ght 
  

Rep

air 

Pairs 

 1 (S1, F2) 
0.1

7 
  R2 

 2 (S5, F4) 
0.1

7 
  R7 

Repair R_ID Repair 
Wei

ght 
   

 1 

Detect and 

identify Fault 

Location 

0.0

91 
   

 2 

Tripping 

Circuit 

Breakers in 

the Zones of 

Protection 

0.0

91 
   

 3 

Transmission 

Line 

Switching 

0.0

91 
   

 4 
Excess Load 

Shedding 

0.0

91 
   

 5 

Back-up 

Distributed 

Generation 

0.0

91 
   

 6 

Replacing 

Damaged 

Equipment 

0.0

91 
   

 7 

Tree trimming 

and vegetation 

removal 

around power 

lines 

0.0

91 
   

 8 
Dispatching 

Security Staff 

0.0

91 
   

 9 

Removing 

Unauthorized 

Personnel 

0.0

91 
   

 10 

Firewalls 

Activation, 

firmware 

update 

0.0

91 
   

 11 

Minimize the 

network 

traffic through 

whitelisting 

for approved 

IPs only 

0.0

91 
   

Version 

Last 

Update

d 

Case Quality 
Suc

cess 
Failure  

Con

diti

ons 

 
27 Dec, 

2019 
    

Dust 

stor

ms 

 
Table 11: Sensors used in the diagnosis process. 

Sensor ID Name 

S1 Weather Radar 

S2 Current Transformer 

S3 Potential Transformer 

S4 Digital Frequency Relay 

S5 UAV Drone Inspection 

 
Table 12: Features used in the diagnosis process. 

Feature ID Feature Name 

F1 Precipitation 

F2 Wind Speed and Direction 

F3 Atmospheric pressure 

F4 Light Detection and Ranging (LiDAR) 

4. Conclusion 

 
An IEEE 39 bus system is simulated using EMTP-RV software 

package, where short circuit faults were induced at different 

locations. DWT successfully detected the induced faults in the 

smart grid model. Features matrices, extracted from the detail 

and approximate coefficients of the data collected from the 

simulated grid model, were reduced by the Random Forest 
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algorithms. The reduced feature matrices were used to train and 

test various supervised machine learning techniques (Quadratic 

and Cubic SVM, KNN, Bagged and Boosted Trees) for fault 

classification. The predictive accuracies obtained by the 

classifiers, using each input datasets separately, have shown that 

the Frequency of synchronous generators is the best input for 

fault classification, with a predictive accuracy of 98.4%. The 

Support Vector Machine is selected as the best classifier based 

on the high average predictive accuracy and F1 score attained. 

Furthermore, the built BBN for a LG fault was capable of 

providing the most probable fault location and identifying the 

disturbed buses using probability theory. The dynamic FSN uses 

the fault information and knowledge utilized the classifier and 

BBN to identify the faults causes and consequences, and suggest 

repair actions.  
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[16] R. Shariatinasab, B. Rahmani, and M. Akbari, Application 

of Wavelet Analysis in Power Systems. INTECH Open Access 

Publisher, 2012. 

[17] N. Perera and A. D. Rajapakse, “Recognition of Fault 

Transients Using a Probabilistic Neural-Network 

Classifier,” IEEE Transactions on Power Delivery, vol. 26, no. 

1, pp. 410–419, 2011. 

[18] S. S. Gururajapathy, H. Mokhlis, and H. A. Illias, “Fault 

location and detection techniques in power distribution systems 

with distributed generation: A review,” Renewable and 

Sustainable Energy Reviews, vol. 74, pp. 949–958, 2017. 

[19] K. Chen, C. Huang, and J. He, “Fault detection, 

classification and location for transmission lines and distribution 

systems: a review on the methods,” High Voltage, vol. 1, no. 1, 

pp. 25–33, 2016. 

[20] Cigdem, O. and Demirel, H. “Performance analysis of 

different classification algorithms using different feature 

selection methods on Parkinson's disease detection”. Journal of 

Neuroscience Methods, 309, pp.81-90, 2018 

[21] G. F. Cooper and E. Herskovits, “A Bayesian method for 

the induction of probabilistic networks from data,” Machine 

Learning, vol. 9, pp. 309- 347, 1992. 

[22] S. Hussain, A. Hossein, and H. A. Gabbar, “Tuning of fault 

semantic network using Bayesian theory for probabilistic fault 

diagnosis in process industry,” 2013 International Conference 

on Quality, Reliability, Risk, Maintenance, and Safety 

Engineering (QR2MSE), 2013. 



Author et al. / Int. J. of Thermal & Environmental Engineering, 18 (2022) 45-56 

13 

[23] H. Jiang, J. J. Zhang, W. Gao, and Z. Wu, “Fault Detection, 

Identification, and Location in Smart Grid Based on Data-Driven 

Computational Methods,” IEEE Transactions on Smart Grid, 

vol. 5, no. 6, pp. 2947–2956, 2014. 

 

 

 


