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Abstract 
Electrocardiogram (ECG) is the study of the electrical signals of the human heart that are generated by the pumping action 

of the heart caused by the polarization and depolarization of the nodes of the heart. These signals must be interpreted with 

great accuracy and efficiency as they are paramount in prognosis and subsequent diagnosis of the condition of the patient. 

The goal of this project is to analyze the ECG signals following Fourier and Wavelet transforms, and to highlight and 

demonstrate the advantages of the Wavelet transform. Firstly, it involves simulating the temporal digital ECG signal and 

explaining the signal constituents, i.e., P, Q, R, S, T waves while staying in the time domain. Secondly, the ECG signal 

will be transferred into the frequency domain for quick, fast, and compressed analysis and carry out signal processing 

using Fourier analysis and highlight the pros and cons of this technique. Thirdly, wavelet analysis will be explored and 

demonstrated to mitigate the shortcoming of the former tool, i.e., Fourier. At this stage, various ECG signals, mimicking 

abnormalities, will be analyzed. This work will highlight the effectiveness of wavelet analysis as a tool to examine ECG 

signals. This work, hence, will entail, comparison of both transformation methods by utilizing the computational power 

of MATLAB. 
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1. Introduction 

Ever since the inception of ECG at the turn of the 20th century, 

it has been an important tool for medical doctors to study and 

understand the functioning of the human heart. ECG has played 

an important role in helping practitioners to diagnose cardiac 

conditions and treat them accordingly. Currently, with an 

unprecedented rate of improvement of technology, ECG signals 

have been studied extensively. Numerous analysis and signal 

processing techniques have been employed for this purpose, 

ranging from various Fourier transform techniques like Fast 

Fourier Transform (FFT), zoom FFT to the more common 

Wavelet analysis. Apart from these methods, other techniques 

like Neural networks or differential equation procedures have 

been utilized successfully.   

 

Fourier transform has been used for ECG signal synthesis for a 

long time now. The authors in [1], [2] utilized the Fourier  

 

 

series technique to generate the normal and abnormal ECG 

signals. However, no further analysis was performed in this 

work. Bennet et al. [3] came up with an interesting use of Fourier 

analysis of ECG vis-à-vis its shortcomings. The authors came up 

with a device to detect only two conditions, namely, tachycardia 

and bradycardia. These abnormalities depend only on the heart 

rate, which is easily measurable through FFT. Similarly, Lukáč 

and Ondráček [4] took advantage of this use of FFT and used it 

to calculate the heart rate. 

 

Parak and Havlik [5] used statistical and differential 

mathematical tools to de-noise the ECG signal before utilizing it 

for making an implementable method for a real-time stress test. 

The proposed algorithm could work even in the presence of 

disturbance from the movement of muscles. Their main goal was 

to design a digital computing algorithm that could be 

implemented in real-time. Hence, the differential approach was 

very fast and effective. Murugan and Ramesh [6] used the zoom 

FFT as a less explored technique for analyzing ECG signals. 

They produced the ECG waveform using MATLAB code and 

then used the zoom FFT technique to detect the QRS complex 

and P and T peaks. The obtained results were compared with 
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those obtained by conventional FFT practices. It concluded that 

the quality of spectrum for ECG analysis was better when using 

zoom FFT which in turn was better for diagnosing cardiac 

conditions and all this was obtained while not saturating the 

processor capabilities. In [7]–[29] the authors used Wavelet 

Transform techniques to analyze ECG signals. As a first step, 

the authors filtered the noise in ECG signals which were traced 

to various sources such as from the electric wires involved, and 

muscle activity. The use of the Daubechies family [30] of the 

wavelet transform was abundantly found in the literature. In 

[10], the author used db2 of Daubechies family of Continuous 

Wavelet Transform (CWT) as it is suggested to provided better 

diagnostic ability. In [11], the author utilized db6 of the 

Daubechies family of orthogonal wavelets, whereas in [13] the 

authors used db10. In all these works, the efficiency of using 

wavelets was highlighted.  Castro et al. used an optimal mother 

wavelet technique in their work [31]. Rather than using a 

predefined wavelet family, the authors found out the wavelet 

that fits a specific ECG signal. Tamil et al.  [32] used the 

Discrete Wavelet Transform (DWT), also discussed in [14], 

[18], [22], [27], for extraction of the characteristics of the ECG 

signal which was then fed to a hybrid neuro-fuzzy system 

consisting of Neural Networks and Fuzzy Logic. This method 

proved to be very accurate. However, due to the lack of an 

adequate database for various heart ailments, there is still room 

for improvement. The diagnostic ability, though, was increased 

considerably by using this hybrid system. Largely all the work 

harnessing the benefits of wavelet transform utilizes the 

coefficients, conversely, Peng and Wang [21] took a different 

approach where they employed the eigenvalues for detecting 

myocardial abnormalities [33] in the human through the 

recorded ECG signals. Daamouche et al. [23] classified the ECG 

signals using a polyphase representation of wavelet filter bank 

through a particle swarm optimization framework. The authors 

concluded that the proposed method was more effective than 

using standard wavelets like Daubechies and Symlet at the cost 

of far higher computational time.   

 

The use of wavelet was not only limited to diagnosis rather was 

utilized even for matching the shape of a wavelet with the ECG 

signal [34]. Apart from the use of CWT and DWT, Cross 

Wavelet Transform was explored in the literature too [35]–[38] 

as well as their intermittency factor and energy percentage 

contribution within the signal [39]. However, the accuracy was 

not as high in this case as compared to the conventional wavelet 

techniques.  

 

Most of the work focused on detecting heart diseases and cardiac 

conditions from the analyzed ECG signals, however, Sasikala 

and Wahidabanu [12], Mahmoud and Jusak [40] and Dar et al. 

[41] took the work further. They not only analyzed the ECG 

signal but also attempted to find a novel application of this 

analysis. They claimed that ECG signals, like fingerprints and 

retinal signatures, are unique to each individual and can be used 

as an identification tool. They presented analysis procedures to 

get this identification utility from these signals using Wavelet 

transform.  

 

In this work, we aim to deconstruct an ECG signal using Fourier 

transform and a variety of orthogonal families of the Wavelet 

transform. These deconstructed waves will then be analyzed by 

time-shifting and stretching in the time domain. Following 

which we target to reconstruct the ECG signal using the obtained 

coefficients. This analysis will pave way for the synthesis of 

artificial heart signals and prognosis, the utility of which cannot 

be stressed enough in the modern day. All the work in the 

literature deals exclusively with only one of the two transforms. 

In this paper, we aim to provide a comparative study between 

Fourier and Wavelet transform and highlight the effectiveness 

of Wavelet Transform for ECG signal investigation.   

2. ECG Signal 

The ECG signal helps us study the condition of the human heart. 

It has certain characteristic features that give it meaning and 

helps medical practitioners understand the physiology of the 

patient’s heart. It has proved to be a life-saving tool by aiding 

the diagnosis and prognosis of various heart ailments.  

 

Fig. 1. Normal Sinus Rhythm 

An electrocardiogram, as shown in Fig. 1 for a normal 

heartbeat,  is composed of several ‘waves’ and ‘segments’ that 

are connected by an isoelectric line. Each wave and segment 

signify a particular action of the heart.  

The first component is the ‘P-wave’ which indicates the 

depolarization of the sinoatrial node. This wave has a typical 

duration of 100 𝑚𝑠  and a peak value of 0.3 𝑚𝑉 . The most 

distinguishing trait of the ECG signal is the ‘QRS complex’. 

This complex is made up of 3 waves, Q-, R-, and S- waves. The 

Q-wave and S-wave are negative parts and R-wave is the highest 

peak in the ECG signal. The ‘QRS complex’ has a time duration 

between 50 to 110 𝑚𝑠. The final wave is the ‘T-wave’ which 

shows the process of repolarization of the heart. The heart 

returns to its idle state during this wave. This ‘T-wave’ has an 

amplitude of around 0.8 𝑚𝑉 and lasts around 0.42 𝑚𝑠. 

Apart from the waves, another important part of the ECG signal 

is the connecting intervals. These segments are isoelectric 

components, i.e., the voltage remains at 0 𝑚𝑉  during these 

intervals. The 2 intervals of interest are ‘P-R interval’ and ‘S-T 

interval’.      

The ECG signals used in this work are obtained from the 

PhysioNet master database [42] which contains modified copies 

of 3 PhysioNet databases [42]–[44]. This contains pre-filtered 

Normal Sinus Rhythm, various arrhythmia signals, and 

congestive heart failure records. For analysis, only the initial 10 

seconds of the data is considered. Since the signal is sampled at 

128 𝐻𝑧, it gives enough data points (1280) in the span of 10 

seconds to effectively evaluate the signal without much 
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computational burden. The signal segment used is shown in Fig. 

2. The peak detection is a very important phenomena related to 

ECG signal. It gives us a measure of the heart rate which is the 

basis of many pathological condition detection. The peak 

detection includes primarily includes detecting the ‘R-wave’. 

The time interval between 2 consecutive ‘R-waves’ helps us 

calculate heart rate of the patient.  
 

 

 

Fig. 2 Filtered ECG signal segment 

The heart rate of the sample shown in Fig. 1 was 95 beats per 

minute (bpm), and the value obtained through the peak detecting 

algorithm was 96 bpm. Furthermore, peak detection also 

includes detecting all the waves in the ECG signal. In Fig. 3 we 

see that all the waves are characterized by their crests and 

troughs. 

 

 
Fig. 3 ECG signal peak and wave detection 

3. Fourier Transform 

In this section, we will be discussing the use of Fourier transform 

for ECG analysis. Fourier transform is a powerful tool for 

analyzing stationary signals. The frequency-domain analysis 

gives a lot of information about the signal. However, when non-

stationary signals, like ECG, are to be analyzed, Fourier 

transform falls short. Small changes in the heart rhythm most 

likely will go undetected if analyzed through Fourier transform. 

We perform Fast Fourier Transform (FFT) on the ECG signal. 

This gives us information about the High Frequency (HF) and 
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Low Frequency (LF) components of the ECG. The LF gives 

information about the physiological activities of the heart 

whereas HF indicates respiratory activity.  

To analyze the signal using Fourier Transform, we perform FFT 

on the ECG signal. This gives us the frequency domain response 

of the signal.  

 

Fig. 4 FFT of ECG signal 

We see in Fig. 4 that many frequency components are needed to 

characterize an ECG signal. This becomes clear when we plot 

an envelope curve of the peaks of FFT response.  

 
Fig. 5 Peak envelope of FFT 

The response shown in Fig. 5 corresponds to a broadband 

response, re-iterating the point that several data points are 

needed to recreate the ECG signal using Fourier Transform.  

FFT often falls short in accurately extracting data from non-

stationary data and is not a very efficient approach. To examine 

this issue further, we tried to use the Hann smoothing method 

using a moving average window. In this method, we created 

‘Hann’ windows of 1 𝑠 time duration with overlap to cover the 

entire sample signal length as shown in Fig. 6. 

 
Fig. 6 Hanning of ECG signal 

Single-sided FFT was performed on this windowed signal and 

an average was taken to investigate the frequency response of 

the ECG signal depicted in Fig. 7. It can be seen that despite 

taking an average of 19 windows, the ECG frequency response 

is broadband. This implies that it is not useful to analyze an ECG 

signal using FFT.  

 
Fig. 7 ECG Power Spectrum for various Hann windows 

This idea is supported by trying to recreate ECG for normal sinus 

rhythm using an 8-term Fourier series. The signal synthesized 

by Fourier series is compared with the original ECG signal in 

Fig. 8. 

 
Fig. 8 Fourier transform reconstruction 
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The Fourier model used to generate the Fourier series is given in 

Eq. (1). The corresponding coefficient values are given in Table 

1 which are within a 95% confidence bound. 

𝑓(𝑥)  =   𝑎0  + 𝑎1 cos(𝑥𝑤) + 𝑏1 sin(𝑥𝑤)
+ 𝑎2 cos(2𝑥𝑤) +  𝑏2𝑠𝑖𝑛(2𝑥𝑤)  
+  𝑎3𝑐𝑜𝑠(3𝑥𝑤) +  𝑏3𝑠𝑖𝑛(3𝑥𝑤)
+  𝑎4𝑐𝑜𝑠(4𝑥𝑤) + 𝑏4𝑠𝑖𝑛(4𝑥𝑤)  
+  𝑎5𝑐𝑜𝑠(5𝑥𝑤) + 𝑏5𝑠𝑖𝑛(5𝑥𝑤)  
+ 𝑎6𝑐𝑜𝑠(6𝑥𝑤)  + 𝑏6𝑠𝑖𝑛(6𝑥𝑤)  
+  𝑎7𝑐𝑜𝑠(7𝑥𝑤) + 𝑏7𝑠𝑖𝑛(7𝑥𝑤)  
+  𝑎8𝑐𝑜𝑠(8𝑥𝑤) + 𝑏8𝑠𝑖𝑛(8𝑥𝑤) 

 

(1) 

Table 1 Fourier series coefficients 

Coefficients Value Coefficients Value 

𝑎0 -0.4492 𝑤 10.19 

𝑎1 -0.1526 𝑏1 -0.1114 

𝑎2 -0.02265 𝑏2 0.1919 

𝑎3 0.1812 𝑏3 -0.08022 

𝑎4 0.1707 𝑏4 -0.08524 

𝑎5 0.03242 𝑏5 0.1387 

𝑎6 0.05021 𝑏6 -0.07768 

𝑎7 -0.06914 𝑏7 0.00465 

𝑎8 0.03006 𝑏8 0.03388 

 

It is evident that the Fourier series representation fails to 

replicate the peaks of the ECG signal. Due to this, important 
information maybe lost and hence, Fourier transform falls short 

in analyzing ECG signals.  

4. Wavelet Transform 

In this section, we will utilize Wavelet transform to analyze ECG 

signals. Subsequently, we will discuss its application in clinical 

prognosis. Wavelet transform is a potent means for analyzing 

non-stationary signals. The most important feature of the 

Wavelet transform is that it retains the time-domain information 

of the signal while also enabling the analysis in frequency-

domain. This is paramount in the assessment of non-stationary 

waves.  

Wavelet transform is of two types, Continuous Wavelet 

Transform (CWT) and Discrete Wavelet Transform (DWT). 

Both these transforms can be used effectively for diagnosis using 

ECG signals.  

4.1. Continuous Wavelet Transform 

 

The CWT of a function 𝑓(𝑡)  is obtained by the following 

equation: 

𝑊𝑐(𝑏, 𝑎) = |𝑎|
1
2 ∫ 𝑓(𝑡)𝜓∗(

𝑡 − 𝑏

𝑎
) 𝑑𝑡 

∞

−∞

 (2) 

 

Where, 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0 are the scaling and shifting coefficients 

of the mother wavelet denoted by 𝜓(𝑡) respectively. The mean 

of a wavelet signal is zero, implying that the net area of the 

mother wavelet is zero.    

CWT gives the spectrogram of the ECG signal. This helps us 

understand the signal effortlessly. It clearly shows the difference 

between normal and abnormal heart activity. It is seen in Fig. 9 

the obvious difference between the two ECG signals. It gives 

medical practitioners a distinct image to quickly analyze the 

problem of the patient. 

   
Fig. 9 CWT response a) Normal Sinus Rhythm b) Congestive heart failure 

4.2. Discrete Wavelet Transform 

 

In practice, when computers are used for implementing CWT 

then it must be in a discrete form giving rise to DWT. Being 

continuous causes redundancy in CWT. This problem is ably 

addressed by sampling CWT function in a dyadic grid. Hence, 

DWT is obtained by convoluting the signal with the orthonormal 

dyadic wavelet function and the scaling function. The dyadic 

grid is [45]: 

𝑎 = 2−𝑚 𝑎𝑛𝑑 𝑏 = 𝑛2−𝑚 (3) 
where 𝑚, 𝑛 ∈ 𝑍. 

From (2) and (3) we obtain the DWT function as: 

𝑊𝑑(𝑚, 𝑛) = ∫ 𝑓(𝑡)
∞

−∞

𝜓𝑚,𝑛
∗ (𝑡)𝑑𝑡 (4) 
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As an orthonormal wavelet basis is used there is no 

redundancy. Furthermore, we obtain a Multi-Resolution 

Analysis (MRA) system, which decomposes the original ECG 

signal into scales of different frequency and time resolution.  The 

fundamental concept involved in MRA is to find the average 

features and the details of the signal via scalar products with 

scaling signals and wavelets. Using these techniques, the ECG 

is disintegrated using an optimal mother wavelet, the wavelet 

that most closely resembles the shape of the original signal. The 

decomposition includes separating the signal into high 

frequency and low-frequency components. This is done by 

decomposing the ECG signals in many levels of approximate 

and detailed coefficients. The detailed coefficients are obtained 

from the high-frequency component of the wavelet function. The 

approximate coefficients, given in Eq. (5) at scale 𝑚  and 

location 𝑛, have the details of the scaling functions (𝜙(𝑡)) and 

are low frequency components of the signal. These approximate 

coefficients are further broken down based on the number of 

levels the signal is to be decomposed into. When the ECG signal 

is broken into approximate and detailed coefficients based on the 

frequency, it still retains the time-domain information. This not 

only helps us to understand what the abnormalities in the ECG 

signal are but also helps us find the exact point at which activity 

of the heart happens. This decomposed signal can then be 

reconstructed using the obtained coefficients without much loss 

of information. The wavelet decomposition and the 

reconstruction follow the steps as depicted in Fig. 10.  

𝑆𝑚,𝑛 = ∫ 𝑓(𝑡)
∞

−∞

𝜙𝑚,𝑛(𝑡)𝑑𝑡 (5) 

The discrete approximation of the original signal is given by: 

𝑓0(𝑡) = 𝑓𝑀(𝑡) + ∑ 𝑑𝑚(𝑡)

𝑀

𝑚=1

 (6) 

Where 𝑓𝑀 is the mean signal approximation at scale 𝑀 given by 

𝑓𝑀(𝑡) = 𝑆𝑀,𝑛𝜙𝑀,𝑛(𝑡) and 𝑑𝑀 is the detail signal approximation 

at scale 𝑚, given by 𝑑𝑚(𝑡) = ∑ 𝑇𝑚,𝑛𝜓𝑚,𝑛(𝑡)𝑀−𝑚
𝑛=0 . 

 

 
Fig. 10 Two-level Wavelet decomposition and reconstruction [46] 

From Fig. 10 we see that the approximation of the signal at a 

given scale is the combination of the approximate and detail at 

the next smaller scale given in Eq.  

𝑓𝑚(𝑡) = 𝑓𝑚−1(𝑡) − 𝑑𝑚(𝑡) (7) 

 

In this work, we tried various orthogonal wavelets and decided 

to explore the use of Symlet wavelet, a modified version of the 

more popular Daubechies wavelet. This wavelet was chosen as 

𝑠𝑦𝑚4  of the Symlet family had a shape very similar to the 

original normal ECG signal as shown in Fig. 11. We generated 

the ECG signal recreated using the aforementioned wavelet and 

compared it with the original ECG signal to gauge the 

effectiveness of the wavelet as an analysis tool for ECG signals. 

The plot in Fig. 12 shows that the reconstructed signal traces the 

normal ECG signal with great accuracy. This establishes the 

effectiveness of Wavelet Transform in analyzing and 

synthesizing ECG signals.   
Fig. 11 Matching wavelet with ECG signal 
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Fig. 12 Wavelet reconstruction of normal ECG signal 

4.3. Wavelet Analysis 

Wavelet analysis gives the details about the ECG signal in both 

the time and frequency domain. Also, wavelet decomposition 

gives different coefficients for different signals, implying, for all 

different arrhythmias and congestive heart failures, the 

coefficients remain distinct. This plays a major role in 

distinguishing the ECG and consequently in diagnosing the 

patient.  

In this paper, we compare the decomposition coefficients are the 

2 levels of the normal sinus rhythm with arrhythmias and with 

congestive heart failure records. Based on the comparison we 

will be able to classify the ECG records as arrhythmias or heart 

failure. This should help in a quick analysis of the patient’s 

condition. From the plots in Fig. 13 to Fig. 22, we see that the 

coefficients of the normal sinus rhythm are significantly 

different when compared to various diseases. In each of the 

following figures, the normal sinus rhythm’s coefficients, both 

decomposition, and reconstruction are compared with that of 

several abnormalities. In Fig. 13 and Fig. 14 the comparison 

gives is for hyperkalemia where the ‘P-wave’ is missing, and the 

‘T-wave’ has a high magnitude. Furthermore, we compared the 

myocardial ischemia shown in Fig. 15 and Fig. 16, which has 

an inverted ‘T-wave’, with a normal heartbeat. Two very 

common arrhythmias are bradycardia, depicted in Fig. 17 and 

Fig. 18, where the heart rate drops below 50 bpm, and 

tachycardia, exhibited in Fig. 19 and  Fig. 20 a case in which 

the heart rate exceeds 120 bpm. In Fig. 21 and Fig. 22, we see 

the case of congestive heart failure.  

 

  
Fig. 13 Deconstruction coefficients a) Normal Sinus Rhythm b) Hyperkalemia 

 
Fig. 14 Reconstruction coefficients a) Normal Sinus Rhythm b) Hyperkalemia 
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Fig. 15 Deconstruction coefficients a) Normal Sinus Rhythm b) Myocardial Ischemia 

 
Fig. 16 Reconstruction coefficients a) Normal Sinus Rhythm b) Myocardial Ischemia 

 
Fig. 17 Deconstruction coefficients a) Normal Sinus Rhythm b) Bradycardia 
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Fig. 18 Reconstruction coefficients a) Normal Sinus Rhythm b) Bradycardia 

 
Fig. 19 Deconstruction coefficients a) Normal Sinus Rhythm b) Tachycardia 

 
Fig. 20 Reconstruction coefficients a) Normal Sinus Rhythm b) Tachycardia 
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Fig. 21 Deconstruction coefficients a) Normal Sinus Rhythm b) Congestive heart failure 

 
 
Fig. 22 Reconstruction coefficients a) Normal Sinus Rhythm b) Congestive heart failure

5. Conclusion 

To begin with, we studied the effectiveness of the Fourier 

Transform in analyzing ECG signals. It was seen that it was not 

very effective and could not give full information on the ECG 

signal because it analyzes a signal only in the frequency-domain. 

In that way, the time localization information is lost. Hann 

window technique was deployed too for extracting more 

information using FFT. However, even this technique failed as 

was seen when we tried to reconstruct the ECG wave using the 

coefficients obtained from the aforementioned tools.  

This work was then advanced to study ECG signals using 

Wavelet Transform. Wavelet has been an efficient tool for 

analyzing non-stationary signals like ECG. Firstly, we used the 

CWT method for analyzing the heartbeat signals. It was seen that 

this provided an uncomplicated way to understand the signal by 

giving a spectrographic representation of the signal, in which 

any abnormalities were pronounced. Additionally, we 

investigated the use of DWT for this purpose. We saw that this 

was very effective as it addressed the shortcomings in Fourier 

analysis effectively. This was primarily due to the ability of 

wavelet analysis to analyze a signal in both time- and frequency-

domain. This helped us understand the exact abnormality at the 

exact instant in time. This is paramount in diagnosis. From this, 

we can conclude that wavelet transform was superior to Fourier 

in terms of examining the ECG signal. This implies that Wavelet 

Transform can be an effective clinical tool to analyze ECG 

signals and accurately diagnose heart conditions.       

Nomenclature 
 

𝑎𝑛 Fourier series coefficient  

𝑏𝑛 Fourier series coefficient 

𝑊𝑐(𝑏, 𝑎) Continuous Wavelet Transform function 

𝜓(𝑡) Mother wavelet 

𝜓∗(𝑡) Complex conjugate of the mother wavelet 

𝑊𝑑(𝑡) Continuous Wavelet Transform function 

𝜙(𝑡) Scaling function 
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