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Abstract 

Noise pollution is one of the most fundamental challenges facing our environment, causes health problem, communication 

inefficiency and degrade the performance of works due to lack of concentration, thus, mitigating this impact becomes an 

unavoidable requirement of time to protect people's health and the environment. This noise may originate from several 

sources including industrial machinery, system parts wear out, and adjacent environmental acoustics. To mitigate this 

noise effect, an Active Noise Cancellation (ANC) headphone is achieved by two effective techniques; Adaptive filtering 

and Standing wave phenomenon. In this work, an ANC system is designed using both adaptive filtering and standing wave 

techniques, the former one basically utilizes single-channel feedforward whereas the latter one utilizes both single-channel 

feedforward and feedback control. LMS adaptive filter algorithm is the basic component of the designed ANC headphone. 

For simulation, a noise-free signal will be used as the desired audio signal and a gaussian distributed noise as the unwanted 

noise signal, these are combined to form noise corrupted speech signal.  Propose algorithms performance were evaluated 

based on the ability to mitigate effects of different frequency broad-band noise signals and of different Noise to Signal 

ratio. Evaluation measures used are; convergence rate and noise reduction in dB. Result reveals ANC headphone using 

standing wave technique has better performance at mitigating noise frequency below 800Hz, with low SNR than Adaptive 

filtering. However, at higher frequencies above 1000Hz, ANC headphone using Adaptive filtering has good performance 

of masking high frequencies up to 22dB. 

 

Keywords: Active noise cancellation, Adaptive filtering, standing wave pattern, system identification, feedforward and 

feedback control. 
 

  

1. Introduction 

Noise problems are becoming more severe in our society, which 

has serious negative impacts on our environment [1], as such the 

need to eliminate them is highly obligatory. The noise problem 

is an expression of the limited tolerance to the perception of 

sounds that we have as individuals [2]. Any unwanted audible 

signal is referred to as Acoustic noise [3], [4]. With the 

cotemporal growth of technology and industry, acoustic noise 

levels in human settings are under critical study for reasons 

including health concerns, communication efficiency and work 

performance improvement [4]. Most Common acoustic noises 

are generated by industrial equipment, appliances, and human-

generated noise [4]. Machines, blowers, fans, and transformers 

are few examples of equipment and appliance mention in [5] that 

produce signals that are nuisance to the human ear.  On the other 

hand, human voice at a certain sound pressure level is often 

considered as an unwanted signal, which is an external 

interruption in communications [6]. 275 million workers around 

the world between 50-59 years of age have compensable noise-

induced hearing loss, and it is estimated that 26% of the working 

population are employed in jobs with noise exposure higher than 

80 dB [1], [2], [7]. Owing to the concern effect of noise 

pollution, researchers aimed to explore how to eliminate this 

noise impact in various application.  

According to Sen M et al. [5], acoustic noise can be classified 

into two kinds; broadband turbulent or random noise which 

uniformly distributes its energy over the frequency band and the 

narrowband or pure tone which concentrate its energy on a 

specific frequency [8]. Several approaches have been proposed 

in noise mitigation.  For high-frequency noise, classical Passive 

Noise Cancellation (PCN) methods such as earmuffs, earplugs, 

audio-limiters use a mechanical barrier to absorb the sound 

signal, thereby masking a reasonable among of the noise [9]. 

Wang et al. [10] mitigate the effect of tonal noise by 5dB from 

the forward-curved centrifugal fan analysed in [11] using the 

open-cell metal foam. However, low-frequency noise cannot be 

mitigated using passive methods, this is because the width of the 

mechanical barrier use in passive methods is proportional and 

very close in value to the noise signal wavelength [9], [12]. 
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Passive methods provide a poor response to low-frequency 

sounds when their wavelength is longer than the size of the 

muffler liabilities [5]. As such low-frequency noise tend to have 

a large wavelength, thereby making passive methods for this 

noise ineffective and very bulky [4], [5]. This lead to what is 

called the Active Noise Cancellation (ANC) systems such as 

ANC headphones according to [4], [13]. This system employs 

the use of electromechanical or electro-acoustic system to 

reduce the noise effect. ANC was first used in practice back in 

the 1950s, based on patents by Lawrence Fogel. The two most 

effective ANC techniques to mitigate low-frequency unwanted 

sounds in noisy environments are; Adaptive filtering and 

standing wave pattern, used in [9], [14], [15]. The relevance in 

the treatment of low-frequency sounds is that they produce very 

intense vibrations that can fracture structures during very long 

periods of exposure as stated in [16], this consequently leads to 

fatigue and loss of concentration [2].  

In real-world applications, the characteristic of the acoustic 

environment is often varying, and so the frequency, amplitude, 

and phase of the noise signal are also nonstationary (time-

varying), thus, an ANC system must be adaptive in order to deal 

with these varying characteristics [4], [17]. The most commonly 

used adaptive filters are realized using a Finite Impulse 

Response (FIR) filter with the Least Mean Square (LMS) 

algorithm [14]. Narula et al. proposed an effective Adaptive 

filtering technique in [18], which utilize a single channel 

negative feedback control using LMS adaptive filters to remove 

unwanted noise in a real-time environment. A higher 

convergence rate than the proposed algorithm in [19] is depicted, 

where Sukhpreet et al. analyse the capability of the algorithm in 

mitigating different Signal to Noise Ratio (SNR). Both 

simulation and experimental results obtained in [19] reveals 

effective filtering of the noise in higher SNR signal with 15dB 

reduction, however, it can’t mask the noise in low SNR signal. 

Moreover, another work in [14] implements LMS adaptive filter 

algorithm to analyse the range of frequency noise for which it 

can mask in the corrupted signal. Result obtained has proven that 

this proposed algorithm can effectively mitigate lower noise 

frequencies i.e., (0Hz to 5000Hz) in high SNR signal. 

To solve the issue of mitigating low-frequency noise in low SNR 

signal, Sen M et al in [4] modified the Adaptive filter algorithm 

in [5], [16]. This algorithm is designed to form a standing wave 

for the noise signal, whereby an estimate of the original noise 

with 180° phase shift is generated and propagate in the same 

direction with the original noise to cancel out [20]. The ANC 

performance in this technique is mainly dependent on the 

accuracy of the amplitude and phase of the anti-noise generated 

by a signal processing algorithm [21]. However, the 

implementation of ANC is complicated although it has high 

reliability in cancelling noise. Initial ANC project with simple 

inverter fails, due to its low rate of sampling capability and 

unable to propagate sound wave in all direction [22]. This leads 

to use LMS adaptive filter with an external update algorithm 

[20]. Most recent articles utilise Normalize form of the LMS to 

achieve more stable and faster convergence condition than the 

simple LMS as in [15], which use Normalizes LMS adaptive 

filter with fixed step size to mitigate the effect of transformer 

noise of less than 1000Hz. On contrary, the Filtered LMS 

(FXLMS) algorithm requires a filtered version of the reference 

signal as input in which the filter is having the same impulse 

response as the cancellation path. FXLMS had been used on 

cancelling the periodic noise generated by laptop fan after 

identification [14]. Recently, Yang et al. [23] reduced 8dB noise 

level in the cabin of a high-speed elevator by implementing 

modified FXLMS algorithm. Nevertheless, the FXLMS 

algorithm has complex computation due to the consideration of 

the secondary path filter. ANC had been also used in the 

microcontroller in [24] which reduce an extreme low-frequency 

noise of 50-60 Hz, obtained results in both cases show a 20-

25dB noise mitigation. The steady-state error of the Normalize 

LMS algorithm with a fixed step-size is very large for a non-

stationary input, thus, Hamidia et al. [25] improved the 

algorithm performance using a variable step-size, results 

obtained present decrease in this steady-state error by 3dB from 

that obtained using fixed step size. 

In this paper, a comparative analysis of ANC headphones which 

utilize different models used in the state of art including 

Adaptive filtering and Standing wave technique is performed. In 

the former one, the model structure used in [14] was adopted, 

whereas in the latter one model scheme used in [4] was adopted. 

Two different sampled frequency speech signals are used as the 

desired signal. Sensitivity analysis based on two broadband 

frequency noise of 0-1000Hz and 1000-2000Hz was done and 

also based on different SNR. The frequency range of the 

successfully cancelled noise by the LMS adaptive filter 

algorithm is determined by performing Fast Fourier Transform 

(FFT) on the signals. The performance of the designed methods 

was evaluated using convergence rate and masked noise SLP.  

2. ANC structure 

2.1. Adaptive filtering in ANC 

An adaptive filter is a digital filter that has self-adjusting 

features. It is capable of regulating its transfer function 

coefficients automatically to adopt the input signal through an 

LMS update algorithm [26]. Adaptive filters play a significant 

role in modern technological products in areas such as 

telephone echo cancellation and ANC headphones. Adaptive 

filters work generally for the adaptation of signal-varying 

environments, spectral overlap between noise corrupted signal 

and unknown (time-varying) noise [14]. For example, when the 

interference noise is a high or low-frequency noise, and its 

spectrum overlaps some of the frequency of the desired signal, 

removing the interference using traditional filter such as a high 

pass or low pass filter with the fixed filter coefficients will fail 

to preserve the desired signal spectrum. 

The concept of noise filtering using an Adaptive filter is depicted 

in Fig. 1, and its basic operation is summarised as follows: 

 Varying external unknown noise is estimated by the 

LMS estimator 

 The adaptive filter adjusts its filter coefficient to filter 

out the noise frequencies in the corrupted signal with 

good preservation of the desired signal spectrum. 

 Human ear receives desired speech signal spectrum 

with little noise residual 

 

Fig. 1. ANC with adaptive filtering  

 

https://www.sciencedirect.com/topics/engineering/adaptive-filters
https://www.sciencedirect.com/topics/engineering/digital-filters
https://www.sciencedirect.com/topics/engineering/adaptive-filters
https://www.sciencedirect.com/topics/engineering/echo-cancellation
https://www.sciencedirect.com/topics/engineering/spectral-overlap
https://www.sciencedirect.com/topics/engineering/notch-filters
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Fig. 2. ANC with adaptive filtering control scheme 

Figure. 2 represent the control scheme of ANC headphones 

using adaptive filtering [14], it consists of two microphones. The 

first one sampled the desired speech s(n) to capture its 

components. However, due to a noisy environment, the signal is 

contaminated which makes the Analogue to Digital converter 

(ADC) channel to produces a noise-corrupted signal; that 

is, d(n) = s(n) + n(n). The second microphone is placed at the 

back of the headphones’ ear-cup where outside environmental 

noise is picked up by ADC channel to captures unknown 

noise x(n), which is fed to the adaptive filter W(z). Note that 

the corrupting noise n(n) in the first channel is uncorrelated to 

the desired signal s(n), so that separation between them is 

possible. The noise signal x(n) from the secondary path is 

correlated to the corrupting noise n(n) in the primary path, since 

both come from the same noise source. Similarly, the noise 

signal x(n) is not correlated to the desired speech signal s(n). 

When the noise estimate y(n) equals to the noise n(n) in the 

corrupted signal, that is, y(n) ≈ n(n), the error signal e(n) = d(n) - 

y(n) = 𝑠̃ (n) will approximate the desired speech signal s(n). 

Hence, the noise is removed in the desired signal. Note that in 

this application, the error signal actually converges to the desired 

speech signal, rather than converging to zero. 

The filter coefficient W(z) is adjusted based on the LMS 

algorithm in Eq.1 [18]: 

w(n + 1) = w(n) + μe(n)x(n)   (1) 

where w(n) is the coefficient response used currently, while w 

(n + 1) is the coefficient response obtained from the LMS 

algorithm and will be used for the next coming input sample. 

The discrete form of the estimated noise and the coefficient 

response are presented in Eq.2 and Eq.3 respectively where N is 

the number of samples: 

x(n) = [x(n) x(n − 1)⋯x(n − N + 1)]  (2) 

wT(n) = [w0(n) w1(n)⋯wn−1(n)]  (3) 

The control output response is described as in Eq.4: 

y(n) = wT(n)x(n)    (4) 

Assuming that W(z) has sufficient order, after the convergence 

of the adaptive filter, the residual error is approximately the 

desired speech signal (e(n) = 𝑠̃(n)) [14]. That is control output 

response is close to the noise free signal. 

2.2. Standing Wave Pattern in ANC 

In ANC using the standing wave technique, its basic operation 

is that there is a microphone, which captures the external noise 

and then performs some computation to generate an identical 

noise signal in opposite phase, this allows it to cancel the 

original noise as seen in [4]. In reality, this doesn't mitigate the 

noise to zero but reduces it by a considerable amount close to 

zero. The use of adaptive filters is one of the effective ways in 

standing wave pattern because of its capability to respond to 

changes in the noise parameters. This behaviour is possible 

because the adaptive filter coefficients vary over time and update 

automatically by an external LMS update algorithm [15].  

The LMS update algorithm is an approximation of the steepest 

descent algorithm which uses an instantaneous estimate of the 

gradient vector of the error function. The estimate of the gradient 

is based on sample values of the tap-input vector and an error 

signal [6]. The initial idea is to optimize the FIR filter weights 

“on-line” based on the adaptive filter LMS algorithm to develop 

an adaptive filter. Here, an adaptive filter is needed that is 

capable of estimating noise signal, altering its impulse response 

as required for the ANC headphone application. The concept of 

standing wave pattern using Adaptive filter is depicted in Fig. 3, 

and its basic operation is summarised as follows: 

• Varying external unknown noise is estimated by the 

LMS estimator 

• Invert the estimated noise with a phase shift of at least 

90%. Then propagate it in the opposite direction (add-

it) to the original noise signal to form a standing wave. 

• The adaptive filter adjusts its filter coefficient to 

minimize the resulting error to zero by optimizing the 

amplitude, phase angle of the estimated noise.  

• Human ear receives desired speech signal spectrum 

with little noise residual 

 

 
Fig. 3. ANC with Standing wave pattern 

 
Fig. 4. ANC with Standing wave pattern control scheme 
 
Figure. 4 represent the control scheme of ANC headphones 

using standing wave pattern [21], it also consists of two 

microphones that are placed at the back of the headphones’ ear-

cup to picked up outside noise and noise residual. An ADC 

sampled the noise x(n) from the reference microphone and then 

is fed to the adaptive filter W(z). The adaptive filter W(z) 

estimate the response of the unknown primary acoustic path P(z) 

between the reference microphone and the error microphone. 

And also estimate the response of the unknown secondary 

acoustic path H(z) between the cancelling speaker and the error 

microphone. The noise signal x(n) from the secondary path is 

correlated to the original noise d(n) in the primary path since 

both come from the same noise source. When the estimated 

noise y(n) has the same amplitude and 180° out of phase with 

https://www.sciencedirect.com/topics/engineering/noisy-environment
https://www.sciencedirect.com/topics/engineering/corrupting-noise
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desired noise d(n), that is, y(n) ≈ - d(n), the error signal e(n) = 

d(n) - y(n) = 0. Hence, the original noise is cancelled with the 

estimated noise using the concept of destructive interference. 

Note that in this application, the error signal converges to zero 

depending on the accuracy of the amplitude and phase of the 

anti-noise generated. 

Using a digital frequency-domain representation of the problem 

in Fig. 5, the ANC system uses an adaptive filter W(z) to 

estimate the response of an unknown primary acoustic path P(z) 

and the unknown secondary acoustic path H(z) [15]. The z-

transform of e(n) can be expressed as in Eq.5: 

E(z) = X(z)P(z) + X(z)W(z)H(z)                   (5) 

Assuming that W(z) has sufficient order, after the convergence 

of the adaptive filter, the residual error is zero (that is, e(n) = 0). 

This result requires W(z) to be as in Eq.6. 

W(z) = −
P(z)

H(z)
            (6) 

The filter coefficient W(z) is adjusted based on the LMS 

algorithm in Eq.7: 

w(n + 1) = w(n) − μe(n)x(n)h(n)         (7) 

where w(n) is the coefficient used currently, while w(n + 1) is 

the coefficient obtained from the LMS algorithm and will be 

used for the next coming input sample. With discrete form of the 

estimated noise and the filter coefficient response in Eq.8 and 

Eq.9 respectively, where N represent the total number of 

samples.  

x(n) = [x(n) x(n − 1)⋯x(n − N + 1)]        (8) 

wT(n) = [w0(n) w1(n)⋯wn−1(n)]         (9) 

The control output response is depicted in Eq.10: 

 y(n) = ∑ wi(n)x(n − iN−1
i=0 )         (10) 

At any frequency w, such that H(𝑤) = 0, the control system 

become Unstable. And also, at any frequency w, such that 

P(𝑤) = 0, the control system becomes Ineffective. To avoid 

risking the system to an unstable state, Kuo et al. in [4] modified 

the control scheme in [16] as shown in Fig. 6. 

 

 
Fig. 5. Modified ANC headphone control scheme 

At last, from Fig. 6, C(z) will compensate effect of having H(z) 

= 0. The model modified the LMS update algorithm while 

leaving all order response the same, as presented in Eq.11: 

w(n + 1) = w(n) − μe(n)x′(n)h(n)         (11) 

The discrete form of the filter response C(z) and its 

corresponding output are presented in Eq. 12 and Eq.13 

respectively. 

cT = [c0(n) c1(n)⋯ cn−1(n)]         (12) 

x′(n) = ∑ 𝑐𝑖(𝑛)𝑥(𝑛 − 𝑖𝑁−1
𝑖=0 )          (13) 

3. Methodology 

Reduction of noise has become inevitable, various approaches 

are discussed in the literature, ranging from the older to recent 

ones. Having the discussed ANC structure, the recent and 

efficient ANC techniques used in [4], [14] were adopted. And 

some designed specifications are added. Which include the 

following: 

i. Optimization of the step size and the filter length of 

the LMS adaptive filter while maintaining system 

stability and faster rate of convergence: this is to 

improve the noise cancellation in the transient state. 

ii. Addition of sampling rate improves the estimation 

power of the filter, by reducing the delay caused in the 

anti-noise phase. 

Firstly, two audio files named ‘Audio A’ and ‘Audio B’ of 

Waveform Audio (wav) Format is used as the desired speech 

signal and Gaussian random noise (mean = 0, variance = [0.01-

1] is used as the outside noise to be masked. The ANC 

simulation models are developed in MATLAB/SIMULINK 

software environment as structured in Fig 2 and Fig 4. For the 

purpose of sensitivity analysis, the following are used: 

• Broadband (random) noise signal of (0 -1000) Hz and 

(1000- 2000) Hz   

• Signal to Noise ratio (SNR) of 40, 30, and 20dB  

• Audio signal sampling rate of 8000Hz and 48000Hz 

for ‘A’ and ‘B’ respectively. 

The power of the audio signals 𝑃𝑠 is computed using the relation 

in Eq.14 whereas the power of Gaussian noise 𝑃𝑛𝑜𝑖𝑠𝑒  is 

approximated by the expression in Eq.15 [27], with x as the 

audio signal, N total number of sample and 𝜎 standard deviation 

of the noise with zero mean: 

 

 

Ps =
∑ norm(xi

2)N
i=1

N
          (14) 

Pnoise = σ2          (15) 

The SNR of an audio signal is express in term of signal power 

and noise power as in Eq.16 [28]: 

SNR = 20log⁡(
Ps

Pnoise
)        (16) 

The Sound Pressure Level (SPL) is one of the main factors to be 

considered in noise reduction system [29], it is express in Eq.17 

in term of root mean square value of the signal 𝑃𝑟𝑚𝑠  and 

threshold of human hearing 𝑃𝑟𝑒𝑓. 

SLP = 20log⁡(
Prms

Pref
)                        (17) 

In DSP, Fast Fourier Transform (FFT) is one of the most useful 

tools in signal processing, as such it is employed to see the effect 

of the noise frequency removal. The FFT of a signal says x [30], 

is given in Eq.18: 
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Xk = ∑ xne
−i2πkn/NN−1

n=0 ,⁡⁡⁡⁡k = 0,1, . . , N − 1       (18) 

 
3.1. ANC with Adaptive filter problem formulation 

In this control scheme, the Adaptive filter is configured with 

Two input signals and One output signal as described in Fig 1. 

Input y1 is the desired signal which is taken as the noise 

corrupted speech signal (combination of speech signal and 

Gaussian random noise) and Input y2 is the Input signal which 

is taken as the noise signal. Another audio signal which is the 

speech signal (noise-free speech signal), s(n) is used as a 

reference signal for comparison with the filtered output of the 

algorithm, e(n). Thus, the human ear receives the filtered output 

signal, e(n). The LMS algorithm is initiated by setting the 

column weight vector w(n) and the filtered output e(n) as a zero-

column vector. 

The initial value for the step size (µ = 0.04) is calculated from 

the stability condition criteria in Eq.19, in term of the filter 

length N and power of the white noise 𝑃𝑛𝑜𝑖𝑠𝑒: 

0 ≤ μ ≤
1

N Pnoise
          (19) 

Upon sending Input y1 and Input y2 to the LMS adaptive filter 

block. Input y2 is multiplied by the column weight vector w(n) 

to generate a weighted-noise signal y2’. The intermediate output 

y2’ is then subtracted from the Input y1 to obtain the error e(n). 

After each interaction, the column weight vector would 

adaptively update. The filtering process would be continuing 

until it reaches the prescribed filter length N, which is the same 

as the number of input sample. The absolute difference between 

the filtered output e(k) of the LMS adaptive filter algorithm and 

the reference input (noise-free speech signal) is calculated as the 

residual. 

For performance evaluation of the designed ANC, FFT in Eq. 18 

is applied on both the filtered and noisy signal to obtain their 

correspondence frequency response. Also, the time response of 

the noise-free speech signal, filtered output and the residual 

between them is analysed. Moreover, the SLP of the noisy and 

filtered signal is computed using Eq.17, to find the reduced SLP. 

 

3.2. ANC with standing wave problem formulation 

To form an effective control of standing wave generation in 

ANC, the Adaptive filter is configured as an estimator, with Two 

input signal and One output signal as described in Fig 4. Input 

y1 is the desired signal which is taken as the identified noise 

between the reference noise microphone and the error 

microphone and Input y2 is the Input signal which is taken as 

the reference noise signal. The desired signal is compared with 

the Input signal to generate the error signal, e(n) using the 

concept of destructive interference. The LMS algorithm will 

take in this error signal to update the Adaptive filter w(n) 

coefficient, non-zero error is obtained if there is magnitude and 

phase difference between the signals. 

Human ears receive an audio signal which is the speech signal 

(noise-free speech signal), s(n) and small noise residual, e(n). 

Here, also the algorithm is initiated by setting the column weight 

vector w(n), primary path p(n), secondary path s(n), and anti-

secondary path c(n) as a zero-column vector, with the same 

initial value for the step size (µ = 0.002) used in the first case. 

Upon sending Input y1 and Input y2 to the LMS adaptive filter 

block. The adaptive filter performs off-line system identification 

to find the unknown paths p(n), h(n), and c(n) response. Input y2 

is multiplied by the column weight vector w(n) to generate a 

weighted-noise signal y2’.  Which is then scale-up with h(n) to 

obtained estimated noise of the same magnitude and 180° out of 

phase with the desired signal. After the destructive interference 

between the two signals, the residual noise is computed, e(n), 

and used to adaptively updates the LMS algorithm. This process 

would be continuing until it reaches the prescribed filter length 

N, which is the same as the number of input sample. 

The frequency range of the successfully cancelled noise by the 

LMS adaptive filter algorithm is determined by performing FFT 

on the required signals. Also, the time response of the noise-free 

speech signal, residual noise, and human received signal were 

analysed to evaluate the performance of the designed ANC. 

Besides, the SLP of the noisy and filtered signal is computed 

using Eq.17, to find the reduced SLP. 

4. Results and Discussion 

In this section, the results obtained from the ANC simulated 

techniques are discussed and evaluated based on the noise 

reduction in speech signals, and frequency range of the 

successfully cancelled noise. 

The step size and the filter length are intrinsically related to the 

performance of adaptive filtering, with the length of the filter 

specifically responds to the accuracy of LMS adaptive filter 

modelling and step size response to the stability of the filter 

model. Due to the fact that this filter length affects the rate of 

convergence through the computational time. The trade-off 

between the filter length and step size is that an increase in the 

filter length increased the iteration and the convergence rate is 

decreased. Firstly, the value of step size is fixed at 0.04 and then 

the filter length L effect is studied. Chosen values for L are; 20, 

25, 30, 40 and 50. The results obtained shows that the 

convergence of error signal increases until the L is 40, at this 

value the model starts diverging and noise reduction reduced. 

Furthermore, the filter length L is kept fixed at 40 and step sizes 

are varied within the stability condition mention in section 3.1, 

as 0.002, 0.01, 0.02 and 0.05. Result shows that the filter 

convergence rate decrease at 0.002 and the convergence rate 

keep rising until the system reaches 0.04 where divergence 

starts. But to my surprise, the best convergence is at a step size 

of 0.031. Hence, it can be concluded that the optimal values of 

the Filter length and step size are 40 and 0.031 respectively.  

To investigate the sensitivity of frequency in both the two 

proposed ANC techniques, reduction of monotonic noise signal 

of 250, 500, and 1000Hz are depicted as shown in Fig. 6. 

Obtained shows that standing wave pattern has better noise 

reduction at a frequency lower than 650Hz than the adaptive 

filtering technique. Whereas the adaptive filtering mitigates the 

noise at high frequency than standing wave as shown in Fig. 6. 

 

This is not surprising as it is well known that standing wave 

pattern accuracy decrease with an increase in the frequency of 

the signal. 
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Fig. 6. ANC Sensitivity to monotonic frequencies 

 

 
The audio signals sampled at 8kHz and 48 kHz for A and B 

respectively were used to evaluate the proposed techniques, and 

the recorded time is 10 s. The FFT of these audio signals is 

shown in Fig. 7. Most audio signals such as speech signal, music 

signal are typical non-stationary signals, to achieve a good 

performance, the speech signals must be segmented. The audio 

signal is segmented every 40 ms and a frame includes 32 

sampled data. In the simulation, broadband Gaussian noise of 

different variance 𝜎2 is added to the audio signals, to have 40dB, 

30dB and 20dB SNR. 

 

 
 

 

 

 

 

 
Fig. 7. FFT plot of Audio A & B 
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Fig. 8. SNR- 40 dB/ Audio A/ Noise (1k – 2kHz) (a) Noisy signal FFT, (b) Adaptive filtering performance and (c) 

standing wave performance. 
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Fig. 9. SNR- 40 dB/ Audio A/ Noise (1k – 2kHz) (a) Noisy signal FFT, (b) Adaptive filtering performance(c) 

standing wave performance.

 

 

 

 
Fig. 10. SNR- 40 dB/ Audio A/ Noise (1k – 2kHz) (a) Noisy signal FFT, (b) Adaptive filtering performance and (c) 

standing wave performance. 
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Fig. 11. SNR- 40 dB/ Audio B/ Noise (1k – 2kHz) (a) Noisy signal FFT, (b) Adaptive filtering performance and (c) 

standing wave performance. 

 

From the results obtained in Fig. 8, it can be seen that for a noisy 

signal of 40 dB SNR (audio A corrupted with a broadband noise 

frequency of 0-1000Hz), the standing wave pattern ANC has 

better convergence rate of 3.2 sec than that of adaptive filtering 

ANC 7.2 sec, with a measured noise reduction of 52.78 dB and 

41.66 dB respectively. So also, from Fig. 9 with a noisy signal 

of 30 dB SNR corrupted with the same frequency range, the 

standing wave pattern has better convergence rate of 4.8 sec than 

that of adaptive filtering 10.2 sec having a measured noise 

reduction of 49.78 dB and 22.36 dB respectively.  To emphasis 

the obtained result in Fig. 8, another 40 dB noisy signal is 

generated from (audio B corrupted with a broadband noise 

frequency of 0-1000Hz) as depicted in Fig. 11, the standing 

wave ANC has better convergence rate and noise reduction than 

adaptive filtering ANC. Thus, we can say that standing wave 

technique has better performance for a low SNR signal than 

adaptive filtering, but of course for a broadband noise frequency 

less than 800Hz. 

Changing the broadband frequency range of the Gaussian white 

noise to 1000-2000Hz. It can be seen that from Fig. 10 noisy 

signal of 40 dB generated from audio A. Adaptive filtering ANC 

has better convergence rate of 7.8 sec than that of standing wave 

pattern ANC 11.6 sec, with a measured noise reduction of 40.12 

dB and 19.11 dB respectively. When compared with the same 

Noisy signal in Fig. 8 but different frequency band, it can see 

that their performance using the Adaptive filtering method is 

very close, while that of the Standing wave greatly differ. We 

have done the sensitivity analysis based on different SNR and 

different frequency band as presented in Table 1. 

 
Table 1. Sensitivity Analysis based on SNR and frequency band 

 

Methods 
SNR 

(dB) 

Frequency 

band (Hz) 

Convergence 

rate (sec) 

Masked 

SLP (dB) 
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filtering 
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7.2 41.66 

30 10.5 22.36 
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wave 

pattern 

40 3.2 52.78 

30 5.0 49.78 
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filtering 
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1000 - 2000 

7.8 40.12 

30 11.6 19.11 

Standing 
wave 

pattern 

40 11.2 22.12 

30 14.8 10.92 

 

From the run sensitivity analysis tabulated in Table. 1, it can be 

concluded that standing wave pattern has the better performance 

at mitigating noise frequency below 800Hz, with low SNR than 

Adaptive filtering. However, cannot be used to masked high-

frequency noise (i.e., reduction less than 11dB). Despite the fact, 

Adaptive filtering has low performance for a low SNR at all 

frequencies but it can still mask some high frequencies up to 

22dB. 

5. Conclusion 

 

In this paper, real-time simulation of Active Noise Cancellation 

(ANC) algorithm was designed using the start of art techniques 

discussed including adaptive filtering and standing wave pattern. 

The control schemes were structure based on single-channel 

broad-band feedforward and feedback control, utilizing 

Adaptive filter with Least Means Square (LMS) estimation, in 

SIMULINK framework. Speech signals were used as the desired 

audio signal and Gaussian white noise of zero mean uniform 

distribution as the outside noise. To generate different SNR 

signals with a fixed speech signal, the Gaussian noise variance 

𝜎2  was varied from (0.01-1). Gradient descents method was 

employed to improve the adaptation capability and convergence 

rate of the LMS adaptive filter. This yields an optimal value of 

the filter length L and step size µ, 40 and 0.031 respectively. 

From the run sensitivity analysis on both the designed models, it 

can be concluded that ANC headphone using standing wave 

pattern has the better performance at mitigating noise frequency 

below 800Hz, with low SNR than those using Adaptive filtering. 

However, ANC headphone using standing wave pattern cannot 

be used to masked high-frequency noise (i.e., reduction less than 

11dB). On the other hand, ANC headphone using Adaptive 

filtering has low performance for a low SNR at all frequencies 

but it can still mask some high frequencies up to 22dB.
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