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Abstract 
Wind turbine blades operate in a harsh environment causing them to always be susceptible to damage. Variable wind 
loading, debris impact, and thermal gradient, among other factors, can cause damage to the blades. Detection of blade 
damage at early stages can prevent massive cost associated with turbine down-time and blade replacement. In this work, 
a vibration-based method is presented to detect damage at early stages. The presented method takes advantage of the effect 
of crack on modal parameters of the blades vibration. Finite element model (FEA) is constructed for both healthy and 
damage blade to study that effect. Power spectral density (PSD) plots of the blade’s vibration before and after damage are 
compared and the changes in the resonant modal amplitudes frequencies are identified. To minimize the number 
accelerometers needed to monitor the health of the blade and without compromising the accuracy of damage predictions, 
ordinary kriging method is used to predict cracks in the blade’s structure. Kriging uses modal parameter data, experimental 
or otherwise, to estimate damage location on the blade. It creates a map of damage predictions throughout the region use 
measurements from far less sensors than common techniques. Damage characteristics estimates using the proposed method 
showed damage attributes predictions with accuracy greater than 93 %. Simulation is used to validate the proposed method 
and the results are discussed. 
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1. Introduction 

Wind energy is the main source of renewable energy with annual 
growth of nearly 20% in the past two decades [1, 2]. However, 
as it is the case with all other energy conversion methods, wind 
energy harvesting has its challenges. The latter are mainly due 
to lack of historical wind data or premature failure of wind 
turbine tied to rotational unbalance, erosion, corrosion and 
impact failure, and its earlier detection and remedy [1, 2].   

Vibration analysis can be used as a potential technique for 
damage identification of wind turbine blades through the 
monitoring of variation of resonant frequencies and mode shapes 
of the blade structure. Damage inflected on the blade directly 
affects its vibrational behavior and manifest itself in the form of 
changes in resonant frequencies and mode shapes. Vibration-

based methods use accelerometers to monitor the vibration of 
the structure. The number of accelerometers attached to the 
structure depends on the detection approach, the size of the 
structure and the environment in which the structure operates. A 
large body of research work in this field focuses on damage 
identification using vibration signals from the structure. 

The fact that large wind turbines are located in remote locations 
such as off shore or uphill, where their access is limited, remote 
detection of their onset of “mal-performance” is of great 
importance. In general, turbines may underperform due to 
uncompromised blade/rotor geometrical change or faulty 
mechanical or electrical systems. The latter two types are easy 
identified by comparison with operational turbine. However, 
early detection of the former enables swift maintenance and 
ensures steady operation. 
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Wind turbines are subjected to fluctuating environmental 
conditions that may also initiate and cause damages to the 
blades, rotor, or hidden rotating components [3]. Blade and rotor 
damages imply high economical cost in service and down-time. 
Therefore, mitigation of such failures through simulation and 
modeling as well as early online detection via remote sensing 
reduces the risk of wind turbine failure, cuts cost and increases 
their deployments as an efficient renewable and clean source of 
energy.  

Numerous researchers implemented damage detection 
techniques using radar [4], fiber optics [5, 6], laser [7, 8], 
acoustic [9, 10] and thermography and imaging [11-13] for 
damage detection. Others used Kriging analysis as it revealed 
higher accuracy.  Padopoulos et al [14] and Garcia et al [15] 
implemented the microscopic length deformation at pre-selected 
points in the structure to infer information about the total 
deformation of the whole structure. As the total deformation 
depends on the magnitude of damages and their location, this 
technique introduces non-isotropy to the structure and poses 
strong drawback.  

Ultrasonic Testing (UT) has been used for wind turbine blades 
damage detection. Raisutis et al [13] used guided waves 
ultrasonic air-coupled technique, to detect defects in a structure 
and record its acoustic response.  Wavelet transform of the 
received waveform was used to monitor and analyze any internal 
defects. The inspected region size, however, is limited and 
localized and failure location can be occurred elsewhere.  
Because small changes in the structure or support will cause 
changes in the vibration signature, the PSD techniques 
demonstrate its uniqueness in addition to its relatively low cost 
[16]. Furthermore, vibration-based structural monitoring 
methods give instantaneous feedback on the condition of blades 
[17]. Monitoring natural frequencies and mode shapes is a very 
basic tool for detecting faults.  It can be achieved by accessing 
only few points in the structure and is exposed to less 
experimental noise [18]. Shi et al [19] experimentally examined 
the ability of natural frequencies and mode shape changes in 
detecting fine cracks. Their results revealed that the mode shape 
change approach can detect cracks up to ten times finer than 
frequency shifts approach. They suggested that identifying 
defects relying on natural frequencies shifts is inconclusive. 
Also, applying mode shapes approach only, requires many 
sensors distributed along the structure [20]. Therefore, utilizing 
both natural frequencies and mode shape changes would 
complement one the other. 

Drawbacks of previous methods can be attributed to the use of 
expensive equipment such as radar and laser, noisy environment 
and lack of accuracy in the case of acoustic and thermography, 
reliability of the measurement devices as it is the case with brittle 
fiber optics and localized and tedious inspection methods such 
as the UT. 

In this work, a dynamic model is constructed for both, healthy 
and defected turbine blades by introducing a crack into the test 
turbine’s blade. The aerodynamic load on the wind turbine is 
evaluated based on the Blade Element Momentum-integral 
Method (BEMM). According to the BEMM the blade’s radial 
direction is subdivided into multiple elements where the drag 
and lift forces are evaluated and are used as forces input to the 
dynamic turbine model. The Power Spectral Density (PSD) is 
monitored corresponding to every defect dimensions and 
location to draw a relation between crack parameters and PSD 
changes. Furthermore, Kriging analysis is used to assess the 
intensity of these damages and relate the output of the PSD to 
the introduced crack parameters. 

 

2. Structural Modeling and Aerodynamic Load 

2.1. Structural Modeling 

Fig.1 shows the FEA model of blade-hub assembly generated by 
ANSYS. The blades are of  NACA-4415 type airfoil and their 
discretized mesh consists of 36,374 tetrahedron elements and 
70,417 nodes (n). The lower surface of the hub shown in the 
Fig.1 is constrained/fixed in all directions. Knowing that n is 
usually large, a nodal model implies huge numerical burden, 
making it impractical to produce a working state-space model 
suitable for structural simulation, estimation and control 
applications. Thus, N dimensional second-order modal model 
can be used instead, where N<< n is number of modes included 
in the modal dynamic model [21].  This can be described per Eq. 
1 and Eq. 2 as: 

ሷࣁ ൅ ൅૛ࣁࢹࢆሶ ൅ ࣁ૛ࢹ ൌ  (1)                                                         ࢛࢓࡮
 

௦ܻ ൌ ߟ௠ௗܥ	 ൅ ሶࣁ௠௩ܥ       (2) 

where ࣁ ൌ ࢗࣘ , ࣘ	 is the n×N modal matrix, Ω is the N×N 
diagonal matrix of Modal frequencies, Z is the N×N modal 
damping matrix, Bm is the N×p modal input matrix, ࢊ࢓࡯  is l×N 
modal displacement matrix, and ࢜࢓࡯  is l×N modal velocity 
matrix, where p and l are the number of inputs and outputs, 
respectively.  Thus, the linear, time-invariant (LTI) modal model 
is: 

ሶࢠ ൌ ࢠ࡭ ൅  (3)                                                           ࡮
 

௦ܻ ൌ ݖܥ ൅  (4)      ݑܩ

The new state vector ࢠ ൌ ሾࢠ૚, ࢀ૛ሿࢠ ൌ ሾࣁ	ࣁሿࢀ is introduced such 
that, the state-space representation of the structure having point 
forces as inputs and point accelerations as outputs. Matrices of 

Eqs. (3-4) are,, ࡭ ൌ ቂ ૙ ૚
െષ૛ െ૛܈ષ

ቃ ࡮ , ൌ ሾ૙ ࢀሿ࢓࡮ ࡯ , ൌ

ሾെࢹࢇ࢓࡯૛ െ૛ࢹࢆࢇ࢓࡯ሿ, ࡳ ൌ ࢓࡮ࢇ࢓࡯ ࢇ࢓࡯ , ൌ  ࢇࢇ࡯ and ࢶࢇࢇ࡯
is the accelerometer locations matrix. Assuming proportional 
damping, then Z and Ω are the matrices of modal damping and 
modal frequencies. Model defined in Eqs. (3-4) represent the 
full-order modal model of the structure. This is usually a large 
model if the structure is large, and if large number of modes is 
incorporated into the model. Therefore, the numerical cost 
associated with implementing such model for vibration 
estimation and vibration analysis is still high, although it is 
considerably less than the nodal model of Eqs. (1-2). Hence, 
model reduction is an option, provided that the model accuracy 
is maintained. The dynamic model of the hub-blade structure is 
excited by the aerodynamic load presented in the following 
section. 
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Fig. 1. FE model and mesh of the blade-hub assembly, the blades 
are NACA-4415 type airfoil, and the hub is constrained in all 
directions at the lower surface 
 
2.2. Aerodynamic Calculation 

Blade Element Momentum-integral Method (BEMM) is a 
simplified flow field tool for evaluation of the aerodynamic load 
from the lift & drag coefficients of a given turbine airfoil [22]. 
The evaluated load is applied at multiple sections (L≈10) along 
the span of the turbine blade.  The angle of attack accounts for 
the incoming wind and rotor speeds.  Higher fidelity methods 
such as Navier-Stokes flow simulation or wind tunnel 
experimental data on rotating turbine can also substitute full 
scale data [23]. Processing this data enables the application of a 
reasonable multiple fixed-point load along the blade span for 
further model analysis. Specifically, the forces on the wind 
turbine blades is expressed as function of the coefficients of lift 
(CL) and drag (Cd) as per the angle shown in Fig. 2.  The blade 
is assumed to be discretized into L-sections; each has its own 
force, all of which are collectively added to obtain the individual 
blade’s total force. As theory assumes no aerodynamic 
interaction between sections, the radial flow is ignored. 
Moreover, forces on the blades are determined solely by the 
airfoil shape.  The increments of the thrust (dFT) and the torque 
(dFN) are evaluated per Eq. 5 and 6 as: 

 
்ܨ݀ 	ൌ ߮ݏ݋௅ܿܨ݀ ൅  (5)                                                 ߮݊݅ݏ஽ܨ݀

 
ேܨ݀ 	ൌ ߮݊݅ݏ௅ܨ݀ െ  (6)                                          ߮ݏ݋஽ܿܨ݀

 

where ݀ܨ௅ ൌ ௟ܥ
ଵ

ଶ
ߩ ௥ܷ௘௟

ଶ ݎ݀ܿ ஽ܨ݀ , ൌ ௗܥ
ଵ

ଶ
ߩ ௥ܷ௘௟

ଶ ݎ݀ܿ , ߮	 is the 

angle of relative wind, ௥ܷ௘௟ is the relative wind speed, ܥ௟ and ܥௗ 
are the lift and drag coefficients, respectively. This lead to the 
expression of the incremental thrust and torque as: 

 

݀ܶ ൌ ߩߨᇱߪ
௎మሺଵି௔ሻమ

௦௜௡మఝ
ሺܥ௟ܿ߮ݏ݋ ൅  (7)                   ݎ݀ݎሻ߮݊݅ݏௗܥ

 

݀ܰ ൌ ߩߨᇱߪ
௎మሺଵି௔ሻమ

௦௜௡మఝ
ሺܥ௟߮݊݅ݏ െ   (8)                             ݎଶ݀ݎሻ߮ݏ݋ௗܿܥ

 
where σ′ is the local solidity defined as σ′ ൌ Bc ⁄ 2πr; Here B 
is the number of blades and c is the blade chord length, ߮ is the 
angle of relative wind. The shaft torque (N*) is the sum of Ni for 
all the blade sections, and the wind turbine power is the product 
of N* and ω.  Eventually, the wind turbine power prediction lies 
in solving the axial and rotational  induction factors a and a' [24], 
and after some manipulation these are related and given as: 
 

 

a ൌ
ଵ

ଵା
ర౩౟౤మಞ

ಚᇲሺిౢౙ౥౩ಞశిౚ౩౟౤ಞሻ

, aᇱ ൌ a
େౢୱ୧୬஦ିେౚୡ୭ୱ஦

ሺେౢୡ୭ୱ஦ାେౚୱ୧୬஦ሻ஛౩
                  (9) 

 

where ߣ௦  is the local tip speed ratio defined as ߣ௦ ൌ ݎ߱ ܷ⁄ . 
Solving for the induction factors enables back substitution and 
evaluation of the forces exerted on the rotor and prediction the 
turbine performance. 

 
 

 
 
Fig. 2. Force direction on the blades cross-section, (a) shapes of the 
sections on which forces are calculated (b) forces generated from 
wind loading and their direction on each cross-section 

3. Kriging Analysis 

3.1. Ordinary Kriging 

Kriging is a method that allows the estimation of the value of 
variable at certain grid points within a region using linear 
combination of available measurement of the variable at 
neighboring points. The estimates are a weighted sum of known 
values of the variable. Kriging method uses the covariance-
distance data in the interpolation to determine the weights in the 
sum. Kriging is considered to be the best linear unbiased 
estimator. It is unbiased because the estimation error average is 
zero while it is the best estimator because estimates error 
variance is minimized. Moreover, kriging requires that the 
analyzed data must be stationary [25]. 

3.2. Experimental Variogram 

The semivariogram is a measure of the degree of spatial 
dependence between samples. It is usually a function of the form 
given in Eq. 1 where the spatial correlation of a set of random 
variables as a function of the separation distance between those 
data points is expressed in the following form;  

ሺ݀ሻߛ ൌ
ଵ

ଶ௡ሺௗሻ
∑ ሾܼሺݔ௜ሻ െ ܼሺݔ௜ ൅ ݀ሻሿଶ௡
௜ୀଵ                                         (10) 

where ߛሺ݀ሻ  is the experimental semivariogram, ݀  is the 
separation distance, ܼሺݔ௜ሻ  is the value of the observation at 
location ݔ௜, ܼሺݔ௜ ൅ ݀ሻ is the value of the observation at location 
௜ݔ ൅ ݀, and ݊ሺ݀ሻ is the number of distinct pairs separated by 
distance ݀ . A semivariogram might be thought of as 
"dissimilarity between point values as a function of distance", 
such that the dissimilarity is greater for points that are farther 
apart. Therefore, after a certain distance between points the 
correlation between points becomes zero. The latter is called the 
range ሺܴሻ. The value at which the correlation between points is 
zero is called the sill ሺݏሻ, where the variance of the studied 
parameter reaches its maximum value. The value of ߛሺ݀ ൌ 0ሻ is 
called the nugget ሺܰሻ  where the error is only caused by 
measurement. 
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3.3. Theoretical Semivariogram 

The experimental semivariogram usually does not have the 
isotropy property (i.e., uniformity in all directions). Therefore, 
semivariogram fitted to experimental data can be used instead. 
The fitted model can be linear, gaussian, spherical, or 
exponential, where in all of them the values of the nugget ሺܰሻ, 
sill ሺܵሻ, and range ሺܴሻ, are determined. The choice of fitted 
model depends on the nature of observation data and the 
performance and accuracy of the estimates generated by each 
model. IN this work, ordinary linear Kriging model is chosen 
since the simulation data is usually accurate and have no noise 
contamination. Thus,  ߛො௜௝ሺ݀ሻ given in Eq. (11); 

ො௜௝ሺ݀ሻߛ ൌ ቊܰ ൅ ܵ ቀ
ௗ

ோ
ቁ , 0 ൏ ݀ ൑ ܴ

ܰ ൅ ܵ											,				݀ ൐ ܴ
                                                    (11) 

The kriging equation can be expressed as the summation shown 
in Eq. 3, such that; 

ො௜௢ߛ ൌ ∑ ߱௜ߛො௜௝ ൅ ௡ߣ
௝ୀଵ                                                         (12)     

where ߛො௜௢ are the variogram values given by Eq. 2 between all 
known points (ܼ௜ሻ and unknown point (ܼ௢ሻ , ߱௜′ݏ are found by 
solving the system of linear equations shown in Eq. 4; 

  

൦

ොሺܼଵߛ െ ܼଵሻ … ොሺܼଵߛ െ ܼ௡ሻ 1
⋮ ⋱ ⋮ ⋮

ොሺܼ௡ߛ െ ܼଵሻ … ොሺܼ௡ߛ െ ܼ௡ሻ 1
1 … 1 0

൪ . ቎

߱ଵ
⋮
߱௡
ߣ

቏ ൌ ൦

ොሺܼ௢ߛ െ ܼଵሻ
⋮

ොሺܼ௢ߛ െ ܼ௡ሻ
1

൪         (13) 

Lagrange multiplier ߣ  plays a key role in minimizing the 
estimation error (i.e. minimizing the kriging variance). To 
generate unbiased estimates of the variable at unknown points, 
the total sum of weights must add up to 1 as shown in Eq.11. 

∑ ߱௜
௡
௜ୀଵ ൌ 1                                                            (14) 

Kriging yields an estimation of the variable ܼ	at a given point as 
well as the estimation error variance, where the latter gives a 
good indicator of the relative quality of estimations. The error 
variance ߪ௘ଶ is, [25]. 

௘ଶߪ ൌ ∑ ߱௜ߛො௜ ൅ ௡ߣ
௜ୀଵ                                                        (16) 

Depending on the size, location and orientation of the turbine 
blade’s structural damage, certain modes of vibration are 
affected. Therefore, we have to know first how many mode 
shapes are necessary to obtain valuable and sufficient 
information about mode shapes and natural frequencies affected 
by the range of the dimensions and locations of the crack. 
Through data analysis technique used in this research, it is 
possible to locate and identify any crack using the vibration 
signature of wind turbine when excitation forces are applied. 

This is accomplished by the constructed dynamic model that 
based on the Eigen values and Eigen vectors obtained from high 
fidelity finite element (FE) model of the turbine blade for each 
of the pristine/healthy and defected turbine blades.  State space 
models constructed from Eigen values and Eigen vectors are 
used to generate the PSD of the blade under various forcing and 
defect conditions. Turbine blade tested in this study has a length 
of 1.22 m made by ABSPLUS-P430 Inc. and characterized with 
ultimate, yield, and modulus tensile stresses of 33 MPa, 32 MPa, 
and 2.2 GPa, respectively. Hub and blade dimensions and 
configurations are summarized in Table 1.  

Table 1. Mechanical properties of the Hub-Blade assembly 

Component Element Dimension [mm] 

Hub Hub 
Diameter 

300.00 

Hub 
Thickness 

10.00 

Shaft 
Diameter 

146.60 

   
Blade Total 

length 
1220.00 

3-balded Maximum 
Width 

176.30 

Airfoil Tip Width 
NACA-4415 

75.62 
----- 

 

  

Table 2.  Aerodynamic forces calculated by Eqs, (5) and (6) on 
each blade section for each wind velocity 

 
Force  

Wind Speed 

 ܛ/ܕ 12 ܛ/ܕ 10 ܛ/ܕ 8 ܛ/ܕ 5

 ૚ 0.240 0.386 0.506 0.645ࡺࡲࢊ

 ૚ 0.594 1.338 2.000 2.803ࢀࡲࢊ

 ૛ 0.339 0.495 0.612 0.743ࡺࡲࢊ

 ૛ 0.653 1.439 2.129 2.961ࢀࡲࢊ

 ૜ 0.420 0.593 0.717 0.851ࡺࡲࢊ

 ૜ 0.621 1.373 2.029 2.817ࢀࡲࢊ

 ૝ 0.465 0.646 0.773 0.908ࡺࡲࢊ

 ૝ 0.554 1.222 1.806 2.508ࢀࡲࢊ

 ૞ 0.507 0.687 0.815 0.950ࡺࡲࢊ

 ૞ 0.499 1.085 1.597 2.214ࢀࡲࢊ

 ૟ 0.554 0.728 0.855 0.988ࡺࡲࢊ

 ૟ 0.463 0.980 1.433 1.977ࢀࡲࢊ

 ૠ 0.613 0.780 0.905 1.038ࡺࡲࢊ

 ૠ 0.440 0.904 1.308 1.793ࢀࡲࢊ

 ૡ 0.666 0.822 0.942 1.070ࡺࡲࢊ

 ૡ 0.423 0.844 1.208 1.643ࢀࡲࢊ

 1.105 0.981 0.867 0.722 ૢࡺࡲࢊ

 1.523 1.128 0.797 0.410 ૢࢀࡲࢊ
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Fig. 3. Wind turbine's blade drawing with all sections 

4. Simulation Results I 

4.1. Aerodynamic forces 

In simulation, the wind turbine is subjected to four different 
wind speeds namely 5, 8, 10 and 12 m/s. The wind turbine’s 
blade is divided into 9 sections of equal length (0.12m) as shown 
in Fig. 3. Following the BE-LMM procedures, the aerodynamic 
forces are evaluated (FT, FN) as per Table 2.  

4.2. Simulation test procedure 

Blade models are built for eight different crack dimensions and 
locations in accordance with experimental matrix given in Table 
4. The crack identity depends on three factors, i.e.  Crack Length 
(L), Crack Width (W), and Crack Location (C). In order to make 
the results useful for most of blade turbines sizes, a 2௞ factorial 
experiment is designed with each factor represented as a 
percentage of the blade length, and has two levels, namely, 
higher level (+) and lower level (-). In this model, the higher and 
lower values of the crack length (L), width (W), and location (C) 
are given in Table 3. Table 4 summarizes the level combinations 
of the 2௞ factorial experiment.  

Table 3.  Crack length, width and locations extreme values 

Factor Higher level ( + ) [mm] Lower level ( - ) [mm] 

Length (L) 15.00 10.00 

Width (W) 1.00 0.50 

Location 
(C) 

1000.00 500.00 

 

 
Table 4. ૛࢑ factorial experiment crack dimension and locations 

matrix 
Blade ID L W C Total 

Healthy N/A N/A N/A N/A 

1 + + + + + + 

2 - + + - + + 

3 + - + + - + 

4 - - + - - + 

5 + + - + + - 

6 - + - - + - 

7 + - - + - - 

8 - - - - - - 

5. Simulation Results II 

The PSD is produced for three fixed accelerometer 
measurements, each of which is located at a specific point on the 
blade’s surface at (a) Hub center, (b) blade middle span and (c) 
blade tip as shown in Fig.4. State-space models for the eight 
cases listed in Table 4 are constructed from Eigen values and 
Eigen vectors generated by ANSYS Finite element method 
(FEM). The simulation shows that acceleration response in the 
direction perpendicular to the blades surface (i.e., Y-direction) 
is the most affected by the induced damages compared to the 
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radial direction. The radial direction has negligible changes in 
amplitudes and frequencies before and after damage is 
introduced to the blade. Figs. 5 and 6 show sample PSD’s of the 
accelerometers at the middle and tip, respectively. Changes in 
modal amplitudes and frequencies are present when damage is 
introduced to the blade. Latter figures also indicate that damage 
effect on amplitudes is much more pronounced than that on the 
frequencies. However, both changes in resonant amplitudes and 
frequencies will be utilized in the Kriging method to predict 
damage attributes at points other than sensor locations. The 
results suggest that the values of each crack parameters, 
influences the PSD amplitudes, and to a lesser degree, 
frequencies.  
 

 

Fig. 4. Sensor locations on the surface of the blade, global directions 
are also shown in the figure and the acceleration is measured in the 
Y-direction 
 

 
Fig. 5. Power Spectral Density of simulated blade with crack levels 
(+++) obtained from the sensor at the middle of the blade 

 

Fig. 6. Power Spectral Density of simulated blade with crack levels 
(+++) obtained from the sensor at the tip of the blade 

 

The Kriging analysis prediction and their comparison with the 
estimated length, width and location to the induced cracks are 
summarized in table 5. For the sake of saving space, Table 5 only 
lists the Kriging results for two of the given wind speeds 
however, the other two have also produced similar results.  The 
validation is done using a simulated crack length of 11 mm and 
width of 0.78 mm at 720 mm radial location from hub center. 
The table summarizes the estimated length, width and location 
of the damage for two of the given wind speeds, namely 5 and 
10m/s and at the three sensors’ locations. The error, in some 
cases, is as low as 0.17% indicating significant improvement in 
accuracy compared to existing techniques. Conventional 
techniques typically produce errors in the range of 5-8% in 
detecting crack dimensions and location in wind turbines.  It is 
noticed that higher frequencies revealed more accurate 
estimation of crack properties, especially crack location. Table 
5 shows that at 39 Hz resonant frequency, the error is around 
15.7% while at 16 Hz resonant frequency, it is near 17.4%.2. 
The average error estimated for PSD by Kriging from the 
response obtained from the TIP sensor is lower than MID and 
HUB sensors. TIP sensors at higher frequency revealed an 
average error of 6.5% while it was 20.0% for each of the HUB 
and MID sensors. 

Table.5 also indicates reveals some interesting results that can 
be utilized in damage identification of wind turbine blades. The 
results are summarized by the following; 

1. At lower wind speeds (i.e. 5 m/s) the tip accelerometer 
has the best predictions at higher resonant frequencies 
where the maximum error is only 3.1% at 39 Hz 
frequency 

2. At higher wind speeds, the tip accelerometer has the 
best estimates at lower resonant frequency where the 
error at 16 Hz has a maximum value of 4.5% 

3. The middle accelerometer had the worst damage 
estimates for all resonant frequencies at all wind 
speeds 

 
The inverse relationship between wind speed and resonant 
frequencies error estimates are interesting and calls for further 
research and analysis. It appears though as if the middle 
accelerometer is placed at the nodes of certain mode shapes 
where the acceleration is low frequency modes to the point 
where detection of damage is not possible using accelerometer 
at that location.  
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Table 4. Kriging analysis prediction and error estimation 

Wind 
Speed 

Natural 
Freq. 

Sensor 
location 

Damage 
 
attribute  

Attribute 
Value 

Estimation 
Error 

5 m/s 16 Hz HUB (L) 13.2 20.4% 

(W) 0.825 5.8% 

(C) 612.1 15.0% 

MID (L) 14.0 27.4% 

(W) 0.948 21.6% 

(C) 875.8 21.6% 

TIP (L) 14.9 35.3% 

(W) 0.968 24.1% 

(C) 988.5 37.3% 

39 Hz HUB (L) 13.3 21.0% 

(W) 0.802 2.9% 

(C) 579.4 19.5% 

MID (L) 10.2 7.3% 

(W) 0.997 27.8% 

(C) 519.3 27.9% 

TIP (L) 11.0 2.0% 

(W) 0.764 2.0% 

(C) 742.2 3.1% 

      

10 
m/s 

16 Hz HUB (L) 11.3 3.0% 

(W) 0.745 4.5% 

(C) 698.4 3.0% 

MID (L) 13.9 26.2% 

(W) 0.980 25.6% 

(C) 810.7 12.6% 

TIP (L) 10.1 8.2% 

(W) 0.522 33.1% 

(C) 652.5 9.4% 

39 Hz HUB (L) 10.0 9.1% 

(W) 1.000 28.2% 

(C) 999.1 38.8% 

MID (L) 11.3 2.5% 

(W) 0.879 12.7% 

(C) 614.5 14.7% 

TIP (L) 12.3 11.7% 

(W) 0.838 7.4% 

(C) 784.6 9.0% 

 
 
 
 

6. Conclusion 
 
Damage identification in wind turbine blades using change of 
resonant amplitudes and frequencies found from Power Spectral 
Density was studied. Blade Element Momentum-integral 
Method is used to generate the aerodynamic blade load and FEM 
is used to generate the Eigen values and Eigen vectors needed 
for the construction of the turbine blade’s dynamic model. Eight 
different blade damages or crack characteristics were induced as 
per the required ૛ࡷ factorial experiment.  Simulation is carried 
out where the blades are excited by the aerodynamic forces and 
the acceleration response was generated at three locations along 
the blade’s span. Results suggest that acceleration of the blade 
is sensitive to damage mostly along the rotor’s axis direction. 
Small cracks (relative to blade’s length) have more effect on the 
blades resonant amplitude than blade resonant frequencies at all 
modes. Crack length, width and distance from hub center have 
considerable influence on the PSD amplitudes. Kriging analysis 
revealed that using Kriging and PSD amplitudes of higher 
resonant frequencies results in more accurate estimation of crack 
location. It shows that at low wind speeds, the PSD amplitudes 
of higher resonant frequencies generated lower error in damage 
attributes estimation. However, the opposite is found to be true 
for higher wind speeds where the error estimates were lower at 
lower resonant frequencies. It was also noticed that the lower 
wind speeds, the tip accelerometer generated the lowest error 
while at higher wind speeds, the hub estimates had the lowest 
errors. The overall error for all wind speeds at 39 Hz was found 
15.7% while is 17.4% at 16Hz. It is clear that kriging analysis 
requires experimental data or prior knowledge of the 
relationship between damage attributes and the PSD’s to 
construct the variance and estimation models. This is a drawback 
in cases where no previous vibration data is available for a 
specific blade.  
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