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Abstract 
Within the framework of the potent lumped model, unsteady heat conduction takes place in a solid body where the mean temperature 
varies with time. Conceptually, the lumped model subscribes to the notion that the external convective resistance at the body surface 
dominates the internal conductive resistance inside the solid body. For forced convection heat exchange between a solid body and a 
fluid, the lumped model criterion entails to the lumped Biot number, Bil < 0.1, in which the mean convective coefficient depends on the 
impressed fluid velocity.  In contrast, for natural convection heat exchange between a solid body and a fluid, the mean convective coefficient 
depends on the solid-to-fluid temperature difference. As a consequence, the lumped Biot number criterion must be modified to read Bil < 
0.1, wherein the maximum mean convective coefficient occurs at the initial temperature Tin and time tin for cooling or at a future temperature 
Tfut and time tfut for heating. In this paper, the equivalence of the lumped Biot number criterion for a vertical planar wall is deduced employing 
the thermal conductivity of the solid and the initial or future Rayleigh number as the deciding factors..  
 
Keywords: vertical planar wall, natural convection, mean convective coefficient, nearby fluid, nonlinear lumped equation, 
lumped Biot number criterion 
 

1. Introduction 

When a solid body is immersed in an extensive fluid at a 
different temperature, heat exchange between the body surface 
and the fluid can occur by either forced convection or natural 
convection in most situations.  When a solid body is absent of 
internal heat generation, the heat exchange with the fluid is 
dependent upon two resistances: (1) the internal conductive 
resistance inside the solid body and (2) the external convective 
resistance at the interface between the solid body surface and the 
fluid. In this regard, three cases of importance can be 
categorized.  One limiting case deals with negligible internal 
conductive resistance, another limiting case deals with 
negligible external convective resistance and an intermediate 
case where the internal conductive resistance is comparable to 
the external convective resistance as cited in References [1-5]. 
Focusing on the first limiting case, it is associated with a small 
temperature difference between the center and surface of the 
solid body and a large temperature difference between the 
surface of the solid body and the fluid in contact.  Physically, 
this case signifies that during a cooling (heating) period, the 
solid body can be considered as a "lump" possessing nearly 

uniform temperature at any instant of time; this is synonymous 
with a zero dimension body.  In other words, unsteady heat 
conduction takes place in a quasi–isothermal solid body whose 
mean temperature changes with time only. This is the rationale 
that sets the groundwork for the assumption underlying the 
lumped model in unsteady heat conduction. 
 
The applicability of the lumped model for unsteady heat 
conduction in a solid body is tied up to a criterion expressible by 
the lumped Biot number Bil < 0.1 as cited in [1-5]. However, 
these textbooks habitually omit that the heat exchange between 
the solid body and the fluid has to be ensued by forced 
convection. Since forced convection is a linear mode of heat 
transfer (generally impervious to temperature changes), the 
lumped Bil < 0.1 rests on a mean convective coefficient which 
remains constant during the cooling (or heating) period. In 
engineering practice, the lumped model simplification is normally 
satisfied by small solid bodies of regular or irregular size, and/or 
solids with large thermal conductivity, and/or adjacent fluids with 
weak mean convective coefficients [1-5]. Regardless of the 
prevalent heat transfer mode, either forced or natural convection, 
the mean convective coefficient ത݄ is usually evaluated from mean 
Nusselt number correlation equations reported in [1-5].  
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On the contrary, when natural convection cools (heats) solid 
bodies, natural convection being a nonlinear mode of heat 
transfer, possesses a mean convective coefficient that is not 
constant, but depends on the instantaneous mean temperature, 
which in turn depends on time. The standard lumped criterion 
needs to be modified and, in consequence has to be rewritten as Bil 
< 0.1. Under these circumstances, there are two possible 
scenarios: cooling and heating. For cooling, the maximum mean 
convective coefficient, which is associated with the initial 
temperature Ti, at an initial time ti, whereas for heating, the 
maximum mean convective coefficient has the same significance, 
but is connected to a future temperature Tfut at a future time tfut. 
This technical note seeks to establish an equivalent criterion for the 
applicability of the lumped model embodying nonlinear natural 
convection that bypasses the lumped Biot number Bil <  0.1. As a 
proof-of-concept,  a heated vertical planar wall dissipating heat to 
a quiescent fluid, such as air, water and engine oil is taken.   The 
alternative criterion uses: a) the thermal conductivity of the solid 

k s , b) the slenderness ratio of the planar wall H/L and c) the initial 

Rayleigh number based on the initial temperature 
inHRa ,

 as the 

main ingredients. This approach means that the mean convective 
coefficient �ഥ  does not need to be evaluated with a Nusselt 
number correlation up front.. 

2. Natural Convection Mode 

Dimensional analysis for natural convection heat transfer 
between a heated solid body and a fluid at rest articulates 

the mean Nusselt number LcNu with the Rayleigh number 

LcRa and the Prandtl number Pr by way of the double–

valued function (Jaluria [6]: 

 

                   (1) 

 

 

where Lc stands for the characteristic length of the solid body.  

3. Lumped Heat Equation 

The lumped heat equation for a solid body with uniform initial 
temperature Tin exchanging heat with a stagnant fluid at a low free-
stream temperature T∞ is    
 

௩ܸܿߩ				
ௗ ത்

ௗ௧
ൌ െത݄ܣ	ሺ തܶ െ ஶܶሻ,							ഥܶ ൌ ௜ܶ௡, ݐ ൌ 0																					ሺ2ሻ    

 
where the participating symbols are described in the Nomenclature. 
The validity of eq. (2), also named the zero dimensional heat 
equation, requires that the lumped Biot number [1-5], 
 

      Bil = 







A

V

k

h

s

 < 0.1                                                                                    (2a) 

 
Actually, the lumped Biot number carries uncertainties, because of 
the uncertainties in the experimental determination of the mean 
convective coefficient ത݄  usually comprise error bands from 

%10  to %20  (Holman [4]). As a result, the threshold 
value of 0.1 is not that rigid and may range between a low 0.083 
and a high 0.125.  

When the solid body is a planar wall, the volume–to–surface area 

ratio	
௏

஺
 is the semi-thickness L, so that eq. (2) recedes to  

  

ܮ௩ܿߩ 
ௗ ത்

ௗ௧
ൌ െത݄ሺ തܶ െ ஶܶሻ,							ഥܶ ൌ ௜ܶ௡, ݐ ൌ 0																														(3)  

 
and the lumped Biot number becomes 
 

      Bil = 
sk

Lh
 < 0.1                                                                                          (3a)  

4. Correlation Equations 

The mean convective coefficient ത݄	  for natural convection 
between a vertical planar wall and a still fluid is obtained from 
the pair of correlation equations for the mean Nusselt number 
reported by McAdams [7]: 

For laminar regime: 
 

 Ra0.5 = Nu HH
4/19 with 104 < RaH < 109 and Pr > 0.7       (4a) 

 
For turbulent regime: 
  

 Ra0. = Nu HH
3/110 with 109 < RaH <1013 and Pr > 0.7       (4b) 

 

where the intervening thermophysical properties of the fluid are 

evaluated at the film temperature )(
2

1
 TTT sf

. 

Incidentally, there is a good matching in eqs. (4a) and (4b) 

because when the common RaH  = 109, HNu  = 105 from eq. 
(4a) and 100 from eq. (4b).  

Isolating the mean convective coefficient h  in eqs. (4a) and 
(4b) gives way to the equations  

 4/19 H
f Ra0.5 

H
k

 = h         for laminar regime             (5a) 

 3/110 H
f Ra0. 

H
k

 =  h          for turbulent regime        (5b) 

Subsequently, eqs. (5a) and (5b) are conveniently rewritten in 
terms of primitive geometric and thermal quantities as follows 

)T  T(   
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3
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The pair of nonlinear equations (6a) and (6b) establishes single-
valued functions of the dependent variable 	 ത݄  in terms of the 

independent variable T  T . As an observation,  eq. (6a) includes 
the height H of the planar wall and contrarily, eq. (6b) excludes H.  
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The exact, analytic solution of eq. (3) incorporating eqs. (6a) and 
(6b) is developed in the Appendix. 
 
For the case of cooling a vertical planar wall, inspection of eqs. (6a) 
and (6b) reveals that the largest mean convective coefficient 

maxh is driven by the initial temperature difference Tin  T  at the 
initial time t = 0. Correspondingly, from eqs. (6a) and (6b) the two 

derived relations for maxh are 

)T  (T  
 g
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which are valid at the initial time t = 0.  
 
Additionally, the lumped criterion turns into   
 

       Bil =
sk

Lhmax
 < 0.1.  

 
and employing  eqs. (7a) and (7b) hands over the inequalities 
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To involve the thermal conductivity of the solid ks directly, it may 
be convenient to disengage the solid–to–fluid thermal conductivity 
ratio ks/kf in the two preceding inequalities (8a) and (8b). This 
operation provides the modified inequalities  
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Reorganizing terms and recognizing that 

3
, )( HT  T

g
Ra ininH 


 denotes the initial Rayleigh number in 

terms of the initial–to–fluid temperature difference T  Tin  , i.e., 

the largest temperature difference during the cooling process, eqs. 
(9a) and (9b) can be compactly rewritten as 
 

4/1

,9.5 inH
f

s Ra 
H

L

k
k          for laminar regime                                     (10a)

  
 

3/1

,inH
f

s Ra  
H

L

k
k             for turbulent regime                                   (10b) 

Notice here that the solid-to-fluid thermal conductivity ratio ks/kf 
ratio varies directly proportional with a power of

inHRa ,
 and 

inversely proportional with the slenderness ratio H/L 

5. Case of Heating 

For the case of heating a vertical planar wall, the largest mean 
convective coefficient takes place at a future target temperature 
Tfut linked to a future target time tfut . Consequently, from eqs. 

(6a) and (6b), the proper equations for maxh are given by  
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and similarly from eqs. (10a) and (10b) 
 

4/1

,9.5 futH
f

s Ra 
H

L

k
k            for laminar regime                     (12a) 

  
 

3/1
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f

s Ra  
H

L

k
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6. Practical Engineering Applications   

In engineering practice worldwide, the three most used coolants are 
air, water and oil. Correspondingly, it makes sense to scrutinize 
these three fluids under laminar conditions characterized by 
RaD,in < 109 and also turbulent conditions otherwise for RaD,in > 
109. 
Consider a vertical planar wall of height H and thickness 2L at a 
high initial temperature Tin immersed in quiescent fluid at a low 
free-stream temperature T∞. The question is to explore the 
magnitude of the thermal conductivity of the solid ks that makes the 
lumped heat equation (3) permissible when natural convection is 
the heat transfer mode. As a test case, let us take a vertical planar 
wall with a reasonable slenderness ratio H/L = 10, which is 
appropriate to one-dimensional analysis.  

 
a) Air 

The thermal conductivity of air stays around kf  =  0.026 W/m.°C 
at ambient temperature of 20 °C (Holman [4]). Substituting the 
values for H/L and kf  in eq. (10a) , implies that the thermal 
conductivity of the solid ks must satisfy the inequality 

 
4/1

,015.0 inHs Rak              for laminar regime                          (13a)

    

First, focusing on the lower limit inHRa , = 104 attached to eq. (4a), 

results in ks >  0.15 W/m.°C.  Second, at the critical laminar–

turbulent threshold of crinHRa ,, ≈ 109, it turns out that ks > 2.667 

W/m.°C. Consulting the Table of Properties for Solids in Reference 
[4], it is found that all metals fulfill the lumped criterion for all 

laminar HRa inside  .1010 94  HRa   
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Similarly, substituting the values of H/L and kf  in eq. (10b), the 
thermal conductivity of the solid ks must satisfy the inequality 
 

3/1
,0026.0 inHs Rak     for turbulent regime              (13b) 

 
Turning the attention to the highest turbulent RaD, in  = 1013  in eq. 
(4b), yields  ks > 56.0. W/m °C.  A look up at the Table of Properties 
for Solids in Ref. [4], reveals that most metals fulfill the lumped 
criterion. The metals are: Aluminum, Copper, Gold, Iron, Nickel, 
Silver, Tungsten and Zinc. Besides, it is observable that all Carbon 
steels are excluded and do not comply with the lumped criterion for 
air. As RaD, in  decreases, ks  downturns, for instance at RaD, in  = 
1011, ks > 12.07 W/m.°C.  Examining the Table of Properties for 
Solids in Reference [4], it is found that all metals fulfill the lumped 
criterion.  

 
b) Water 

The thermal conductivity of water stays around kf  = 0.647 W/m °C 
at ambient temperature of 20 °C. Substituting the values of H/L  
and kf  in eq. (10a) , indicates that the thermal conductivity of the 
solid ks responds to the inequality 
 

4/1
,382.0 inHs Rak   for laminar regime                       (14a) 

 
First, turning the attention to the lower limit for laminar natural 
convection RaD, in  = 104, it turns out that ks > 3.82 W/m.°C. Second, 
moving next to the critical laminar–turbulent threshold at 

crinHRa ,, ≈ 109, indicates that the solid thermal conductivity has 

to be ks > 67.93 W/m.°C. A look up at the Table of Properties for 
Solids in Ref. [4], reveals that most metals fulfill the alternate 
lumped criterion. The metals are: Aluminum, Copper, Gold, Iron, 
Silver, Tungsten and Zinc. Further, it is observable that all Carbon 
steels are excluded and do not comply with the lumped criterion for 
water. 
  

3/1

,065.0 inHs Ra  k            for turbulent regime               (14b) 

 
Second, turning the attention to the upper turbulent limit of 

crinDRa ,, ≈ 1013, evaluating eq. (10b) gives the solid thermal 

conductivity ks > 1,400.4 W/m °C. Reviewing the Table of 
Properties for Solids in Ref. [4], it signals that no metal meet the 
stringiest restriction. Incidentally, the only solid that does it is 
diamond. As RaD, in  decreases, ks  downturns, for instance at RaD, in  
= 1011, ks > 301.7 W/m.°C.  Referring to the Table of Properties for 
Solids in Reference [4], it is suggested that very few metals 
conform to the lumped criterion. In fact, there are three metals: 
Copper, Gold and Silver. 
 
c) Engine oil 

The thermal conductivity of engine oil stays around kf  = 0.145 
W/m °C at ambient temperature of 20 °C. Substituting the values 
of H/L and kf  in eq. (10a) , illustrates that the thermal conductivity 
of the solid ks relates to the inequality 
 

4/1
,086.0 inHs Rak   for laminar regime                         (15a)

   
      
First, turning the attention to the lower limit for laminar natural 
convection RaD, in  = 104, proves that ks > 0.86 W/m.°C. Second, 
moving next to the critical laminar–turbulent threshold at 

crinHRa ,, ≈ 109, demonstrates that the solid thermal conductivity  

ks > 15.29 W/m.°C. Regarding the Table of Properties for Solids in 
Ref. [4], it is clear that most metals fulfill the lumped model 
criterion for laminar natural convection in water.  

 
3/1

,015.0 inHs Ra  k                for turbulent regime         (15b) 

 
Second, turning the attention to the upper turbulent limit of 

crinDRa ,, ≈ 1013, evaluating eq. (10b) conveys the solid thermal 

conductivity ks > 323.2 W/m °C. Inspecting the Table of Properties 
for Solids in Reference [4], it is divulged that few solids fulfill the 
lumped criterion. They are Copper, Gold and Silver. As RaD, in  
decreases, ks  downturns, for instance at RaD, in  = 1011, ks  > 69.6 
W/m.°C. A look up at the Table of Properties for Solids in Ref. [4], 
reports that most metals satisfy the lumped criterion. The metals 
are: Aluminum, Copper, Gold, Iron, Silver, Tungsten and Zinc. 
Further, it is observable that all Carbon steels are excluded and do 
not adhere to the lumped criterion. 

7. Conclusions and Recommendations  

In order to use the lumped heat equation (2) implicating that the 

lumped Biot number Bil  =  







A

V

k

h

s

 < 0.1, the traditional 

procedure comprises three steps: 1) evaluate h  from the proper 
correlation equations, 2) read the value of the thermal conductivity 
ks of the solid in a Table of Properties for Solids  and 3) calculate 
Bil and compare against 0.1. For the situation involving a vertical 
planar wall with natural convection cooling, an equvalent lumped 
criterion stated in eqs. (10a) and (10b) gives rise to a simpler 
relation between the solid-to-fluid thermal conductivity ratio ks/kf 
and the initial Rayleigh number, RaD, in. Within this alternative 
framework, a list of candidate solids can be easily identified for 
laminar and turbulent natural convection in fluid environments, 
such air, water and oil. The opposite situation when a vertical 
planar wall is heated by natural convection can be treated in a 
similar way, but the analysis is turns out to be a bit more involved. 

Nomenclature  

A   surface area, m2 

Bil  lumped Biot number,








A

V

k

h

s

  

Bil  lumped Biot number for vertical planar wall,

sk

Lh  

cv  specific heat capacity at constant volume, J/kg ºC  

cp  specific heat capacity at constant pressure, J/kg ºC  

C  constant in eq. (A.2) 

g  gravitational acceleration, m/s2 

ത݄  mean convection coefficient, W/m2 ºC 

H  height of planar wall, m 

k  thermal conductivity, W/m ºC 

L  semi-thickness of planar wall, m 
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n  exponent in eq. (A.2) 

,തതതതு       mean Nusselt numberݑܰ

fk

Hh  

Pr  Prandtl number,

f

p

k

c
 

RaH  Rayleigh number, 3)( HT  T
g



  

RaH, in        initial Rayleigh number, 3)( HT  T
g

in 

  

t   time, s 

തܶ   mean temperature, ºC 

Tin   initial temperature, ºC 

Tf   film temperature, ºC 

Tfut   future temperature, ºC 

T   fluid temperature, ºC 

V   volume, m3 

Greek Symbols 

  thermal diffusivity, m2/s 

β coefficient of volumetric thermal expansion, ିܭଵ 

mean temperature excess, T  T ߠ̅  , ºC  

μ  dynamic viscosity, N s/m2 

  kinematic viscosity, m2/s 

 

Subscripts 

fut refers to future 

in refers to initial 

s  refers to solid 

  

References 

[1] Bejan, A., Heat Transfer, John Wiley, New York, 1993.  

[2] Incropera, F. P. and DeWitt, D. P., Introduction to Heat 
Transfer, Fourth edition, John Wiley, New York, 2001.  

[3] Kreith, F. and Bohn, M. S., Principles of Heat Transfer, 
Sixth edition, Brooks/Cole, Pacific Grove, CA, 2001. 

[4] Holman J. P., Heat Transfer, Ninth edition, McGraw–Hill, 
New York, 2002. 

[5] Çengel, Y. A., Heat Transfer, Second edition, McGraw–Hill, 
New York, 2003. 

[6] Y. Jaluria, Natural Convection: Heat and Mass Transfer, 
Pergamon, London, UK, 1980.  

[7] McAdams, W. H., Heat Transmission, Third edition, 
McGraw–Hill, New York, 1954. 

Appendix: Lumped heat equation  

From eq. (3), the lumped heat equation for a vertical planar wall 
sketched in Fig. A.1 along with the initial condition are 
 

ܮ௩ܿߩ
ௗ ത்

ௗ௧
ൌ െത݄ሺ തܶ െ ஶܶሻ,							ഥܶ ൌ ௜ܶ௡, ݐ ൌ 0																			(A.1) 

 

 
Fig. A.1. Vertical planar wall configuration.  

 
From the correlation equations (4a) and (4b), the mean 
convection coefficient 	ഥ݄ 	 for a vertical planar wall can be 
expressed in compact form as 

 
	ഥ݄ ൌ ሺܥ തܶ െ ஶܶሻ௡                (A.2) 

 
where in general the exponent n = ¼ identifies laminar regime 
and n = 1/3 turbulent regime. 
 

Introducing the mean temperature excess 
 

ߠ̅	 ൌ തܶ െ ஶܶ 
 
the lumped heat equation (A.1) and the initial condition 
transform into 
 

ܮ௩ܿߩ													
ௗఏഥ

ௗ௧
ൌ െߠ̅ܥ௡ାଵ,						̅ߠ ൌ ,௜௡ߠ ݐ ൌ 0          (A.3) 

  
Separating variables and introducing the initial condition gives 

 
ଵ
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ቀ
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ఏഥ೙
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ఏ೔೙
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஼
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ቁ 																																	ݐ 																																		

(A.4)	
 
or equivalently 
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After rearranging terms, the mean temperature distribution 
തܶሺݐሻ	turns out to be  
 

തܶሺݐሻ ൌ ஶܶ ൅

ቈ
ଵ

ቀ ೙಴
ഐ೎ೡಽ

ቁ	௧	ା	ሺ்೔೙	ି	 ಮ்ሻష೙
቉
ଵ/௡

																																					(A.6) 

 
Subsequently, eq. (A.6) can be particularized first for laminar 
regime characterized with n = ¼, resulting in 
 

തܶሺݐሻ ൌ ஶܶ ൅ ቈ
ଵ

ቀ ಴
రഐ೎ೡಽ

ቁ	௧ା	ሺ்೔೙	ି	 ಮ்ሻషభ/ర
቉
ସ

																												(A.7a) 

 
and second for turbulent regime characterized with n = 1/3, 
resulting in 
 

തܶሺݐሻ ൌ ஶܶ ൅ ൦
1

ቀ
ܥ

ܮ௩ܿߩ3
ቁ ݐ ൅ ሺ ௜ܶ௡ െ ஶܶሻିଵ/ଷ

൪

ଷ

								ሺA. 7bሻ 

 
As a point of reference, for the case of forced convection cooling a 
vertical planar wall embodying constant 	ഥ݄  , the mean temperature 
distribution 	ഥܶ ሺݐሻ is  

 

 t
Lc

h
T TT= tT 

v

in 







  

exp)()(              (A.8) 

 
Upon comparing eqs. (A.6) and (A.8), it is clear that the structure 
of the former for natural convection is more complex than the 
structure of the latter for forced convection. 

 
 


