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Abstract 

Electrification of the road transportation sector is one of the ways to reduce the green-house gases (GHGs) emissions 
worldwide, but an increasing number of electric vehicles (EVs), will impact on the power system, particularly on the 
residential distribution low-voltage grid. In order to reduce this impact during the peak periods, it is possible for these 
vehicles to get energy not only from the grid, but also from other EVs parked at the same time in the same place through 
a peer to peer (P2P) energy trading. In this paper a night charging method that optimizes the recharging process of an 
EV fleet at regional level depending on hourly energy price in a P2P energy trading system is presented. This algorithm 
determines how much energy should be recharged in the battery of each EV and the corresponding time slot to do it, 
avoiding the discontinuities in the charging process and considering the users’ personal mobility constraints. 
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1. Introduction 

Climate change is becoming one of the primary concerns 
worldwide. GHGs emissions are growing faster than they did 
the last three previous decades and CO2 concentration levels in 
the air are at the highest in 650,000 years. The global 
temperature has increased 0,94ºC since 1880 and the global 
average sea level has risen 17.8 cm in the same period [1]. 

In order to reduce the world climate change impact, in 
December 2015 near 200 countries reached an agreement in 
Paris to sets out a global action plan to reduce GHGs 
emissions, avoiding exceeding an increment in global average 
temperature above 2°C compared to pre-industrial levels [2]. 
Road transportation is one of the main air pollutants producers 
[3-5] and, for this reason, the promotion of the electrification of 
the road transportation is an essential objective to decarbonize 
the sector, allowing to reduce the air pollution in crowed urban 
areas. But this deployment can negatively impact on the 
electric grid, particularly in the distribution network. The 
impact of charging EVs on the electric grid has been 
extensively studied in different works that have evaluated the 
increase of the net power losses, the voltage drops in power 

distribution lines, the voltage unbalance of a three-phase 
distribution network due to unequal distribution of the singe-
phase chargers, the reduction of power quality due to the 
generation of harmonic pollution by the use of non-linear 
power electronics in the EV chargers and finally the overload 
of different distribution lines and power transformers, which 
reduces the life expectancy [6-10]. 
One solution to reduce the impact of the EV charging process 
on the power grid during business hours is to allow a P2P 
trading system among EVs parked in the same parking area 
during the same time slot. This original idea was proposed by 
the authors in [11] and this seminal study was further expanded 
later in [12]. In order to ensure security and privacy protection 
issues in this P2P trading system, some authors have proposed 
to use blockchain technology allowing to avoid the presence of 
a third trusted party [13]. In all these references [6-12] it was 
initially assumed that all vehicles were fully charged at the 
beginning of the day, just before the start of their daily trips. 
However, it was not specified how this night-charging should 
be carried out taking into account the variable hourly price of 
electricity. In this paper, a new algorithm for EV night 
charging optimization in this P2P energy trading system is 
proposed. 
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2. Mobility model 

This section describes the concept of the FEATHERS 
(Forecasting Evolutionary Activity Travel of Households and 
their Environmental RepercussionS) model, an activity-based 
model which is used to predict the mobility in the zone of 
study, Flanders (Belgium). This model was employed in [13] to 
predict electric power demand due to the charge of EVs under 
specific assumptions of EV market share and vehicle charging 
behavior. 
Each agent of the synthetic population created by FEATHERS 
has its own daily agenda, which are mutually independent 
except for members of the same household to limit 
computational complexity. The daily agenda consists of a 
sequence of episodes, each of them containing exactly one trip 
followed by one activity. 
The locations of the activities are traffic analysis zones (TAZ) 
with an average area of 5 km2. Each activity has associated a 
type (home, work, leisure, social visit, etc.) and a start and end 
times. Each trip has associated a specific transportation mode 
(car, walk, bike, bus, train…). 
 

 
 
Fig. 1. Data flows for the FEATHERS activity-based model. 

Ovals represent processes, rectangles represent data sets. 
 
FEATHERS predict the outcome of the decisions taken by 
each agent while building their daily agenda through a process 
of planning –which activities the agent does during the day– 
and scheduling –when are the activities done during the given 
day-. The agenda for each individual is generated by a series of 
decisions, determined by a stochastic process making use of 
decision trees. These trees are trained by means of survey data 
and involve considerations, among others, of land use in each 
TAZ, census data, performance of the transportation network 
and survey data. 
The predictions from FEATHERS were validated by 
aggregating traffic flows between TAZ for each hour of the 
day. The resulting link flows were compared to time dependent 
hourly flows from traffic counts. 
Not every agent is fit to adopt an EV. To simplify, only those 
agents that perform a daily consumption lower than 20 kWh 
which corresponds to almost 112 km having considered an 
average consumption of 0,18 kWh/km, (an average 
consumption value according to [14]). This means that, from a 
total of 1 142 000 agents using a private vehicle for its daily 

agenda, around 950 000 of them can make use of an EV to 
accomplish their agenda under those conditions. 
Fig 2 shows the number of first departures (red line) and last 
arrivals (blue line) of the considered agents. First departure 
describes the first moment in which an agent starts to drive its 
EV during his/her daily trips, and the last departure determines 
the moment in which the agent finishes its last trip using 
his/her EV. 
The first departures take place very early in the mornings, 
between 04:15 and 04:30, with a total of 5 agents. The number 
of the first departures is only significant after 05:00, when 
more than 27 000 agents start their trips between 05:00 and 
06:00 compared to the about 200 agents that departure in the 
precedent hour. The highest number of departures takes place 
between 07:45 and 08:00, when almost 940 000 agents do their 
first departure. There are some agents that do their first 
departure in the last time slot (23:45:24:00), but the number of 
first departures after 20:00 is very reduced, with only around 
17 000 agents. 
The last arrival of the agents is more distributed. A few agents 
arrive after 00:00 (around 9 000) and also a few early in the 
day, between 05:00 and 08:00 (about 4 900). Later, this 
number increases to values above 3 000 agents every 15 
minutes, with a local maximum of 13 000 agents before 12:00, 
reaching its maximum value between 17:15 and 17:30, with 
almost 32 000 agents. There are three other peaks of last 
arrivals, with close number of agents involved: 18:00-18:15, 
22:15-22:30 and 23:15-23:30. 
 

 
 
Fig. 2. Drivers’ first departure and last arrival 

3. Charging optimization process 

3.1. Problem description 
 

Like smartphone users, all drivers involved in the P2P energy 
trading system proposed in [11-12], will charge their vehicles 
during the night period between the first and the second day in 
order to start their daily trips at 100% capacity. There are some 
assumptions to be considered: Firstly, it is assumed that the 
variable hourly grid electricity price for their home-charging 
period, denoted by PEXsupply(t), is known in advance (on a day-
ahead basis) for all drivers. It is also assumed that the daily 
schedules for all agents are known and these schedules are 
equal for both consecutive days. From this mobility 
information, it is possible to determine, for each vehicle v, the 
home arrival time, ta(v), the home departure time, td(v) and the 
total demanded energy to carry out all daily trips using an EV. 
In our case, it is considered that each EV will arrive with a 
certain initial State of Charge, denoted by SOC(ta(v))= SOCini, 
and it will reach its maximum value, SOCmax, at the departure 
time, td(v). In order to compare the charging schedules of 
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different vehicles and reduce the amount of variables used, Ta 
is defined as the first time period in which a vehicle ends the 
schedule of day 1, whereas Td is defined as the last time period 
in which a vehicle begins the schedule for day 2. The time is 

discretized into time slots of 15 minutes (Δt=4 time slots per 
hour) which are used as index for the optimization process. The 
indexes, constants and variables considered for this problem 
are defined in Table 1. 

 
 

Table 1. Charging problem model: indexes, variables and parameters. 

Description Symbol Value Unit Type 

Vehicle  v [1,V] - Index 

Time slot  t [Ta,Td] - Index 

Energy hourly price PEXsupply(t) [PEXt]  €/kWh Parameter 

Battery capacity C 20 kWh Parameter 

State of charge soc(t,v)  % Variable 

Number of time period t per hour Δt 4 - Parameter 

Energy extracted from the grid i(t,v)  kWh Variable 

Charge rate CR 0.176 - Parameter 

Charge efficiency rate γeff 0.95 - Parameter 

Self-discharge factor Φdecay 1.6E-5  Parameter 

Minimum allowed SOC SOCmin 5 % Parameter 

Maximum allowed SOC SOCmax 100 % Parameter 

Initial SOC vector SOC(ta(v)) SOCini  % Parameter? 

Conn./Discon. Matrix BCT(t,v) {0,1} -   Parameter 

 
The parameter CR represents the charging power as a function 
of the EV battery capacity, C. In this case, this charging power 
will be CR.C=(0.176).(20)=3.52 kW. 
The optimization problem is defined through the equations (1)-
(5) for each vehicle v. It is a similar to the one presented by the 
authors previously for optimal charging of the EV fleet while 
their drivers are fulfilling its daily activities. Initially, a battery 
self-discharge coefficient, Φdecay, has also been included to 
generalize the problem. 

   













t

vtit effsupply γ,·PEXmin 

 (1) 

Subject to the following restrictions: 

      maxdinia SOC,t;SOC,t  vvsocvvsoc

 (2) 

  maxmin SOC,SOC  vtsoc  (3) 

    t,BCTCRCγ, eff  vtvti  (4) 

        C,1,Φ1, decay vtivtsocvtsoc 
 (5) 

    0,,, vtivtsoc  (6) 

The objective of the cost function defined in (1) is to minimize 
the cost of charging the battery during the night period. 
Equation (2) constraints the SoC of the vehicle v between the 
initial SoC, SOCini, and the final SoC, SoCmax. Constraint (3) 
sets the limits for the battery SoC in each time slot and 
constraint (4) represents the battery effective charging limit. 
Equation (5) describes the SoC time evolution due to charging 
process, which only takes place when the EV is available to 
charge according to the connection/disconnection matrix  
BCT(t,v)- which is equal to 1 between ta(v) and td(v), nil 
otherwise- in (4). Efficiency is considered for battery charging 
at (1), increasing the charging cost, and (4), and reducing the 

amount of energy that can be effectively charged into the 
battery. Finally, variables are defined as positive to guarantee 
that energy input is always positive, meaning that EV are 
always charging during this period (vehicle to grid applications 
are not considered in this work). 

3.2. Conventional optimization charging algorithm 
 
Due to the presence of the self-discharge coefficient, the 

previous algorithm guarantees a unique solution for each 
vehicle. If the solution of this algorithm requires charging less 
than 4 time slots per hour and, due to the inclusion of the self-
discharge parameter, it will be more advantageous to firstly 
charge the time slots closest to the end of this particular hour. 
In this case, the amount of lost energy due to the self-discharge 
process will be minimized, further reducing the total charging 
cost. Additionally, a minimum charge in the time slot 
immediately before the vehicle departure is required for a full 
charge of the battery. 
Nevertheless, when compared with the total amount of charged 
energy during night charging, the energy due to self-discharge 
process is almost negligible and the self-discharge coefficient 
can be suppressed from equation (5). Thus, restrictions (2), (3) 
and (5) can be merged into: 

     C,tSOC amax 

t

vtivsoc  (7) 

Reducing the amount of restrictions (and, thus, the amount 
of variables considered) the amount of time required to 
calculate the solution for the problem is also decreased. This is 
particularly important when extending this methodology to a 
great number of vehicles. In the particular situation cited in this 
article, more than a million of EVs have to be analysed by the 
P2P energy trading system.  
Under this assumption, the algorithm works properly, 
minimizing the total cost of the recharged energy defined in 
(1), but it does not provide a single solution, generating an 
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interesting problem. In this particular case, it is observed that 
there can be discontinuities in the charging process depending 
on the total energy demanded. 
For example, in Fig. 3 the result of the optimization process 
applied to a particular EV which requires 5.5 kWh charging 
during the night period to fulfill all its daily trips is shown.  It 
is assumed an effective charging rate of 3.3 kWh per hour, 
slightly lower than the corresponding to a standard type-2 
charging point of 230V-16A with a charging efficiency rate of 
0.95. The effective energy charged per 15-min time slot is 3.3 
kWh/4=0.83 kWh. 
 

 
 
Fig. 3. Initial energy assignment for night charging 
 
The total amount of time slots required by this EV will be: 

6265.6
kWh 0.83

kWh 5.5
  (8) 

This vehicle will require 6 complete time slots of 15 minutes at 
a maximum power of (0.83 kWh/timeslot) and one extra time 
slot of 15 minutes charging at a lower power (0.52 
kWh/timeslot). The minimum price is reached between 4:00 to 
5:00, corresponding to the first 4 time slots. Then, the 
optimization algorithm selects two additional time slots at 
maximum power during the next cheaper hour, from 3:00 to 
3:30, and the last time slot selected by the algorithm is from 
3:30 to 3:45 (at 0.52 kWh/timeslot). It is observed that this 
vehicle will start the charging process at 3:00 until 3:45, then it 
will stop until 4:00 and it will start again from 4:00 to 5:00. 

4. Proposed sequential optimization algorithm 

without charging discontinuity 

 
To further reduce the amount of time required to solve this 
problem, a sequential algorithm is developed in this section. 
This algorithm calculates an optimal solution of the charging 
problem. It includes the sorting of the time periods in which the 
vehicle charges, which is required once the self-discharge has 
been neglected to reduce possible non-mandatory interruptions 
in the charging process. 
The algorithm works as it is highlighted in Fig. 4, in clockwise, 
for each vehicle: 

1. The first step is to divide the time slots considered in 
the particular problem to charge the vehicles according to its 
arrival and departure time. For a vehicle arriving at 00:00 and 
leaving at 07:00, 28 time slots have to be considered, 
numbering from 1 to 28.  

2. The time slots are sorted according to their energy 
price. This sorting would be [17-20, 13-16, 9-12, 21-24, 5-8, 1-
4, 25-28]. 

3. Assign the maximum energy that can be charged to 
each time slot according to the previous sorting. If the demand 
were 5.5 kWh, 0.83 kWh would be assigned for time slots [17-
20, 13-14] and the remaining energy for time slot 15.  

4. Time slots are reordered and it is checked if there is a 
discontinuity in the charging process. This only occurs for the 
last requested hour, when the number of required time slots are 
lower than 4. Previous hours present time slots with equal 
energy assigned, so there is no need to reorder them. The 
reordering is only necessary if there is no charging in the 
previous time hour and there is a charging event in the 
following hour. If this is the case (like the one considered 
here), a new assignation for the last period is necessary (next 
step); otherwise, the algorithm finishes in the current step. 

5. For the new assignation, the time slots are reordered 
conversely: the energy assigned for the first time slot is 
reassigned to the last one, the second time slot to the 
penultimate, and so on. As a result, the maximum energy 
would be assigned to time slots [15-20], whereas the remaining 
energy would be assigned to time slot 14; in the end, energy 
assigned to time slot 13 would be zero. 

Assuming that the vehicle always charges at maximum power, 
the amount energy charged in the last time slot implies that the 
vehicle does not charge during the full length of the time slot, 
but during a part of it. 
Note that, for step 4, if the vehicle charges at the previous and 
the following hour of the last slot assignment two possibilities 
can be admitted: to do not reorder (as in the algorithm) or to do 
it. The advantage of no reordering is to decrease the algorithm 
execution time, whereas reordering gives a more closed 
solution to the linear programming problem in which the self-
discharge factor has been added. 

5. Results for individual vehicles 

 
In this section, four different charging cases are examined to 
show the algorithm behaviour. The main data of these cases are 
presented in Table 2. They are defined by the amount of energy 
to be charged in the vehicles, their arrival and departure times 
and the charging power. Note that this charging power refers to 
the grid side, implying that the effective power in the battery 
side is somewhat lower due to charging efficiency. As shown 
in section 3, each hour has been divided in 4 time slots. 
 
Table 2. Night charging examples 

Case A B C D 

Energy (kWh) 3 20 20 20 

Arrival time 23:00 23:00 20:00 23:00 

Departure time 08:00 08:00  05:00 08:00 

Charging power (kW) 3,52 3,52 3,52 10,00 

 
Case A represents the base case. In it, the vehicle can be fully 
charged during a period in which the price remains constant. 
Charging takes place during the lowest price period (04:00-
05:00) and it is not necessary to perform the reordering of the 
last 4 time slots (step 5 in the algorithm). 
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Case B shows a full charge with the same characteristics of 
case A: the vehicle is parked between 23:00 and 08:00 and the 
charging power is 3,52 kW, which requires a total of 6 hours 
(24 time slots). Due to the difference in the prices between the 
time periods, the charging takes place from 00:00 to 06:00. 
Since the price during the first period, from 00:00 to 01:00, is 
the lowest one, it is necessary to reassign the energy charged in 
the first four time slots. 
In Case C, the parking time is moved in the period from 21:00 
to 05:00, earlier than cases A and B. The user cannot profit 
from the grid price between 05:00 and 06:00 and the EV has to 
be recharged between 21:00 and 24:00. Due to the lowest price 

at the beginning of this period, the charging process starts at 
21:00, gets interrupted at 22:00 and then it restarts again at 
00:00, finishing at 05:00. No reassign is necessary for this case. 
Finally, case D shows a case where the vehicle has a higher 
charging power, 10 kW, almost triple than the charging power 
from the previous cases. This reduces the time required to fully 
charge the vehicle to two hours and seven minutes, a period 
that, with the previous charging power, would only have 
allowed to charge the battery up to 8.3 kWh. This case requires 
the reassignment of the last charging period, moving it from 
period 02:00-02:15 to 02:45-03:00.  
 

 

 
Fig. 4. Proposed optimization algorithm sequence 

  

Time [hours]
0

0.1

0.2

0.3

0.4

0.5

0.6

17 18 19 20
13 14 15 16

9 10 11 12
21 22 23 24

13 14 15 16
1  2  3  4

25 26 27 28

Night Electricity Price (€/kWh)

0 1 2 3 4 5 6 7

Time [hours]

0

0.1

0.2

0.3

0.4

0.5

0.6

N
ig

ht
 p

er
io

d 
en

er
gy

 p
ric

e 
(€

/k
W

h)

1  2  3  4
5  6  7  8

9 10 11 12
13 14 15 16

17 18 19 20
21 22 23 24

25 26 27 28

Night Electricity Price (€/kWh)

Time
Slot
number:

T

2. Sort the Price in ascending order, 
reordering the time slots 

5. Reassign the 
energy 

demanded in the 
last 4 time slots 

4. Reorder 
back the time 

slots.

3. Assign the maximum 
possible energy to charge 
each of available time slots, 
according to the previous 

order.

1. Divide each hour in 4 time 
slots (15 min each)



Alvaro-Hermana et al. / Int. J. of Thermal & Environmental Engineering, 15 (2017) 43-49 

48 

A  B 

C  D 
 

Fig. 5. Results of charging algorithm for cases A, B, C and D 
 

6. Application to a regional fleet 
In this section, the night charging algorithm described in 
section 4 is employed to study the impact of the electrification 
of the regional vehicle fleet from section 2. The result can be 
seen in Fig. 6.  
Green line shows the electricity price, which varies every hour. 
The blue line refers to the maximum amount of energy that 
would be charged by the EVs if all of them where fully 
depleted by the end of the day: that is, 20 kWh if the EV has 
enough time to fully charge the vehicle between its last arrival 
and its first departure or, on rare occasions, the amount of 
energy that can be charged at home effectively. Finally, the red 
line represents the amount of energy that is strictly charged 
during the night. 
 
 
 

 
Fig. 6. Drivers’ first departure and last arrival 
 
It can be seen that the energy demand almost reaches the 
maximum value only during one specific time slot, the one 
between 04:00 and 04:15. This implies that there is a small 
number of vehicles that require less energy that the amount 
that can be charged in a quarter of hour, 0.855 kWh. 
The power demand decreases in the next slot, but is not far 
from the maximum demand (95% of it). It decreases to around 
forth fifths of the maximum demand in the following slot 
(4:30-4:45) and less than three quarters in the subsequent slot. 
This implies that, during the hour with the lowest price –thus 
the highest demand– (4:00-5:00), the demand of the EVs is 
87% of the maximum possible demand. 
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The demand decreases slowly slot by slot until the first time 
slot, from 00:00 to 00:15. Since the EVs require around 5 
hours and 45 minutes to finish their charging process, only 
those that perform their first departure before 6:00, will charge 
during this time slot. 
Finally, it is worthy to notice that some vehicle may benefit 
from low prices during the so-called day-time (earlier than 
21:00). In this case, between 15:00-16:00 there is a small 
demand of almost 8 MWh, 38% of the maximum possible 
demand during that time. 

6. Conclusion 
In this paper, the impact of the electrification of the fleet of EV 
in the Flanders region (Belgium) has been studied. For this 
analysis, an algorithm that optimizes the night charging 
process of EVs previously presented by the authors has been 
employed. 
The algorithm determines when and how much energy should 
charge each of the fleet’s vehicles according to their parking 
time at home, the energy consumed along the day and the 
electricity price during the night. 
For the analyzed scenario, the peak demand is reached only 
during a small fragment of time, corresponding to almost all 
vehicles charging between 04:00 and 04:15. During the hour 
with maximum demand, between 04:00 and 05:00, the average 
demand represents 87% of the maximum demand of the plug-
in vehicles. The demand descends time slot after time slot 
following the electricity price during the night. Some vehicle 
owners benefit from low electricity price during some day-
hours, but the amount of energy they demand is negligible 
compared to the night demand. 
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