
 Int. J. of Thermal & Environmental Engineering 
Volume 13, No. 2 (2016) 81-89 

 
 

* Corresponding author.  
E-mail: bspencer@unb.ca  
© 2016 International Association for Sharing Knowledge and Sustainability 
DOI: 10.5383/ijtee.13.02.002 
 

 
81 

 
 
 
 
 
 
 
 
 
 

Short Term Forecasts of Internal Temperature with Stable 
Accuracy in Smart Homes 

 
Bruce Spencer 

a *, Feras Al-Obeidat 
b, Omar Alfandi 

b,c 

a University of New Brunswick, Fredericton, Canada 
b Zayed Universty, Abu Dhabi, UAE 

cUniversity of Göttingen, Göttingen, Germany
 

Abstract 
We forecast internal temperature in two homes, using variants of regression with data from the readings of multiple 
sensors. We use 48 separate models, where each forecasts mean temperatures that will occur in one future 15-minute 
interval, to compose a forecast for the next 12 hours. The sensors report internal and external atmospheric and 
environmental conditions such as temperature, pressure, sunlight, rain and wind, as well as evidence of human activity, 
including CO2 saturation, motion sensors and electrical load from areas within the house and large appliances. The models 
use both current and historical sensor values, each of which increases the number of predictors in the linear regression 
model. We use model simplification techniques including forward stepwise regression, principal component regression, 
and partial least squares regression. In both houses the forecast accuracy is stable; the mean absolute error over 12 hours 
is less than 1, while the root mean squared error is less than 1.3. Our accuracy compares favorably to previous work. Our 
work indicates long sensor histories for forecasts in the next 12 hours do not significantly improve accuracy. 
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1. Introduction 

According to recent studies, about 40% of energy produced 
worldwide is consumed by buildings, and more than half of this 
is used by Heating, Ventilation and Air Conditioning (HVAC) 
systems [1,2]. Accurate temperature forecasts can reduce energy 
usage in buildings in two ways. First, as Pan et al. [3] state, due 
to thermal inertia, it is more efficient to maintain temperature in 
a room or building than to heat or cool it, so an HVAC controller 
with foresight can do a better job of maintaining temperatures 
and avoiding contributing to temperature swings. Second, 
Model Predictive Controllers, which produce a control signal for 
HVAC systems, minimize a cost function based on energy 
consumption. The cost function takes into account a prediction 
horizon and a control horizon4. Considerable savings can result: 
Moreno et al. [5] achieve estimated energy savings of 20%. 
Thus, a rough estimate of potential savings arising from 
forecasting temperature in buildings is 4% of all energy 
produced.  

We analyze publicly available data from two different houses to 
forecast temperature. Data provided by Zamora-Martinez et al. 

[6] reports 18 sensors from the SML house over one period of 
about four weeks and another period of about three weeks. The 
Smart* Project [7] provides publicly available data including 
environmental readings, circuit loads, motion detectors, and 
switches controlling lights and fans, over a three-month period. 
We predict temperature in these homes for every 15-minute 
interval i.e. a temperature estimate 15 minutes in the future, 30 
minutes, and so on, up to twelve hours. We measure the accuracy 
of each forecast individually and the accuracy over the entire 
twelve-hour horizon, i.e. over all 192 intervals, and up to sub-
horizons that end sooner. We consider only the first of the two 
periods for the SML house, and only Home A from the Smart* 
house. 

In the remainder of this paper, we review the data sets, statistical 
methods applied to these data sources based on linear regression. 
Because we access many sensors and for each sensor, we include 
some number of historical readings, our models can contain 
many predictors. For n sensors using a current value and b 
historical values for each sensor, our models include n (b + 1) 
predictors. Since the model sizes can be large, we employ a 
variety of model reduction techniques, including forward 
stepwise regression, principal components, partial least squares 
regression. We compare to previous work and conclude 
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techniques give rise to usable forecasts with errors that are low 
and accuracy that is stable. Some of our methods involve a 
manual step, so automating or avoiding that is left for future 
work. 

2. Datasets and Previous Work 

Zamora-Martinez et al. [6], reporting on the SML house, provide 
18 sensors over a four-week period in March and April of 2012. 
This data is publicly available [8]. The data is presented as a time 
series with 15-minute resolution to an online learning 
framework that forecasts 48 hours of forecasts, or 192 forecasts. 
Only two of the 18 sensors are used in this work: internal 
temperature and sun irradiance, and the hour is encoded as 24 
Booleans. From an initially uninformed model, each new set of 
sensor readings is loaded and the model is improved. After 5 
days of data, about 480 observations, the forecasts show good 
accuracy. There are two modelling technologies studied: an 
artificial neural network, which is trained using a variety of 
mechanisms that are variants of gradient descent, and also a 
Bayesian linear model, which performs the best most often. 
Instead of forecasting actual temperatures, they forecast the 
differences in temperature between periods. Accuracy is 
calculated for each of the methods over a number of 
experiments. Forecasts have MAE below 0.2 C occur about half 
of the time, the median error is 0.5 C, but can be up to 1 C.  

In earlier work by the SML group [9], forecasts are computed 
for each minute over a three-hour forecast period, using five 
sensors along with an indicator of the hour of the data. Before 
modelling, the temperatures are replaced by the moving average 
over the previous 5 periods, and the resulting averages are 
normalized so that they have a mean of 0 and a standard 
deviation of 1. Therefore, they do not represent a number of 
degrees. The MAE over the three hour forecast horizon is 0.133, 
with a maximum of 1.98. Normalized RMSE is reported but not 
RMSE.  

The data provided on the Smart* website [10] for Home A 
covers May, June and July 2012, and report either at specific 
times, or as energy demand is made, depending on the sensor. 
We accumulate all data into 15 minute intervals. Each day has 
intervals 0,...,95, where interval 0 occurs at 12 midnight and 
reports on readings from 11:45PM to midnight. The 
environmental data is averaged over all readings within the 
interval and reported at the end of that interval. Similarly, the 
load from each circuit within the home is averaged over the 
period. For the motion detector, we add up the number of motion 
events detected over the interval, and for the switch, we take the 
average over the interval of each power estimate. Power is 
computed by multiplying the maximum wattage of the switch by 
the proportion that it was dimmed. As far as we know, no 
previous temperature forecasting has been done with the Smart* 
data. 

3. Temperature Forecasting with Linear Regression 

Using terminology of Cheng et al. [11] , we perform multi-step-
ahead direct forecasting in that we compute multiple forecasts 
into the future with a fixed set of data. Following terminology 
from Ben Taieb et al. [12] we use a pure direct forecast strategy 
to do this, by creating one forecast model for each possible 
future quarter-hour interval. We report forecast errors for each 
15-minute interval and also for each forecast horizon, ending 
with the error over the full 12 hours.  

We are not using an online learning approach, but instead we 
compute our models on a pre-collected set of recent readings 
called the training period, consisting of the first 2/3 of the 
available data and evaluate them on the test period, which is the 
remaining 1/3. The test period immediately follows the training 
period.  

In linear regression, we are given a set of independent variables 
x1,…,xn and a dependent variable y of interest that we want to 
forecast as a function of the independent variables. Specifically, 

we seek parameters 0 ,…,n so that 0 + 1 x1  +…+ nxn is a 
good approximation of y. When presented with a set of m 
instances of each xi, called xi,j and the corresponding instances 

yj, we select the i parameters so the root mean squared error 
(RMSE) function is minimized, where RMSE is  

 

We also are interested in minimizing the mean absolute error 
(MAE), which is  

   
and the residual sum of squares (RSS) over the training data, 
which is  

 
In temperature forecasting, the independent variables are 
recent readings from various sensors. Let the lag l vary 
across the intervals 0 through b into the past, and let k vary 
across the s sensors. Let xk,t be the tth observation for the 
sensor k counting from the earliest observation in the data 
at t = 1. Let yf be the independent variable, which is the 
internal temperature of the house at some future time. We 
let f represent the number of 15-minute periods into the 
future. For a fixed future period f , we seek the value of 
the coeffcient 0 for the intercept of regression and  

s × b values for the coefficients fk,t of the kth sensor at time 
t. We want to minimize the residual sum of squares  

 
In this equation, t starts at b+1 because there are no lagged 
observations for the first b data points. We focus on 
forecasting the next 12 hours, so f = 1, …, 48 periods. 

 
There are s × (b + 1) predictors for each model, and there are s 
= 37 sensors in one of our data sets, and we use up to b = 8, so 
we deal with up to 37 × 9 = 333 predictors. We seek methods to 
simplify the model. One of the goals of this paper is recommend 
effective model reduction techniques for temperature 
forecasting. 
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3.1. Model Reduction Techniques 

We conduct a variety of experiments where we vary the solver, 
the data file and the number of historical values from each 
sensor. The solvers are ordinary least squares regression, 
forward stepwise regression, principal component regression 
and partial least squares regression. In ordinary least squares, we 
use the lm method provided in R. 

Our first model simplification technique is the variant of linear 
regression known as forward stepwise linear regression, first 
defined by Miller [13], using stopping rules defined by Bendel 
et al. [14]. We followed the presentation by Hastie et al. [15], 
and provided the leaps package [16], using the R method 

regsubsets. This method initially sets 0 to the mean value 

of y and all other i= 0. Then it repeatedly selects a value for i 
so that the error function is reduced as much as possible among 

all such choices. Once a value of  I  is selected it is not changed 

further. After all such i are selected, stepwise regression halts 
with the model.  

We also apply principal component and partial least squares 
regression, in which linear combinations of the original 
predictors are “repackaged” as separate components. Each 
component is defined in turn, until the number of components as 
specified by the hyperparameter is reached. In the case of 
principal components regression, the first component is the 
linear combination of all of the predictors that has maximal 
variation. The second and subsequent components maximize 
variation among components that are orthogonal to all previous 
components. Note that principal component regression does not 
pay attention to the values of independent variable. In the case 
of partial least squares, each coefficient of the first component 
is chosen to be proportional to the correlation of that predictor 
and the independent variable. The second and subsequent 
components are computed in the same way but instead of using 
the independent variable directly, they are based on the residual 
after the information in the previous components is removed. 
Note that partial least squares is supervised by the independent 
variable. 

These two techniques reduce the problem of finding coefficients 
for all predictors to one of defining a smaller number of 
components and finding coefficients for each. In that sense, the 
number of dimensions is reduced. However, unlike the forward 
stepwise restriction, neither principal component nor partial 
least squares regression selects or filters out specific predictors, 
since each component is a linear combination of all predictors. 
Depending on the coefficients used, some predictors are left with 
little influence. 

We use the pcr and plsr methods to perform principal 
component and partial least squares regression, respectively, 
specifying the validation option as CV. These methods are in the 
pls library [17,18] and described by a vignette [19]. 

3.2. Hyperparameter Training and Cross Validation 

Once the data is prepared, we divide it into two periods, a 
contiguous (hyperparameter) training period, and an adjoining, 
later, contiguous testing period. The model is built using only 

the training period. As is typical, 2/3 of the data is used for 
training and 1/3 is used for testing. By insisting the separate sets 
are each contiguous, we can claim authenticity with the real-
world setting where we are forecasting into a future represented 
by the training periods that has not yet occurred. 

If the modelling technology has hyperparameters to train, first 
we train them and settle on appropriate values for the 
hyperparameters. Hyperparameters are selected from the 
training data. After the hyperparameter training is done, or if 
there are no hyperparameters, we build our final selected models 
directly from all of the training data. 

We apply cross-validation during hyperparameter training. In 
cross-validation, first the training data is divided into ten 
randomly selected subsets called “folds”. These subsets do not 
have to consist of contiguous data. Given a candidate 
hyperparameter value, we perform ten experiments. In each, one 
of the folds is considered the test fold and a model is trained on 
the other nine folds. We want to investigate the error arising 
from various values of the hyperparameters in order to select a 
value that will have the lowest error over the entire test set. How 
this is done depends the regression method. Ordinary linear 
regression has no hyperparameters, so that model is built directly 
from the entire training set. 

In the case of foward stepwise regression, the hyperparameter is 
the number predictors that need coefficients. So for a fixed 
number of predictors, we compute ten models, and for each we 
measure the Bayesian Information Criteria (BIC)[20], defined as
  

 
where n is the number of observations, and d is the number of 
dimensions of the model, ˆ is an estimate of the standard 
deviation of the internal temperature. BIC penalizes more 
complex models, and thus balances model complexity against 
model error on the training data. A model with a smaller BIC is 
considered better, in that its error may be higher than minimal, 
but is less prone to over-fitting, and therefore should perform 
better on unseen data. 

For forward stepwise regression, each additional predictor 
necessarily reduces the error, so BIC reduces and then increases 
as the number of dimensions increases. We can identify the 
model size with minimal mean BIC. But since the BIC decreases 
slowly as it approaches the minimal as the predictors reduce the 
error by smaller and smaller amounts, we are interested the 
model size whose mean BIC is within one standard error of this 
smallest BIC. See Figure 1, where the BIC for each model size 
is shown for several example models. Each BIC is marked with 
a confidence interval spanning one standard error, based on the 
BIC’s of the models of that size over the ten folds. The model 
with the lowest mean BIC is shown labeled green, and a smaller 
model whose BIC is larger by at most one standard error is 
labelled red. One can judge how well this heuristic works by 
examining how the BIC drops as the model size increases. We 
see reductions of about 7 predictors for the SML models and up 
to 29 for the Smart* models. 
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Fig. 1: In forward stepwise regression, selecting the number of predictors for the first three periods of the SML data with zero historical 
sensor values and the last three periods of the Smart data with 8 historical sensor values. These are our simplest and most 
complex models, respectively. The green dot represents the model size with minimal BIC and the red dot the smallest model 
size within one standard error of the minimal. We see reductions of 14-7, 16-8, and 16-10 for the three example SML models, 
and 47-29, 44-28, and 44-31 for three example Smart* models. Other periods and other sensor histories produce similar 
reductions. The largest reduction is 29 predictors. 

 
Fig. 2: Validation plots for SML data predicting period 30, at 7.5 hours into the future. From left to right, using partial least squares 

(PLS), with 0 historical readings, PLS with 8 historical readings, followed by principal components (PC) with 0 and 8 historical 
readings. Balancing the benefits of fewer components against those of lower error, we chose 4, 12, 6, 60 components, resp. 

Fig. 3: Validation plots for Smart data predicting period 30, at 7.5 hours into the future for PLS with 0 history, PLS with 8 history, PC 
with 0 history, PC with 8 history. Balancing fewer components against lower error, we chose 4, 10, 34, and 310 components, 
resp.   
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While it is easy to calculate the number of dimensions of the 
model built by forward stepwise regression, it is less obvious 
how to do so for the two regression methods that define 
components: principal component analysis and partial least 
squares, since each of these uses all predictors for each 
component. We tried two strategies to help us decide how many 
components to include. First, the R library plsdof [21], 
described by Kraemer et al. [22] contains a method pls.ic, for 
computing information criteria. In addition to the BIC, it 
produces an integer m.opt with the recommended number of 
components to be used when doing partial least squares 
regression. Second, the pls library provides the method 
validationplot, which produces plots showing the 
measured prediction error over various numbers of components, 
and it uses cross validation. Our choice was whether to use the 
automatically generated number of components, or to review the 
plots manually. Our experience showed that pls.ic runs 
slowly when there are a large number of predictors. While it 
often generated consistent results, this was not always the case. 
We found the recommended number of components varied 
within each forecasting problem, even though the forecasting 
problems were similar. An area of future investigation for us is 
to become more comfortable with pls.dof. 

See Figure 2 for some examples of using validationplot 
to select the number of components from the SML data set and 
Figure 3 for the Smart* data set. Unlike Figure 1, where it is easy 
to identify the appropriate model size, in Figures 2 and 3, it takes 
some judgment. One cannot always find a unique point 
indicating a relatively small model with almost minimal error. 
Consider the third plot in Figure 2. One might choose 5 
components if preferring fewer components, or some value from 
7-10 if preferring lower error. For this paper we reviewed the 

960 plots= 48 futures × 5 history lengths × 2 forecasting 

methods × 2 data sets. We selected the number of components 

shown in Table 1. 

We found that a higher number of components was needed more 
often by principal components than partial least squares, 
especially using the Smart* data. This aligns with intuition 
because there are up to 333 predictors in Smart* data, and as 
principal components is an unsupervised forecasting method, a 
large amount of data must be included in order for the method 
to find the right data.

 
Table 1: Number of Components for Partial Least Squares and Principal Components Regression

  
Method History Intervals Components 

    

PLS 0 1-30 4 

  31-48 5 

 1 1-25 5 

  26-48 20 

 2 1-25 4 

  26-48 15 

 4 1-20 5 

  21-48 10 

 8 1-23 3 

  24-48 10 

PC 0 1-48 34 

 1 1-14 44 

  15-34 63 

  35-48 70 

 2 1-20 42 

  21-27 85 

  21-27 105 

 4 1-15 35 

  16-48 170 

 8 1-5 40 

  6-27 200 

  28-48 310 

(a) Number of components for Smart*  Data 
 

Method History Intervals Components
    

PLS 0 1-19 3
  20-39 4
  40-48 7
 1 1-29 4
  30-39 18
  40-48 24
 2 1-29 4
  30-48 20
 4 1-24 4
  25-48 20
 8 1-23 4
  24-48 12

PC 0 1-9 7
  10-34 6
  35-48 10
 1 1-19 7
  20-29 21
  30-48 34
 2 1-19 9
  20-29 20
  30-48 45
 4 1-19 8
  20-29 20
  30-48 60
 8 1-19 10
  20-29 15
  30-48 60
    

(a) Number of components for SML  Data 
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Fig. 4.: Forecast Errors at each hour for Linear, Forward Stepwise, Principal Components and Partial Least Squares Regressions on SML 

data. The history horizons are 0,1,2,4,8 and their plots are shown in red, green, blue, black and purple, resp 
 
 



Spencer et al. / Int. J. of Thermal & Environmental Engineering, 13 (2016) 81-89 

87 

 
Fig. 5.: Forecast Errors at each hour for Linear, Forward Stepwise, Principal Components and Partial Least Squares Regressions on the 

Smart* data. The history horizons are 0,1,2,4,8 and their plots are shown in red, green, blue, black and purple, resp. 
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3.3. Computing Forecasts and Reporting Errors 

Once the hyperparameters are selected, we build a model using 
all of the training data to set the coefficients for this candidate 
best model, and ran this model on the training data. We report 
on the error that occurs between the model’s prediction and the 
observed temperature for each of these forecasts. We are 
interested both in the mean absolute error (MAE), which tells 
the average absolute difference between forecasted and 
observed data, and in the root mean square error (RMSE). MAE 
is a convenient measure since it is a physical quantity that lay 
people can relate to, e.g. “being 1 degree off, on average”. It is 
possible to have a low MAE but a high RMSE, by having most 
individual forecast errors low, but some very high. Therefore, 
RMSE is a better indicator of consistent accuracy. We set all our 
methods to achieve minimal RMSE, and note that a low MAE is 
achieved as a by-product. 

4. Results and Discussion 

Our experiments run the four solvers, five different history 
horizons and 12 hours of forecasts on the SML data with results 
shown in Figure 4 and on the Smart* data shown in Figure 5. 
The first solver is ordinary linear regression, considered the 
baseline above which all other solvers should achieve. Note that 
the four plots in the top right corner of both Figures 4 and 5 have 
a vertical scale of 100, owing to the high RMSE for both the 
linear regression and forward stepwise regression. All other 
plots have vertical scale of 3. 

The first and third columns report on the error at each interval 
while the second and fourth report on the error when the forecast 
window includes all forecasts up to the horizon. For instance, 
with SML data using 8 lags for each sensor, the partial least 
squares MAE for the final interval at the end of the 12th hour is 
1.35 C, the MAE over the entire forecast period is 0.92 C. 

Forward stepwise regression does not appear to offer much of an 
improvement over linear regression, while principal components 
and partial least squares are much more accurate, especially 
considering the RMSE. It is also interesting to note how little 
improvement arises from including the historical sensor 
readings. For principal components it appears to sometimes be a 
hindrance, as the red line representing no historical readings is 
lower than others for about the first six hours of forecasts on 
SML data. 

In comparison with previous work on the SML data set, we note 
that results published by the SML group include 2012 and 2014 
[9,6]. As noted, the 2014 results cannot be directly compared 
because the temperatures are replaced by their moving average 
and then normalized. The 2014 results also cannot be directly 
compared as the forecast temperature differences between 
adjacent time intervals, rather than raw temperatures. We ran an 
experiment to test our method on forecasting temperature 
differences using principal component regression with no 
historical sensor readings, without carefully tuning the number 
of components, but instead selecting again the number of 
components tuned for forecasting direct temperatures. Thus it 
was not optimized for this problem. We achieved MAE over the 
12 hours of 0.063, with a maximal MAE of 0.08. Their forecasts 
for these temperature differences over 192 intervals are based on 
two sensors and have a median MAE of 0.5 and maximal MAE 
of about 1. They do not report RMSE. Their forecast accuracy 
does not appear to be stable. Our RMSE over the 12 hours is 
0.09 with a maximal RMSE of any one forecast at 0.10 
indicating our accuracy is stable for forecasting temperature 
differences. 

5. Conclusions and Future Work 

Our goal is to generate accurate forecasts of internal temperature 
in homes with access to data from a variety of sensors. 
Temperature forecasts can be used in conjunction with a 
temperature control unit that decides to apply heating or cooling 
depending on the current temperature and the forecasted 
temperature, rather than just the current temperature alone. Such 
controllers have been shown to reduce energy consumption by 
HVAC systems by 20% [5], which itself is estimated to be 20% 
of all energy used [1,2]. Thus potential savings may approach 
4% of all energy produced. 

We compare four variants of linear regression, including 
forward stepwise regression, principal component regression 
and partial least squares regression. We guide model selection 
by ten fold cross-validation to reduce overfitting.  

For the SML house using partial least squares regression models 
trained on just over 19 days of data with 9 readings each from 
18 sensors, we achieve MAE at 0.93 C over a 12 hour forecast 
horizon with maximal per-interval MAE of 1.4 C, and RMSE at 
1.30 over the horizon with maximal per-interval RMSE at 1.76. 

For the Smart house using principal component regression 
models trained on 60 days of data with 9 readings from each of 
37 sensors, we achieve MAE at 0.78 C over a 12 hour forecast 
horizon with maximal per-interval MAE of 1.03 C and RMSE at 
1.03 over the interval with maximal per-interval RMSE of 1.3. 

Because forecast models based only on immediate data are 
almost as accurate as those using a history from each sensor, we 
achieve results almost as accurate using no history. Thus we can 
restart forecasts immediately after any sensor failure, and so 
energy savings improvements are not delayed. An online 
learning strategy that takes five days to train may need an interim 
strategy to avoid propagating that gap to the stream of forecasts. 

Considering the tradeoff between forecast horizon and forecast 
accuracy, forecasts further into the future have lower accuracy. 
Forecasting over a 2-hour horizon in the SML house, the MAE 
is 0.26 C and the RMSE is 0.31. Over the same 2-hour horizon 
in the Smart house the MAE is 0.42 C and the RMSE is 0.58. In 
both cases the error rises almost linearly up from the 2- to the 
12-hour forecast errors. Thus, better forecasts can be made if a 
shorter forecast horizon is needed. 

While we believe the forecast are usable, due to their low error 
and stable accuracy, we recognize that the manual process of 
deciding how many components to include in the partial least 
squares and principal component regression is time consuming 
and will address this in future work. 
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