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Abstract 

This paper investigates the double diffusive natural convection in a partially porous layered enclosed cavity with a 
thermally conductive square body. The horizontal walls are thermally insulated, the left wall adds heat isothermally into 
the porous layer, while the right wall is cooled isothermally. The center of the square conductive body is positioned in the 
center of the cavity in such a way it lays on the porous-fluid interface. The governing equations have been solved using 
up-wind scheme finite difference method. The Parndtl number, thermal conductivity ratio of the body to fluid, Darcy 
number, aspect ratio of the square body to the cavity sides have fixed at 6.26, 1, 10-3, 0.5, respectively. The study has been 
governed by three parameters namely, Lewis number (Le = 1–50), buoyancy ratio (-10 – 10), and Rayleigh number (103-
106). The results have showed that the mass diffusivity ratio, which takes into account non-unity tortuosity ratio (Deff/D = 
0.53) has a significant effect on the mass transfer than the unity value. It is found also that Sherwood number is minimal 
when the buoyancy ratio equals to -0.5, otherwise, it increases with increasing the absolute value of the buoyancy ratio. 
 
Keywords: Double-diffusive; partitioned cavity; porous medium; inner body; finite difference. 

  

1. Introduction 

Accompaniment of many technical applications, heat transfer 
processes occur simultaneously with mass transfer processes. 
Mass transfer specifically refers to the relative motion of species 
in a mixture due to concentration gradients. This subject 
subsumes to applications in geothermal reservoirs, petroleum 
extraction, home humidifiers, chemical catalytic reactors, 
prevention of subsoil water pollution, nuclear reactors, 
underground diffusion of nuclear wastes and other 
contaminants, and porous material regenerative heat exchangers 
[1]. The heat and mass transfer (double diffusive) in enclosed 
cavities composed of porous layer confined or superposed by a 
clear fluid are studied extensively due to their vital relevant in 
engineering and industry. Baytas et al. [2] investigated the 
double diffusive natural convection between a saturated porous 
layer and an overlying fluid layer in an enclosure   using the non-
Darcy flow model. Hirata et al. [3] studied the linear stability 
analysis of thermosolutal natural convection in superposed fluid 
and porous layers. Islam et al. [4] investigated a double diffusive 

natural convection in a two dimensional brine saturated porous 
media, subjected to vertical concentration and temperature 
gradients. Hadidi et al. [5] analyzed numerically the heat and 
mass transfer generated in horizontal partially porous enclosure. 
Their results showed that the presence of the porous layer has 
strong effects on the heat and mass transfer and the modification 
of the flow structure. Mharzi et al. [6] studied the natural 
thermosolutal convection in an elongated enclosure of 
horizontal axis, partitioned by a vertical porous layer. Their 
results showed that the heat transfer is more influenced by the 
thermal conductivity ratio, while the solutal transport is 
essentially sensitive to the solutal diffusivity ratio. However, 
when thermal and solutal buoyancy forces N were opposed to 
each other (N < 0), the increase of Lewis number produces an 
important reduction of the heat exchange average Nusselt 
number. Bennacer et al. [7] analyzed numerically the double 
diffusive natural convection in an enclosure fitted with two 
symmetrical porous layers confining a fluid layer. Gobin et al. 
[8] investigated a natural convection driven by combined 
thermal and solutal buoyancy forces in a binary fluid. They 
confirmed that the presence of the porous layer has a strong 
influence on the modification of the flow structure and the 
consequent modifications of the heat transfer. Outaleb et al. [9] 
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studied numerically the double diffusive convection in a 
partially porous cavity with partially permeable walls under the 
combined buoyancy effects of thermal and mass diffusion. 
Hadidi et al. [10] studied a double diffusive natural convection 
heat and mass transfer in a two-dimensional porous media tilted 
cavity. Rahli and Bouhadef [11] analyzed numerically the 
double diffusive convection in inclined partially porous cavity, 
with partially permeable walls. Hadidi and Bennacer [12] 
investigated the problem with two and three-dimensional flows.  

Studies focused on the insertion of conductive or adiabatic 
bodies inside enclosure can be found in the followings. House et 
al. [13] performed a study of natural convection in a 
differentially heated square enclosure containing a square 
conducting body. Ha and Jung [14] conducted a numerical study 
in three-dimensional heat transfer and flow characteristics of 
natural convection in a vertical cubic enclosure when 
differentially heated. Lee and Ha [15] investigated natural 
convection in horizontal layer of fluid with a conducting body in 
the interior, heated from below and cooled from above walls. 
Braga and Lemos [16] presented numerical solutions for steady 
laminar and turbulent natural convection within a square cavity 
filled by a fixed amount of conducting solid material using a 
continuum model. Both the continuum and the porous 
continuum models gave higher values for the Nusselt number 
when turbulence was considered, being macroscopic solutions 
more sensitive to the inclusion of a turbulence model. In other 
study, Braga and Lemos [17] investigated numerically heat 
transfer across a square cavity partially filled with a fixed 
amount of a conducting solid shaped with two different types of 
geometry. Merrikh and Lage [18] investigated numerically 
natural convection within a differentially heated heterogeneous 
square enclosure consisting of several disconnected and 
conducting solid blocks within a saturated fluid.  For a number 
of solid blocks bigger than the minimum number necessary for 
flow switch, the heat transfer across the enclosure was enhanced 
as the fluid to-solid thermal conductivity ratio increases.  Das 
and Reddy [19] investigated numerically the natural convection 
flow in a tilted square enclosure with a centered internal 
conducting square block. Zhao et al. [20] studied a natural 
convection heat transfer and fluid flow in a vertical enclosure 
subject to periodic temperature boundary condition imposed at 
the right sidewall with a conducting body placed at the center of 
the enclosure. Zhao et al. [21] in other study investigated the 
conjugate heat transfer in enclosures encircled with finite walls 
or with centered solid body. Varol [22] investigated numerically, 
natural convection in porous media filled cavity. The conducting 
body inserted in triangular cavity heated from horizontal wall, 
the vertical wall is adiabatic and the inclined wall is kept cold. 
Their results showed that the heat transfer and fluid flow were 
affected by the location of the conducting body. They showed 
that heat transfer increased with increasing thermal conductivity 
k and Rayleigh number due to available energy into the system. 
For a higher value of thermal conductivity, heat transfer 
becomes constant.  

In accordance to the above literature survey, it can be concluded 
that the double diffusive natural convection in a vertically 
partitioned-porous cavity with inner fixed conductive body has 
not been investigated yet. Hence, the scope of this paper is the 
numerical analysis of natural convection heat and mass transfer 

in partially layered square cavity with inner thermally 
conductive square body. 

 

Fig. 1. Physical domain and coordinates system 

2. Mathematical Modelling 

The considered problem is shown schematically in Fig. 1. It is a 
square cavity with side length H. A vertical porous layer of 
thickness Wp is localized on the left part of the cavity and 
saturated with a fluid. This fluid fills the remainder of the cavity 
(H-Wp). A thermally conductive square body is centered inside 
the cavity. The left wall of the cavity which is in contact with 
the porous layer is heated isothermally, kept at Th and Ch (high 
precise concentrations), while the right wall of the cavity is 
cooled isothermally, kept at Tc and CL (low precise 
concentrations). The assumptions used to simplify the proposed 
model are; the flow is two-dimensional, incompressible, 
laminar, and steady state. All outer boundaries are fixed and 
impermeable, while the vertical interface between nanofluid and 
porous layers is permeable. Regarding the porous layer, uniform 
and undeformable pores between the solid matrixes are 
assumed. A thermal equilibrium is assumed between the fluid 
filling pores and the solid matrix. Constant physical properties 
are assumed except the density where it varies with temperature 
according to Boussinesq approximation. The energy dissipation 
and radiation of surface are negligible. Darcy–Brinkman model 
is invoked to represents the convection within the porous layer, 
where in this model there is no problem in the order of the 
matched momentum equation in the fluid/ porous. 

Based on the stream function-vorticity formulation [23], the 
dimensionless governing equations are: 

For porous layar 
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For fluid: 

Continuity: 
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For conductive body: 
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The conditions on the outer dimensionless boundaries of 
the cavity are; 

1- On the left wall: 

θ = 1, C = 1,Ω ,0 = ߖ ൌ െሺ
డమѰ

డ௑మ
ሻ  at X= 0 

2- On the right wall: 
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3- On the bottom and top wall: 
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డమѰ

డ௒మ
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The interface boundary solution are derived from equating 
(continuity) of tangential and normal velocities, shear stress, 
temperature, mass and the heat flux across the interface, and 
assuming the same dynamic viscosity (μeff = μf) [24], in both 
layers. Hence, the porous-fluid interface conditions can be 
written as; 
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The local Nusselt number is defined as follows: 
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The average Nusselt number along the left wall    is: 
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The local Sherwood number is defined as follows:  
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3. Numerical implementation and validations 
 
3.1 Numerical method  
 
The square domain has been discredited into Nx × Ny grids. The 
governing equations (1) to (9) were solved numerically using 
central finite difference method, Gauss- Seidel iteration 
procedure with Successive Under Relaxation (SUR) method is 
followed in the solution. The convective terms of the momentum 
and energy equations were treated by the up-wind scheme to 
attain the solution stability. The stream function, vorticity, mass 
and dimensionless temperature are calculated from continuity, 
momentum, mass and energy equations, respectively. A 
FORTRAN in-house computer programmed has been built to 
achieve the numerical solution.   
 
3.2 Validations  
 
3.2.1 Grid Independency Test   
    
  An extensive mesh testing procedure has been conducted to 
guarantee a grid independent solution. In Fig. 2, various mesh 
sizes were explored for the case of Da = 10-3, Ra = 10, Le = 50, 
N = 1, Pr = 6.26, Wp = 0.5, A = 0.3 and Kr = 1. The numerical 
solution was tested for grid independence by calculating the 
average Nusselt number and Sherwood number on the heated 
vertical wall. Based on the relevant criteria (solution accuracy 
and the time consumed by the processor), a grid size of 91×91 
ensures these criteria.    
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Fig. 2. Testing Grid, Ra =10, Le = 50, N=1, Pr = 6.26, Wp = 0.5, Da 
=10, Kr=5  
 
3.2.2 Comparisons with Others    
 

     The present numerical solution was further validated by 
comparing the present numerical solution results for Ra =106, N 
= 10, Pr =10, Wp = 0.1 and aspect ratio (ratio between height to 
width of cavity (H/L) = 2 and different other parameters with the 
numerical results of Gobin et al. [8]. The tests are presented as 
the variation of average Nusselt number with different Darcy 
and Lewis numbers. As shown in Figs. 3, the present numerical 
solution is in good agreement with Gobin et al. [8]. In 
accordance to these two validations, the present code can be used 
to obtain the results with high confidence level. 
 

 
 Fig. 3. Comparison of average Nusselt number with Gobin et al. 
[8].  

4. Results and discussion 

The results of the present paper are to be illustrated 
graphically by contour maps of stream function, isotherms 
and isoconcentration, and Nusselt and Sherwood numbers 
averaged along the left hot vertical wall. The parameters 
affecting the convection inside the present composite cavity 
are; Raleigh number Ra, Darcy number Da, Lewis number 
Le, buoyancy ratio N, conductivity ratio Kr, and the position 
of the inner conductive body. For brevity, the ranges of 
selective parameters are as follows: Ra = 103–106, Le = 1–
50, N = -10–10. The other parameters are fixed at: Da =10-3, 
Pr = 6.26, Kr = 1, and the conductive body is positioned at 
the cavity center.  

     Physically, Rayleigh number represents the ratio of the 
thermal buoyancy to viscous forces. Lewis number is the 
ratio of thermal diffusivity to mass diffusivity, and the 
buoyancy ratio reflects the solutal to thermal buoyancy. 

      In this study, the fluid is considered as pure water (Pr = 
6.26). The porosity value of the porous layer ε is fixed at ε = 
0.398 which corresponds to 3 mm diameter glass beads 
having a thermal conductivity of 0.845 W/m.k [23] 

4.1 Influence of the buoyancy ratio N 

Before starting with discussion of contour maps, it is worth 
mentioning that the sign of the streamlines determine the 
direction of streamlines, i.e. the negative streamlines means 
clockwise (CW) rotation and positive streamlines means 
counter-clockwise (CCW) rotation. It is also worth noting 
that the double diffusive convection in the present study 
results from the interaction of two mechanisms; heat transfer 
due to the temperatures difference and the mass transfer due 
to the concentrations difference. 

     Figure 4 presents the effect of the bouncy ratio N on the 
flow fields (left column), the thermal field (mid column) and 
the concentration field (right column) for Ra = 105 and Le = 
10. The existing of the inner solid square body generates an 
annulus flow path. This path comprises four grooves, these; 
the left vertical groove (within the porous medium), the right 
vertical groove (within the fluid layer), the upper and lower 
grooves (partly in porous and partly in fluid layers). 
Generally, when the fluid is heated from left wall, flow 
moves to right and buoyancy force rises it up within the left 
groove towards the adiabatic upper wall of the cavity, and 
then flow moves toward the right wall. As such a CW 
rotating vortex is formed. This flow behavior is very clear 
when N = 3 (Fig. 4a), where the action of the solutal 
buoyancy is combined in aiding manner with natural 
convection effect (positive N). The flow circulates in a 
primary vortex within the whole annulus with multi cores. 
The denes streamlines close to the solid boundaries imply to 
the intensified flow there. The isotherms (middle column) 
are purely vertical in the square body (purely heat 
conduction), approximately vertical in the vertical grooves 
and tend to be horizontal within the horizontal grooves. This 
means that the heat transfers horizontally in the vertical 
grooves and almost vertically within the horizontal grooves. 
The isoconcentrations lines (right column) are denser close 
to the left wall. In the horizontal upper groove, the 
isoconcentrations imply to that, the species falls down from 
the upper wall of the cavity. However, the combined action 
resulting from the high buoyancy ratio (N = 3) and relatively 
high Rayleigh number (Ra = 105) leads to high mass transfer 
as can be seen from the thin solutal boundary layer close to 
the left wall. For purely natural convection (N = 0, Fig. 4b), 
the flow circulates under the effect of natural convection 
only. Therefore, the thermal buoyancy is insufficient to 
strongly circulate the flow within the left groove because the 
high resistance exerted by the porous layer. Thus, the flow 
intensity looks very weak within the porous layer. The 
isoconcentrations appear in disturbed form, while the 
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isotherms remain unchanged. When N = -3.0 (Fig. 4c) the 
opposing solutal buoyancy is completely dominant. This can 
be charachterized by the single CCW vortex that occupies all 
the flow passages. The isotherm is almost vertical since heat 
is transferred by conduction in porous layer. In fluid layer, 
there is a slight change in the isotherms, which show a bit 
convective heat transfer due to the skewed isotherms in the 
horizontal grooves. While the mass transfer increases 
according to the initiation of the solutal boundary layer, close 
the upper part of the left wall.  Fig. 5 illustrates the influence 
of the buoyancy ratio N on the average Sherwood number in 
aiding and opposing modes. It is clear that for N ≥ 0 that the 
average Sherwood number is an increasing function with 
respect of N. The increasing average Sherwood number in 
aiding flow is representative to the coincided effects of the 
solutal buoyancy force and thermal buoyancy force in 
natural convection that causes increase of the mass transfer 
in the cavity. The minimum value of Sherwood number is 
recorded at N = -0.5, this means that solutal and thermal 
buoyancies have equivalent but opposite effects. For N>-0.5 
the solutal buoyancy predominates over the thermal 
buoyancy, so the Sherwood number increases again with N. 
Although the apparent symmetry of Sh number about N = 
-0.5, but for a given absolute buoyancy ratio, the aiding 
one gives greater mass transfer than the opposing one.   

   Streamlines                    Isotherms                Isoconcentration 

 
 
Fig. 4. Effects of buoyancy ratio N on the streamlines, isotherms 
and isoconcentrations contours for Ra = 105, Le =10, and 
different N  
 
 
4.2 Influence of Lewis number 
 
The effect of Lewis number is inspected by fixing the others 
parameters constants at Ra =104, N = 1, and depicted in Fig. 
6. As mentioned above, Lewis number Le governs the ratio 
of thermal diffusivity to mass diffusivity.  

Fig. 5. Effect of buoyancy ratio on Sherwood number at Ra =105 
 

Therefore, increasing Le can be interpreted either by the 
dominance of the thermal diffusivity which restricts the 
convective heat transfer or by diminishing the mass 
diffusivity with respect to thermal diffusivity. As a results, it 
is clear from Fig. 6 that convective currents weakens where 
the streamlines at Le = 1 are dense and strong throughout the 
cavity keeping in mind it stronger within the fluid layer (right 
groove) due to the less flow resistance. However, when Le 
increased to 50 (Fig. 6c), the flow intensity within the porous 
layer is notably reduced which is characterized by less 
density streamlines. It is found that at Le = 1, the value of 
maximum absolute stream function is  |߰|௠௔௫ ൌ 0.383  , 
while at Le = 50, it decreases to |߰|௠௔௫ ൌ 0.24 .  The 
isotherms looks unaffected by increasing Le number, this 
may because that the buoyancy force is already low (Ra = 
104). At Le = 1.0, the equivalent thermal and mass 
diffusivities results in a vertical isoconcentrations lines 
especially in the upper and lower grooves. When Le 
increases to 30 and further to 50, thinner solutal boundary 
layers form close to the vertical cavity walls, while the 
dominant thermal diffusivity brings the isoconcentrations 
line to be mostly horizontal within the upper groove. 
 

             Le = 1                         Le = 30                       Le =  50 

 

 

 
Fig. 6. Streamlines, isotherms, and isoconcentrations contours for 
selected values of Lewis number, at Ra = 104 and N =1.0.   
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4.3 Influence of Rayleigh number 
 

It is well known that the effect of Rayleigh number is to increase 
the buoyancy force over the viscous force; however, it is studied 
here to inspect its effect on the mass transfer as well. Figure 7 
presents this effect for Le = 10 and N = 1.  The streamlines 
variations patterns can be characterized by their intensity 
strengthening with Ra. It is recorded that the maximum absolute 
stream function |߰|௠௔௫  strengthens according as 0.24, 2.539, 
and 12.103 when Ra increased from 104, 105, to 106, 
respectively.  The isotherms are vertically distributed at Ra = 104 
as an indication to the conduction dominance. At Ra =105, a bit 
convective heat transfer takes place at the horizontal grooves. As 
Ra increases further to 106, the existing of the relatively thin 
thermal boundary layer and the stratification behavior of the 
isotherms, especially in the horizontal grooves, imply to the 
dominance of the convective heat transfer. 
 
If the mechanical movement of the convective currents is strong 
enough, they can carry the species. This is clear in Fig. 7 (lower 
row), where the isoconcentrations lines become denser (thinner 
solutal boundary layer) close the solid walls. Moreover, the 
concentration gradients settle close to the solid boundary while 
the middle of the cavity is free of mass transfer.   
 
Figures 8 and 9 present the variations of the Nusselt and 
Sherwood numbers, respectively, for  two values of solutal 
diffusivity ratios, DR = 1 (as assumed in most previous studies) 
and DR = 0.53 (as taken in this paper). The later value takes into 
account the tortuous path of porous medium. However, these 
two values have been inspected with various Lewis and Rayleigh 
numbers. Intuitively, the tortuous path restricts the fluid motion 
within the porous media, therefore, the average Nusselt number 
decreases when setting DR = 0.53 as shown in Fig. 8. This 
decrement arises at higher Rayleigh number and lower Lewis 
number, where in these two situations the natural convection is 
very high. However, for low Rayleigh number and high Lewis 
number, the effect of DR vanishes. On the other hand, the 
average Sherwood number rises considerably with decreasing 
the diffusivity ratio to DR = 0.53 as shown in Fig. 9. The reason 
of this refers to that when the mass diffusivity decreases, the 
concentration gradients increase within limited situations, which 
in turn increases the Sherwood number. Hence, the rate of mass 
transfer is higher than that of heat transfer in the cavity and 
introducing tortuous path effect within the porous layer will 
boost extra restriction to the fluid motion. Hence, the real value 
of diffusivity ratio DR = 0.53 was adopted in all previous results.  
 
Moreover, Figs. 8 and 9 demonstrate that the Nusselt number 
undergoes the effect of Le up to Le = 10, otherwise, the thermal 
buoyancy effect becomes immune against Le number. 
Meanwhile, the average Sherwood number increases 
continuously with Le number.   
 
The effect of increasing Ra number can strongly enhance the 
convective heat transfer, and as a result, the mass transfer can be 
enhanced too. 

 
 
 
 
 
 
 
 
 

 
             Ra = 104                    Ra = 105                                       Ra = 106 

 
 
Fig. 7. Streamlines, isotherms, and isoconcentrations contours for 
selected values of Rayleigh number, at Le = 10, N = 1, Da = 10-3, A = 
0.5, Kr = 1    
 

 
Fig. 8. Effect of Le number for two values of   Diffusivity ratio on 
the average Nusselt number for Ra = 105, 106and N=1.   
 

 
 
Fig. 9. Effect of Le number for two values of Diffusivity ratio on the 
average Sherwood numberfor Ra=105, 106 and N=1. 
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5. Conclusions 
 

In-house FORTRAN program has been built in the present paper 
to study the double-diffusive natural convection inside a halved-
layered porous cavity with inner square conductive body. The 
study has been achieved numerically using the finite difference 
method with up-wind scheme procedure. The results have led to 
the following conclusions  
1- The calculated mass diffusivity ratio, which takes into 
account non-unity tortuosity (Deff/D = 0.53) ratio has a 
significant effect on the mass transfer in all studied Rayleigh and 
Lewis numbers. That is, the calculated Sherwood number 
according to Deff/D = 0.53 is much larger than that calculated 
assuming a conventional ratio of Deff/D = 1.0. On the other hand, 
the convective heat transfer has bit affected by this ratio. That is 
Nusselt number is slightly less in the case of the present 
calculated mass diffusivity ratio, and only at higher Rayleigh 
number (Ra =106) 
2- The mass transfer is minimal when the buoyancy ratio equals 
to -0.5, otherwise, the mass transfer increases with increasing 
the absolute buoyancy ratio. 
3- The mass transfer is a continuously increasing function of 
Lewis number, while the convective heat transfer decreases with 
Lewis number to Le = 10. 
4- The convective heat transfer is an increasing function of 
Rayleigh number, and as a result, the mass transfer follows this 
fashion. 
 

Nomenclature 
 

A aspect ratioሺݕ௕ ⁄ሻܪ  

C dimensionless concentration  

Cp specific heat at constant pressure (J kg−1 K−1) 

Da Darcy number (Da = K / H2)  

DR mass diffusivity ratio (DR = Deff/Df) 

g gravitational acceleration (m s−2) 

H height of the enclosure (m) 

h local heat transfer coefficient (W m−2 K−1) 

K permeability of porous medium (݉ଶሻ   

K thermal conductivity ratio (Kr = kୠ/k୤) 

Le Lewis number (Le =α୤ D୤⁄ ) 

N buoyancy ratio (N =βେ∆C β୘∆Tሻ⁄  

Nu Nusselt number, (Nu = hH/kf) 

Pr Prandtl number, Pr = νf/αf 

Ra Rayleigh number (Ra =்݃ߚ,௙∆ܶܪଷ α୤υ୤⁄ 	ሻ 

Sh Sherwood number 

T dimensional temperature 

U, V    dimensionless velocities components 

Wp porous layer thickness 

X,Y     dimensionless coordinates, X = x/H, Y = y/H 

 

Greek symbols 

 thermal diffusivity (m2 s−1) ߙ

 thermal expansion coefficient (K−1) ߚ

 

 ߝ

 

porosity of porous medium 

νf kinematic viscosity (m2 s−1) 

  dimensionless temperature ߠ

Ψ dimensionless stream function, Ψ = ψ/α௙ 

Ω dimensionless vorticity, Ω = ωܪଶ/α௙  

 density (kg m−3) ߩ

 dynamic viscosity (N s m−2) ߤ

  
Subscripts 

av Average 

b Body 

c cold 

eff effective 

f fluid 

h high, hot 

l low 

s solid 
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