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Abstract
In the present study, the problem of cooling a solid disc by way of placing inserts with high thermal conductivity was
examined analytically and numerically within the platform of Constructal Theory. The work was accomplished using a
fixed amount of a highly conductive material distributed in the form of incomplete inserts from the center (sink). Using
Constructal Theory, the magnitudes of the heat resistances in the radial and the branching configurations were calculated
analytically. Additionally, to validate the analytical solution, a numerical solution with the Finite Element Method was
employed. The one-to-one comparison between the two distinct results reveals a good agreement. In the present case, the
length of the inserts was different from the disc radius viz. a new degree of freedom was considered and the solution was
remarkably different from the case involving a complete insert. The heat resistance was minimized with respect to the
aspect ratio in order to determine the optimal number of inserts as well as the disc radius. It was demonstrated that within
in a certain range of parameters, the heat conduction performance of incomplete inserts in the solid disc surpasses the heat
conduction performance of standard complete inserts.

Keywords: Cooling, Solid Disc, Uniform Heat Generation, Incomplete Inserts, High Thermal Conductivity, Constructal
Theory.

1. Introduction

In the highly demanding area of thermal design of electronic
devices, primary attention should be paid at reducing the
maximum thermal resistances along a specified thermal path
and/or providing parallel paths for the heat removal from a
critical volume or component (Bar-Cohen et al. [1]). As the
length scales of the electronic devices continue to diminish
gradually, the traditional convective cooling with fluids would
not be sufficient. Oftentimes, the sizes of the cooling systems
needed are much bigger than the sizes of the electronic devices
(Ghodoosi and Egrican [2]). Under these paradoxical
circumstances, it has been demonstrated by Bejan and Lorente
[3] that for small scales, the utilization of solid-body conduction
with high thermal conductivity inserts is more effective than the
best forced convection schemes. Constructal Theory
concentrates on the geometric optimization of volume to point
or point to volume flows encountered in engineering and
science. The flow may be heat, fluid, goods, people etc.
Constructal Theory introduces a hierarchical geometric flow

structure. Constructal Theory is established nowadays a mature
field with a wide variety of applications to engineering, science
and technology (Bejan and Lorente [4], Reis [5]). Conceptually,
Constructal Theory has two relevant divisions. One is the use of
the constructal law to predict and/or explain the occurrence of
natural flow configurations, inanimate and animate. The other is
the application of the constructal law as a physics principle to
engineering applications. For the first time back in 1997,
constructal law was invoked to minimize the thermal resistance
between a volume and one point of an elementary rectangular
heat-generating surface by means of high conductivity complete
inserts connected at the center of a heat sink (Bejan [6,7]).
Thereafter, designs with Constructal Theory were widely
employed to optimize flow systems in engineering problems
(see Bejan and Dan [8], Rocha [9]). As the heat power per unit
volume or per unit surface in electronic devices increase, the
heat dissipation becomes a crucial aspect. Thereby, the usage of
a material with high thermal conductivity distributed in a
base material with a relatively low thermal conductivity has
been proposed in the sequence of References [10-23]. The
conductive cooling with this methodology using high-k channels
in low-k domains, has been largely investigated for different
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kinds of electronic devices. Many investigations have been
carried out on rectangular [10-18], circular [9,19,20] and
triangular domains [21] connected to solutions, configurations,
conducting paths, cross-sections, etc. With regards to a cooling
system for a rectangular domain, Ledezma et al. [10] postulated
a solution by covering the heat generating volume with a series
of building blocks, proceeding toward larger sizes (aka
constructal approach). The authors inferred that a distribution
with the shape of a tree for high-conductive material provides
the optimum design. Dan and Bejan [11] minimized the time
needed to discharge a volume to a sink in a constructal tree
network by making appropriate changes in the geometry of flow
path. Neagu and Bejan [12] reduced the global thermal
resistance to flow between a volume and one point, by way of
shaping the external boundary of each volume element, which
resulted in a leaf-like tree structure with high-conductivity
nerves and low-conductivity leaf material. Almogbel and Bejan
[13] achieved significant improvement in connection to the
global performance using a non-uniformly distribution of a high
conductive material. An analysis based on the optimized
variable cross-section of conducting paths of high-k inserts was
performed by Zhou et al. [14] showing that the heat resistance
cannot always decrease when the complexity of the system
increases. Wu et al. [15] obtained a more optimal construct to
find the corresponding minimum heat resistance. Ghodoosi and
Denton [16] devised an analytical solution to improve the
accuracy of the heat transfer analysis in designing tree-like flow
paths using the potent integral transform method. Mathieu-
Potvin and Gosselin [17] proposed an evolutionary algorithm to
optimize the heat resistance of a heat-generating area using high
conductivity blades and later compared the results against those
predicted by constructal theory. Several similarities were
displayed by these authors in term of performances and
geometries. Wei et al. [18] developed a method based on discrete
variable cross-section via conducting paths to access more
thermal current flows into the high conducting path and thus
minimize the thermal resistance. Rocha et al. [9] provided an
optimal analytical solution for the heat resistance in a sector-
shaped elemental volume with the smallest dimension with a
single high conductivity blade embedded into it. The elements
were assembled into disc-shaped constructs to optimize the
global resistance subjected to global constraints. The authors
first believed that high-conductivity inserts caused the heat to
flow in two perpendicular directions; then later used results with
a radial insert case to optimize the disc resistance with branch
inserts. Silva et al. [20] minimized the global thermal resistance
of a disc cooled with rectangular high-k inserts that extended
inward from the periphery. The authors showed analytically and
numerically that the thermal resistance can be minimized with
respect to the fin aspect ratio. Ghodoossi and Egrican [21] used
a constructal solution method for cooling electronic systems
formed with triangular heat generating spaces. Neagu and Bejan
[22] maximized the amount of heat generating material along
with minimizing the heat resistance of three-dimensional tree
constructs. At very small length scales, Gosselin and Bejan [23],
remarked that the situations become different and the parameter
would be dependent on the shape and dimensions of the system.
This work dealt with the cooling a two-dimensional heat
generating conducting volume with one heat sink, such that the
smallest features of the internal structure are so small that the
conventional description of conduction breaks down. The
effective thermal conductivity exhibits the “size effect,” and is
governed by the smallest structural dimension, which is
comparable with the mean free path of the energy carriers. The
construction approach reveals an internal multiscale structure
shaped as a tree, where the spaces between the smallest branches
are ruled by nanoscale heat transfer.

The present investigation focuses on a more general case
involving the cooling of a solid disc having uniform internal heat
generation. In this work, a degree of freedom is added to the
problem by using incomplete inserts with high thermal
conductivity instead of complete inserts with high thermal
conductivity in the two radial and the branching configurations.
As will be seen in the forthcoming sections, the incomplete
inserts are superior when dealing with a wide range of
parameters and limiting constraints. Also, the unique
configuration is a good alternative where some practical
limitations prohibit using complete inserts in the disc.

2. Problem Formulation

Consider a solid disc having uniform heat generation as sketched
in Fig. 1. To cool the solid disc, the idea is to attach a heat sink
at its center. The thermal conductivity of the solid disc is k0 and
the heat sink temperature T0 has the lowest temperature
throughout the ensemble. To minimize the global thermal
resistance in the solid disc, materials with a high thermal
conductivity kp can be utilized. From physical grounds, it is
speculated that the maximum temperatures Tmax likely happens
along the rim of the solid disc. To optimize the heat resistance
of the solid disc, first, the radial configuration of the incomplete
inserts through the k0-medium is dealt with; and second, the
branching configuration is analyzed.

Figure 1a. Solid Disc with Uniform Heat Generation Connected to
a Heat Sink at its Center

Figure 1b. Elemental Volume of a Circular Sector with a High-
Conductivity Material at its Center Line
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2.1. Radial Pattern

The concept of radial pattern is known as the simplest
configuration in which materials with a high thermal
conductivity kp are embedded as radial incomplete inserts
through the solid disc with low thermal conductivity k0 as shown
on the left-side of Fig. 1. Exploiting the symmetry of the
problem, the analysis commences with the construction of an
elemental volume on the right-side in Fig. 1. The sector is
surrounded by adiabatic radial sides (indicated as dashed lines)
and the outer rim. The sector is approximated by means of an
isosceles triangle with dimensions: base 2H2 and height R2. The
analysis is separated into two parts.

2.1.1 Region without High Thermal Conductivity Inserts
For the portion of the element absent of inserts, the governing 2-
D heat conduction equation in cylindrical coordinates is

+ 1 + 1 + = 0 (1)
where q’’’ stands for the heat generation per unit volume. Due to
geometric and thermal symmetry, Eq. (1) is applied to half of the
element where the proper boundary conditions are

( 1 )( , ) = 0 (2)
( 1 )( , ) = 0 (3)
( )( , ) = 0 (4)( , ) ≈ ( ) ≈ ( ) (5)

In reference to the fourth boundary condition stated in Eq. (5), it
implies a suitable approximation based on the fact that highly
thermal conductive materials are responsible for the majority of
heat flux and hence, the direction of heat flux is approximately
perpendicular to the inserts. To demonstrate the consistency of
the assumption, the analytical results will be compared against
the numerical results in the forthcoming Section 5. Analogously,
the governing 1-D heat conduction in Cartesian coordinates1 + = 0 (6)
provides a reasonable vehicle for the determination of the
function f( ) in Eq. (5). The, the proper boundary conditions for
Eq. (6) are

= 0 = (7)( , 0) = (8)
Integrating Eq. (6) subject to the boundary conditions in Eqs. (7)
and (8), delivers the function f( ) as

( , ) = ( ) = + − 2 (9)

Owing that Eq. (1) is non-homogeneous, usage of the variable
transformation (Arpaci [24])( , ) = ( , θ) + ( ) (10)
is advisable.
The original 2-D heat conduction equation (1) with its
nonhomogeneous term is conveniently separated into a
homogeneous 2-D heat equation for the variable :

+ 1 + 1 = 0 (11)and an inhomogeneous 1-D heat equation for the variable
accounting for ,

+ 1 + = 0 (12)
Accordingly, by virtue of Eq. (10), the boundary conditions in
Eqs. (2)-(5) are replaced with

( )( , ) = ( )( , ) = 0 (13)( , ) = ( ), ( ) = 0 (14)( )( , ) = 0, ( )( ) = 0 (15)
First, double integrating Eq. (12) and applying the boundary
conditions in Eqs. (14) and (15), the solution is( ) = + ln + (16)
where the constants of integration are

= ′′′2 , = ′′′4 − ln (17)
Second, solving Laplace equation (11) by the method of
separation of variables provides the 2-D temperature distribution

( , ) = + ∑ + (18)
where the constants and are obtained from Fourier
analysis. The expressions for and are

= 2 + 13 (19)= 21 + { sin
+ sin
+ 1( ) (cos − 1)− 2 − 2( ) sin+ 2( ) cos } (20)
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In here, the parameter = identifies the number of inserts
or blades that are placed inside the solid disc with internal heat
generation. Next, from Eq. (18), the temperature distribution at
the location = and = becomes

− = 3 − 4 ( ) ( / )1 + ( / ) cos
− 4 ( − )+ 2 ln (21)

Alternatively, introducing the thermal conductivity of the solid
disc material ko, Eq. (21) can be non-dimensionalized. This leads
to

= T − Tq A /k = 13 − 4(−1)( ) ( / )1 + ( / )− 14 − 1+ 12 ln (22)
where = .

2.1.2 Region with High Thermal Conductive Inserts
In the core region, as the heat current flows toward the heat sink,
its magnitude increase. For the element at the location = ,
the increment in q is formulated by the energy balance− = ℎ (23)
Here, t is the thickness of the solid disc in the direction
perpendicular to the plane in Fig. 1, and the product ℎ
stands for the amount of heat gathered over the vertical surface
ht, in which ℎ = ( r). The relation between the heat conducted
and the local temperature gradient yields

= 2 (24)
Due to the presence of incomplete inserts or blades, the
boundary conditions are written as= at = 0 (25)( − )2 = 2 at = (26)
Eliminating q between Eqs. (23) and (24), integrating twice and
using the pair of Eqs. (25) and (26), supplies the 1-D temperature
distribution in the insert, T(r),

( ) = −3 + ( − ) + + (27)
Finally, due that = at = , Eq. (27) reduces to= −3 + ( − ) + + (28)

Because = , the interconnection between and
indicates that

= (29)
The heat resistance of the element in this part called is
expressed as= T − Tq A /k = 1 − 13 (30)
Further, the total resistance of the elemental sector is obtained
by adding Eqs. (22) and (30), eventually giving

= 13 − 4(−1)( ) ( / )1 + ( / ) − 14 − 1
+ 12 ln+ 1 − 13 (31)

Here, indicates the aspect ratio and refers to the radius

ratio. In the limit, when approaches unity, Eq. (31) provides
the heat resistance of a solid disc with complete inserts. That  is,= 13 − 2 (−1)( ) + 23= 12 + 23 (32)
At this stage, it is convenient to view the heat conduction
problem as an extremum problem. Then,  the optimal heat
resistance for a given value is determined by solving the

equation = 0. This step gives way to the following

trascendental equation

= 13
+ 4(−1) 1 + + ln 1 −

( ) 1 +
+ 14 + ln / − 14− 1 − 13= 0 (33)
which obviosly is of intricate form.

2.2. Branching Pattern
It is widely known that tree-shaped flows offer low resistance to
deliver flows between one point and an area or between one
point and a volume. In this sub-section, a different configuration
involving materials with high thermal conduction is studied.
Herein, the high conductivity material extends radially from the
heat sink to the distance and then branches it out into a
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number of inserts “n” which cover the distance between and
as observable in Fig. 2. This particular structure has “n” small

sectors and a central core whose aspect ratios are and ,
respectively. Moreover, there is a region in which no high
conductive material resides, namely the ring. To compare the
heat resistance of one branching case against the radial case, all
assumptions made in sub-section 2.1 are held here as well. In our
analysis, the region with inserts is divided into two parts: 1) a
region with the branches and 2) the central part in which the stem
is embedded.

Figure 2. Elemental Surface of Branching Pattern, with n Branches( , ) and One Stem ( , )
2.2.1 Region with Branching Inserts
Assume that each sector with radius ( − + ) in which
the branch is embedded, is slender enough. In light of this, the
optimized aspect ratio of the radial pattern is applicable after the
following replacements→ , → , → , → ( − + ) (34)
are accounted for. Consequently, is replaced by and this

step reveals that equals as calculated before in sub-

section 2.1. In addition, it is worth defining = and =
for mere convenience. Therefore, the total heat resistance

of the region comprising the branching and the ring  is similar to
Eq. (31). That is,= T − Tq A /k = 13 − 4(−1)( ) ( / )1 + ( / )− 14 − 1+12 ln+ 1
− 13 (35)
where ≡ − + . Besides, the ratio is computed
from the equation

= 1 + −= 1+− 1 (36)
2.2.2 Core Region
Since the boundary conditions for the central sector are
different, it is not possible in this sub-section to use theratio obtained from sub-section 2.1. In this region, the

approximation holds≅ ,= (37)
where is the tip angle of the sector as illustrated in Fig. 2. This
particular angle turns out to be a function of other geometric
parameters, as seeing in the equalities

= 2 = 222 = 2 / (38)
Back to Eq. (37), is the area of the central sector, which is
calculated by the approximate expression

≅ / 1 − 1 / (39)
where ≡ /
Turning the attention to the central sector, the difference
between the temperatures and is determined by way of the
pair of equations Eqs. (23) and (24) found in sub-section 2.1.2.
However, it is worth adding that the boundary condition at =

is different. In equation form, the boundary condition is
written as

≅ + 2 ( − ) (40)
Essentially, Eq. (40) implies that the total heat generated in the
branching and outer ring regions is conducted to the heat sink
using the radial high conductivity inserts in the core region.
Finally, based on this argument, the heat resistance of the central
sector is expressed as

= −/ = − / / ×
× / 1 − / + / × −
1 (41)
where is the ratio of the thermal conductivities of the inserts
to the solid disc and = . Clearly, the heat resistance of the
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total element in Fig. 2 is simply the summation of Eqs. (35) and
(41). Additionally, the relation between and is given by= +

= /
+ − / (42)

3. Discussion of Results

In this section, all equations developed in Section 2 are used to
obtain the heat resistance of a solid disc with radial and  tributal
configurations made with a high thermal conductivity material.
In this context, the resistances are examined in order to check
for extrema. Next, the optimal conditions associated with
incomplete inserts are  compared with those connected to
complete inserts. This is done to reveal the importance of the
former.

3.1 Radial Pattern
We used Eq. 31 to plot the variation of the thermal resistance
with the aspect ratio for different values of in Fig. 3. The
descending and ascending patterns of the curves indicate that
there is a minimum for and more importantly the heat

resistance increases as decreases. The level of complexity
manifested in Eqs. (35) and (41) makes it difficult to find
analytical solutions for the quantification of optimal aspect
ratios and heat resistances. As a consequence, the optimal
parameters are obtained numerically and are shown in the pair
of Figs. 4  and 5. Moreover, by way of a curve fitting, the trio of
Eqs. (43, 44, 45) is obtained to facilitate the determination of the
optimal conditions. From the pair of Figs. 4 and 5, it is observed
that the optimum aspect ratios and the heat resistances decrease
whenever and increase. Specifically, when = 1, the
optimal value of the aspect ratio as well as the heat resistance
equals to / . The outcome of the curve fitting brings forth

the following set of three correlation equations

= 0.540 . , = 0.500 .
,

for = 3 (43)= 0.456 . , = 0.414 .
,

for = 10 (44)= 0.417 . , = 0.374 .
,

for = 100 (45)

sharing correlation coefficients R close to one.

Figure 3. Variation of heat resistance with aspect ratio for =, = . and different values of /

Figure 4. Optimal Aspect Ratio as a Function of /

Figure 5. Variations of Optimal Heat Resistance with Respect to/
Figure 6 contains the optimal number of inserts, namely =

. It is seen here that the optimal number of inserts

grows with increments in the two independent quantities
and .When the area of the element is specified, the

outer radius of the solid disc can be found from the relation
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= . Thereby, the optimal outer radius ( ) is given
by the expression

( ) = / (46)

Figure 6. Optimal Number of Inserts as a Function of /
Fig. 7 displays this optimum radius ( ) for a particular case
specified by = 0.1. The reader should notice that the
observable trend is similar to the one connected to an optimal
number of inserts .

Figure 7. Optimal Radius of the Solid Disc as a Function of/ when = .
Turning now the attention to the global heat resistance for radial
pattern, , , this quantity can be found from the relation

, = −/ = (47)
As seen in Fig. 8, the global heat resistance has an optimum
point for each , which occurs at higher values of as is
elevated. A comparison between the complete and incomplete
inserts heat resistances is depicted in Fig. 9. The performance of

the incomplete insert heat resistance relative to the complete
insert heat resistance is named P for short.  The ensuing criterion
is postulated as follows

P = incomplete insert heat resistance − complete insert heat resistancecomplete insert heat resistance × 100 (48)

Figure 8. Optimal Global Heat Resistance as a Function of /
From the inspection of Fig. 9, it can be concluded that in each

, there is a range of whose total heat resistance is smaller
than the one belonging to a complete insert. Obviously, this is
one of the benefits for using incomplete inserts; viz. in addition
to placing the inserts in a smaller area,  the heat performance of
the system surpasses that of the heat performance of the
complete insert.

Figure 9. Difference between Global Heat Resistances with
Complete and Incomplete Inserts as a Function of /

As illustrated in the tandem of Figs. 8 and 9, there is a minimum
point in the optimum in the curve for total heat resistance, which
happens at a specific value of . Fig. 10 elucidates the
optimized values of the total heat resistance , and the
corresponding values of . It is concluded that with

increments in , the optimal total heat resistance shows a
tendency to reduce. However, after exceeding the approximate
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value = 25 (note that = 0.1), there is no significant decay
in , .

Figure 10. Optimized Values of Optimal Total Heat Resistance,, , and their Corresponding Values of ( / ) when =.
3.2 Branching Pattern
The combination of Eqs. 35 and 39 was instrumental in
facilitating the plotting of the heat resistance for the branching
configuration of high conductivity material. Shown in Fig. 11 is
the heat resistance versus for fixed values of the parameters

= 0.1, = 300, n = 2 and = 4. From this figure, it is
recognized that for each radius ratio , there is a point at which
the heat resistance passes through a minimum.  In this context,
the corresponding optimal values of and are designated( ) and , respectively. Owing that the heat resistance
in the branching configuration depends on the two geometrical
parameters and , the optimization process must be
performed in association with these two parameters exclusively.

Figure 11. Heat Resistance and Insert Thickness Ratio for
Different / Values for a Combination of= , = , =

3.2.1 Optimization of the Heat Resistance with Respect to the/ Ratio
In this sub-section, the heat resistance is optimized with respect
to . In this regard, Fig. 12 contains the optimum values of

different parameters as a function of . The optimal number of

inserts having length is = /
. It is seen in

this figure that augments with increments in . The ratio

of insert thicknesses found in Eq. 42 elevates as rises

gradually. Further, when rises, this causes a decrement in the
stem insert length, , . Further, the non-dimensional version
of , is obtained from the ratio

, = , / = − (49)

Figure 12. Optimum Parameters of Incomplete Inserts for a
Combination of = , = , =

The most important information that can be extracted from Fig.
12 is that the optimum heat resistance diminishes drastically as

increases. Also, the aspect ratio of the area where the branches

are allocated also diminish drastically as is increased. The

global heat resistance for the branching patterns , can be
evaluated using the expression

, = −/ = (50)
Displayed in Fig. 13 is the unfavorable effect posed by the
incomplete inserts upon the global heat resistance. It is inferred
that similar to the radial pattern, within a small range of , the
optimum global heat resistance of an incomplete structure is
slightly less than that of the complete structure. Moreover, the
optimum global heat resistance renders a minimum in a specific

. Hence, it is possible to achieve the optimal global heat
resistance as viewed in Fig. 14.
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Figure 13. Optimal Total Heat Resistance Difference for Fixed= , =

Figure 14. Optimized Values of Optimal Total Heat Resistance,, , and their Corresponding Values of ( / ) for Fixed= , =
3.2.2 Optimization of the Heat Resistance with Respect to
Fig. 15 illustrates the optimal number of branches and the ratio
of insert thicknesses. Scrutinizing this figure, it is evident that
the optimal number of branches invigorates when the magnitude
of grows. Moreover, it is evident that the trend exhibited by
the variations depends on the numerical value of . The

variation of , with for different values of is portrayed

in Fig. 16. From this figure, we infer that upon reducing
allows us to have cases with one level of bifurcation with lower

. The variations of , and are plotted in Fig. 17 and
the ensuing interpretation is that is invigorated at higher
values of . However, , decreases slightly with
because when , is reduced, the amount of high thermal
conductivity material allocated to the area diminishes.
Hence, the optimum heat resistance is enhanced proportionately.
These analyses were accomplished for other values of “n” as
well. From here, it may be concluded that and , are
independent of “n”.

Figure 15. Optimal Number of Branches (Number of Elements)
and the Insert Thickness Ratio at Different Values of / for

Fixed = , =

Figure 16. Variations of , for Different Values of / for
Fixed = , =

Figure 17. Minimal Heat Resistance, , and , for Different
Values of / and Fixed = , =

Fig. 18 embraces the variation of with for different
values of “ ". From analyzing this figure, it is palpable that those
variations are merely insignificant. Moreover, the most
interesting point is that despite the differences in for

different values of “n”, the values of are very close to each
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other and lie on the curve for “n” = 1. Therefore, it may be
concluded that the ratio ≈ , holds true. This finding is
relatively valid for all values of and signifies that the sum of

values corresponds to a stem cross-section of diameter .
Shown in Fig. 19 is the optimal global heat resistance due to
for radial (first point of each curve) and one level branching
patterns at different values of . The figure convincingly
demonstrates that the global heat resistance for a tributary
pattern is less accentuated than that of radial one. Also, the
superiority of the complete blades related to the incomplete
inserts for the most cases is self-evident in the figure. It can be
emphasized that using incomplete inserts with = 0.9
whenever < 3 is advantageous. As this figure hints, each
curve exhibits an optimum for each . Therefore, it is possible
to obtain the minimum for the optimized global heat resistance,
as well as its corresponding value of , as indicated in Fig.
20. In sum, it is clear that incrementing causes elevations in

in conjunction with attenuations in , .

Figure 18. Optimal Values of Insert Thickness Ratios, , and/ at Different Values of n and Fixed = , / = . .

Figure 19. Optimal Total Heat Resistance at Different Values of/ for Radial and One Level Branching Cases

Figure 20. The Optimized Optimum Total Heat Resistance and the
Corresponding

3.3 Numerical Results and Comparison
In this sub-section, the collection of numerical results are
presented to validate/verify the analytical solutions. Herein, we
are in the presence of a two-domain problem; first, the area with
a material having low thermal conductivity and uniform heat
generation and second, the inserts with high thermal
conductivity .  Therefore, the heat conduction equations for
the two-part ensemble are stated as follows
1) for the solid disc∇ + = 0 (51)
2) for the  inserts∇ = 0 (52)
Exploiting symmetry, a sector of the solid disc is only
considered for the numerical calculation with all boundaries
modeled as adiabatic, namely = 0, where “n” is the normal
vector to each boundary. Since there is a heat sink placed at the
center of the solid disc, the tip of the sector is maintained at a
prescribed constant temperature, say . Parallel to the
analytical solution, the objective is to minimize the maximum
temperature of the sector using geometric parameters, but using
a numerical solution. Accordingly, the heat conduction equation
for the sector was solved numerically using the finite element
method (Zienkiewicz [25]) with the Partial Differential Equation
Toolbox of the MATLAB code [26]. A computational mesh was
constructed consisting of unstructured triangular elements. To
identify the best mesh size, the mesh was refined sequentially
until the mesh independent criterion

= − < 0.0005 (53)
was satisfied. A typical grid independence test is summarized in
detailed form in Table 1. In this context, the number of
unstructured triangular elements was quadrupled in each step
until the mesh independent criterion posed in Eq. (53) was
satisfied. Using an appropriate number of triangular elements,
the problem was solved numerically over a sector for cases with
and without incomplete high conductivity inserts, as shown in
the temperature contours in  Fig. 21. The colors in the figure
demonstrate clearly how the high conductive materials are
capable of bringing down the mean and maximum temperatures
of the solid disc. This behavior turns out to be quite interesting
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because of its beneficial applications in the cooling of electronic
devices [1,3].

Table 1 Grid Independence Test for a Typical Case characterized
by = , = , = . , = . , = .

Number of Finite Elements

1,092 0.128434 0.00267

4,368 0.128777 0.00079

17,472 0.128879 0.00026

69,888 0.128913

Figure 21. Temperature Contours for an Ensemble with =, = . , / = . , = . for (a) Disc without Inserts
( = , = . ) and (b) Disc with Inserts ( = , =. )

In order to validate the analytical exact results, the maximum
temperature of the sector with a branching configuration of
inserts was minimized with respect to the two geometric
parameters and . Essentially, this was done for two

dissimilar cases characterized by = 100 and 300 articulated
with fixed = 0.8, 0.9 and 1. The interrelated outcome is
graphed in the Figs. 22 and 23 sequentially. To have a reasonable
platform for comparison between the analytical results and the
numerical results, the parameters were non-dimensionalized.
Scrutinizing the two figures, a similar behavior is self-evident,
which exemplifies that the heat resistance is susceptible to
increments in . In addition, an acceptable consistency pattern
between the numerical and analytical results is observed and
even more the consistency is more pronounced for situations
characterized by = 0.8.

4. Conclusions

This study revolved around the analysis of steady conductive
cooling of a solid disc with uniform heat generation by means of
inserting incomplete highly conductive materials under the
framework of the robust Constructal Theory. In the complex

problem, the 1-D heat conduction equation cannot be applied
directly. Instead, the 2-D conduction equation was solved
analytically and the heat resistance was eventually optimized.
It was categorically demonstrated that for a specific range ofratios , the optimal total heat resistance for incomplete
inserts has a superior performance than those dealing with
complete inserts located in the radial pattern. This matter
constitutes a remarkable achievement, because when using less
amount of high conductivity material, less total heat resistance
is accessible. But this effect was a bit weaker for the branching
case. In the radial case, as the optimal total heat resistance was
an extremum at a specific value of and was later optimized.
Moreover, all optimization estimates were performed for
branching pattern inserts from two different standpoints. Finally,
the maximum temperature of the sector was minimized
numerically and afterward compared with the analytical results.
In sum, acceptable levels of agreement were consistently
observed for all situations examined.

Figure 22. Comparison of Analytical and Numerical Results when= for two = . , .

Figure 23. Comparison of Analytical and Numerical Results when= for three = . , . , .
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