

Hydropower and Future Environmental Policies

I. Yuksel^{a,*}, H. Arman^b, and I. H. Demirel^a

^a Department of Civil Engineering, Hydraulics Division, Faculty of Civil Engineering, Yildiz Technical University, 34220 Davutpasa-Istanbul, Turkey ^b Geology Department, College of Science, United Arab Emirates University, P.O. 15551, Al-Ain, UAE

Abstract

Hydropower energy is a renewable, sustainable and clean energy in the other alternative energy sources. Moreover, it does not deprive future generations in terms of raw materials, or burdening them with pollutants or waste. Hydroelectric power plants utilize the basic national and renewable resource of the country. Although the initial investment cost of hydropower seems relatively high, the projects have the lowest production costs and do not depend on foreign capital and support, when considering environmental pollution and long-term economic evaluation. Hydropower is available in a broad range of project scales and types. Projects can be designed to suit particular needs and specific site conditions. As hydropower does not consume or pollute the water it uses to generate power, it leaves this vital resource available for other uses.

Keywords: Hydropower; Renewable Energy; Energy Utilization; environmental Policy, Turkey

Introduction

The hydropower industry is closely linked to both water management and renewable energy production, and so has a unique role to play in contributing to sustainable development in a world where billions of people lack access to safe drinking water and adequate energy supplies. On the other hand, approximately 1.6 billion people have no access to electricity and about 1.1 billion are without adequate water supply. However, resources for hydropower development are widely spread around the world. Potential exists in about 150 countries and about 70% of the economically feasible potential remains to be developed-mostly in developing countries where the needs are most urgent [1, 2, 3-6].

Some countries such as Turkey has dynamic economic development and rapid population growth. It also has macroeconomic, and especially monetary, instability. The net effect of these factors is that Turkey's energy demand has grown rapidly almost every year and is expected to continue growing, but the investment necessary to cover the growing demand has not been forthcoming at the desired pace. On the other hand, meeting energy demand is of high importance in Turkey. But exploiting the country's large energy efficiency potential is also vital.

* Corresponding author

E-mail: <u>yuksel@yildiz.edu.tr</u>

Air pollution is a significant problem and, as the government's projections show, carbon emissions could rise sharply if current trends continue [1, 2, 7-9].

On the other hand, as would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. States have played a leading role in protecting the environment by reducing emissions of greenhouse gases (GHGs). In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey.

Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. In this reason, in the coming decades, global environmental issues could significantly affect patterns of energy use in Turkey.

^{© 2016} International Association for Sharing Knowledge and Sustainability DOI: 10.5383/ijtee.11.02.003

Future energy policy: Focus on Turkey

Based on the demand forecast from MAED, total final energy consumption grows at an average rate of 5.9% per year from 65.5 mtoe (2000) to 273.5 mtoe (2025). Average annual growth rates vary by sector, with industry having the highest rate at 7.6%, followed by the transportation sector with 5.0%. Between, 2000-2025, industrial consumption increases from 23.9 to 148.9 mtoe increasing its share from 36 to 54%. On the other hand, in terms of final energy by fuel, hard coal/coke increase their share slightly from 13-18%, lignite holds steady at 6%, electricity grows from 17-24%, oil products decline from 42-29% and natural gas increases from 7-17% between 2000 and 2025. The model also projects fuel mixes for each of the consumer groups or demand sectors [10, 11].

Total natural gas consumption is projected to increase at an annual rate of 9.6% from 15.0 to 169.4 billion m3 (bcm) over 2000-2025. Power sector gas demand is one of the main drivers for this projected growth and will account for 112.8 bcm or 67% of total gas consumption in 2025. Industrial demand is the fastest growing market segment with gas expanding from 2.5-38.4 bcm during 2000-2025 and eventually accounting for 23% of total gas consumption. New capacity additions are projected to total about 108 GW by 2025. WASP results indicate that the majority of the load growth is met with natural gas-fired generation. By 2025, gasfired units represent 67% (93 GW) of the installed generating capacity and account for 77% of total generation [10, 11].

Primary energy supply is projected to increase from 64.5 mtoe (1995) to 332.0 mtoe (2025). Crude oil imports remain constant at 33.0 mtoe after 2004 when the domestic refineries are forecast to run into their processing capacity, resulting in a drop in crude oil share from 44% to 10% of total supplies. Once the refining capacity is reached, net imports of refined products quickly grow from 2.6 to 52.3 mtoe (2000-2025), accounting for about 16% of total supplies by 2025. Natural gas quickly increases its share from 10% (6.3 mtoe) in 1995 to 42% (139.8 mtoe) of total supplies in 2025. Although renewables double over 2000-2025, their share decreases from 14% in 2000 to 7% in 2025 [6, 10-14].

Future Energy Policies in Turkey

Turkey is an energy importing country; more than half of the energy requirement has been supplied by imports. Oil has the biggest share in total primary energy consumption. Due to the diversification efforts of energy sources, use of natural gas that was newly introduced into Turkish economy, has been growing rapidly.

Turkey has large reserves of coal, particularly of lignite. The proven lignite reserves are 8.0 billion tons (Table 1).

The estimated total possible reserves are 30 billion tons. Turkey, with its young population and growing energy demand per person, its fast growing urbanization, and its economic development, has been one of the fast growing power markets of the world for the last two decades (Figures 1 and 2).

It is expected that the demand for electric energy in Turkey will be 300 billion kWh by the year 2010 and 580 billion kWh by the year 2020. Turkey's electric energy demand is growing about 6-8% yearly due to fast economic growing [14-21].

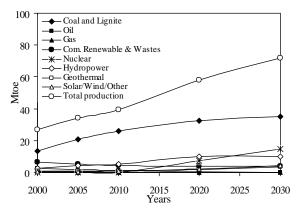
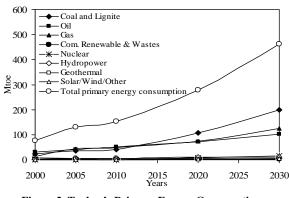



Figure 1. Turkey's Primary Energy Production During 2000-2030 [22]

Table 1 Primary Er	iergy Reser	ves in the Last		
Decade in Turkey				

	Dicau	t in rurkey		
Energy	Proven	Probable	Possible	Total
sources				
Hard coal	428	456	245	1129
(Million ton)				
Lignite				
(Million ton)				
Elbistan	3 357			3 357
Others	3 982	626	110	4 718
- ·				
Total	7 339	626	110	8 075
Acabaltita	45	29	8	82
Asphaltite Bitumes	555	1 086	0	1 641
Ditumes	555	1 080		1 041
Hydropower				
GWh/yr	126			126
j-	109			109
MW/yr	35 539			35
				539
Petroleum	39			39
(Million ton)				
Natural gas	10.2			10.2
(Billion m ³)				
Nuclear				
sources (ton)				
Uranium	9 129			9 1 2 9
Thorium	380			380
	000			000
Geothermal				
(MW/yr)				
Electricity	200		4 300	4 500
T 1 1	2 2 5 0		00.050	
Thermal	2 250		28 850	31
0.1				100
Solar energy				0 0
Electricity				8.8
Heat				26.4
Source: [21]				

Figure 2. Turkey's Primary Energy Consumption Forecast 2000-2030 [22]

Target of Energy Policies

The main aim of the energy policies is to meet the energy needs of increasing population and growing economy in a continuous, qualified and secure manner through primarily private sector investments in a competitive and transparent free market environment. In this context, it is the main target to supply the required energy timely, uninterrupted and at minimum costs while making energy supply planning [16].

The privatization process for the power generation assets and distribution companies would continue as per Electric Energy Sector Reform and Privatization Strategy Paper with an aim for contributing to formation of a competitive market and minimum-cost electricity system rather than revenue generation alone. Due not to be incurred new and extra burdens by the public sector, privatizations should be done carefully. Privatizations would be realized under such a rationale that private entrepreneurship is encouraged to take place in the electricity sector also after the privatizations.

Along with privatization, a system which is more efficient and effective and operates completely as per market rules is aimed at. In this scope, it is expected that a significant decrease in the distribution loss/theft rate which is highly above the world averages, an increase in the billing rate and an improvement in collection would be achieved [1, 15, 16, 19, 21].

A suitable environment will be established, with legislative regulations if necessary, in order for the private sector to fill the gap that will arise as a result of the withdrawal of the state from the sector, in a timely manner and to expedite the start of the new production investments in line with supply and demand projections [17]. Thus, emphasis will be given to privatization of the existing facilities in order to prevent the burden of new investments on the state. The state will be adequately equipped in a way to closely monitor the supply security within the framework of its regulatory and supervisory role and to take measures [18, 19, 21].

Renewable Energy Supply in Turkey

Renewable energy supply in Turkey is dominated by hydropower and biomass, but environmental and scarcity-of-supply concerns have led to a decline in biomass use, mainly for residential heating. As a result, the composition of renewable energy supply has changed and wind power is beginning to claim market share. As a contributor of air pollution and deforestation, the share of biomass in the renewable energy share is expected to decrease with the expansion of other renewable energy sources. Table 2 shows renewable energy supply and projections for future in Turkey [17, 19.211.

Table 2 Renev	wable	Energy	Supply	in Turl	key
Renewable energy	2000	2005	2010	2015	2.02

2010

2015

2020

2000

Renewable energy

sources					
	Primary	energy su	upply		
Hydropower	2 656	4 067	4 903	7 060	9 4 1 9
(ktoe)					
Geothermal, solar	978	1 683	2 896	4 242	6 397
and wind (ktoe)					
Biomass and	6 457	5 325	4 416	4 001	3 925
waste (ktoe)					
Renewable energy	10	11	12	15	19
production (ktoe)	091	074	215	303	741
Share of total	38	48	33	29	30
domestic					
production (%)					
Share of TPES	12	12	10	9	9
(%)					
	Ge	eneration			
Hydropower	30	47	57	82	109
(GWh)	879	287	009	095	524
Geothermal, solar	109	490	5 274	7 020	8 766
and wind (GWh)					
Renewable energy	30	47	62	89	118
generation (GWh)	988	777	283	115	290
Share of total	25	29	26	25	25
generation (%)					
-	Total fin	al consun	ption		
Geothermal, solar	910	1 385	2 145	3 341	5 346
and wind (ktoe)					
Biomass and	6 457	5 325	4 416	4 001	3 925
waste (ktoe)					
Renewable total	7 367	6710	6 561	7 342	9 271
consumption					
(ktoe)					
Share of total final	12	10	7	6	6
consumption (%)					
Source: [17, 21]					

Source: [17, 21]

Turkey is to be the recipient of a US\$ 202 million renewable energy loan provided by the World Bank to be disbursed as loans via financial intermediaries to interested investors in building renewable energy sourced electricity generation.

These loans are expected to finance 30-40% of associated capital costs.

The aim of the Renewable Energy Program is to increase privately-owned and operated power generation from renewable sources within a market-based framework, which is being implemented in accordance with the Electricity Market Law and the Electricity Sector Reform Strategy [23]. This program will assist the Directorate of the Ministry of Energy and Natural Resources (MENR) in the preparation of a renewable energy law, as well as to define the required changes and modifications related to legislation such as the Electricity Market Law to better accommodate greater private sector involvement [19, 21].

As an Alternative Renewable Energy, Hydropower in Turkey

The hydropower industry is closely linked to both water management and renewable energy production, and so has a unique role to play in contributing to sustainable development in a world where billions of people lack access to safe drinking water and adequate energy supplies. On the other hand, approximately 1.6 billion people have no access to electricity and about 1.1 billion are without adequate water supply. However, resources for hydropower development are widely spread around the world. Potential exists in about 150 countries and about 70% of the economically feasible potential remains to be developed-mostly in developing countries where the needs are most urgent [1, 2, 3-6].

Hydropower is available in a broad range of project scales and types. Projects can be designed to suit particular needs and specific site conditions. As hydropower does not consume or pollute the water it uses to generate power, it leaves this vital resource available for other uses. At the same time, the revenues generated through electricity sales can finance other infrastructure essential for human welfare. This can include drinking water supply systems, irrigation schemes for food production, infrastructures enhancing navigation, recreational facilities and ecotourism.

The total gross hydropower potential and total energy production capacity of Turkey are nearly 50 GW and 112 TWh/yr, respectively and about 30% of the total gross potential may be economically exploitable. At present, only about 35 % of the total hydroelectric power potential is in operation [24]. The national development plan aims to harvest all of the hydroelectric potential by 2010. The contribution of small hydroelectric plants to total electricity generation is estimated to be % 5-10 [25, 26]. On the other hand, the Southeastern Anatolia Project (GAP) is one of the largest power generating, irrigation, and development projects of its kind in the world, covering 3.0 million ha of agricultural land [27]. This is over 10 % of the cultivable land in Turkey; the land to be irrigated is more than half of the presently irrigated are in Turkey. The GAP project on the Euphrates and Tigris Rivers encompasses 22 dams and 19 hydroelectric power plants. Once completed, 27 billion kWh of electricity will be generated and irrigating 1.7 million hectares [20, 24, 27-29].

Conclusions

There is no single solution to the world's quest for more, cleaner energy and effective water management. Energy and water for sustainable development depend not only on supply choices, but also on how these choices are implemented. It requires the creation of a level playing field among available energy options and global water governance involving all stakeholders in a participatory decision-making process. In adopting their own sustainability guidelines, the members of the International Hydropower Association are committed to developing and operating their projects, in collaboration with all stakeholders, in a way that is environmentally friendly, socially responsible and economically efficient so that hydropower projects can make a major contribution to achieving sustainable energy and resource development.

Hydropower energy is a renewable, sustainable and clean energy in the other alternative energy sources. Moreover, it does not deprive future generations in terms of raw materials, or burdening them with pollutants or waste. Hydroelectric power plants utilize the basic national and renewable resource of the country. Although the initial investment cost of hydropower seems relatively high, the projects have the lowest production costs and do not depend on foreign capital and support, when considering environmental pollution and long-term economic evaluation.

References

- Yuksel, I. and Arman, H. "Energy and Environmental Policies in Turkey", Energy Sources, Part B: Economics, Planning, and Policy, Vol. 9, Number 1, pp. 57-69, 2014.
- [2] Yuksel, I. 2009. Dams and hydropower for sustainable development. Energy Sources, Part B; 4:100–110.
- [3] [IEA, International Energy Agency, 2002. World Energy Outlook 2002, OECD/IEA, Paris.
- [4] IHA, International Hydropower Association. The role of hydropower in sustainable development, IHA White Paper, February 2003, available from www.hydropower.org

- [5] WEC, World Energy Council, 2001. Survey of Energy Resources, www.worldenergy.org
- [6] Yuksel, I. 2008. Energy utilization, renewables and climate change mitigation in Turkey. Energy Explor Exploit 26:35–52.
- [7] Kaygusuz, K. 2001. Environmental impacts of energy utilization and renewable energy sources in Turkey. Energy Exploration and Exploitation, Vol.19, pp. 497-509.
- [8] Kaygusuz, K. 2004. Energy policies and climate change mitigation in Turkey. Energy Exploration and Exploitation, Vol. 23, pp. 145-160.
- [9] Yuksel, I. 2006. Southeastern Anatolia Project (GAP) for irrigation and hydroelectric power in Turkey. Energy Exploration and Exploitation 24: 361-370.
- [10] Conzelman, G., Koritarov, V. 2002. Turkey Energy and Environmental Review, Task 7: Energy Sector Modeling, Center for Energy, Environmental, and Economic Systems Analysis (CEEESA), Argonne National Laboratory, August 2002.
- [11] Yuksel, I. 2008. Hydropower in Turkey for a clean and sustainable energy future. Renewable and Sustainable Energy Review 12: 1622-1640.
- [12] UNDP/World bank Energy Sector Management Assistance Program (ESMAP). Turkey-Energy and the Environment, Issues and Options Paper. Report 229, 2000.
- [13] MENR, Ministry of Energy and Natural Resources. Energy report of Turkey in 2004, Ankara, Turkey, 2005, http://www.enerji.gov.tr (accessed date 10 April 2006).
- [14] MENR, Ministry of Energy and Natural Resources. 2005. Greenhouse Gas Mitigation in Energy Sector for Turkey, Working Group Report, Ankara, Turkey.
- [15] DPT, State Planning Organization. 2001. Eighth Five-Year Development plan 2001- 2005, Ankara, Turkey, 2001.
- [16] DPT, State Planning Organization. 2006. Ninth Development plan 2007-2013, Ankara, Turkey, 2006.

- [17] IEA, International Energy Agency. 2005. Energy Policies of IEA Countries: Turkey 2005 Review, OECD/IEA, Paris.
- [18] IEA, International Energy Agency. 2006. Energy Statistics of IEA Countries: Turkey 2004 Review, OECD/IEA, Paris, 2006.
- [19] MEF, Ministry of Environment and Forestry. 2007. First national Communication of Turkey on Climate Change (Eds. Apak, G and Ubay, B), pp. 60-150, Ankara, Turkey, 2007.
- [20] Yuksel, I. 2008. Global warming and renewable energy sources for sustainable development in Turkey. Renewable Energy 33: 802-812.
- [21] MENR, Ministry of Energy and Natural Resources. 2009. Energy Statistics in Turkey available from http://www.enerji.gov.tr (accessed date 16 March 2009).
- [22] Kaygusuz, K. 2009. Hydropower in Turkey: the sustainable energy future. Energy Sources, Part B 4: 34-47.
- [23] TEIAS, Directorate-General of Turkish Electricity Transmission. 2005. Short history of electrical energy development in Turkey. http://www.teias.gov.tr
- [24] DSI, State Water Works. 2008. Hydropower potential in Turkey, Ankara, Turkey.
- [25] Kaygusuz, K. 2002. Sustainable development of hydropower and biomass energy in Turkey. Energy Conversion and Management 43: 1099-1120.
- [26] Kaygusuz, K. 2002. Environmental impacts of energy utilization and renewable energy policies in Turkey. Energy Policy 30: 689-698.
- [27] GAP, Southeastern Anatolia Project. 2007. Energy production in GAP region. http://www.gap.gov.tr/
- [28] Yuksel I. 2007. Development of hydropower: a case study in developing countries. Energy Sources, Part B; 2:113–21.
- [29] Kaygusuz, K. 2009. Biomass as a renewable energy source for sustainable fuels. Energy Sources, Part A 31: 535-545.