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Abstract
In this paper, a hybrid algorithm based on modified Ants Colony Optimization (ACO) and Artificial Immune Algorithm
(AIA) for solving the Steiner Minimal Tree Problem (SMTP) is introduced. Since the Steiner Tree Problem is NP-hard,
we design an algorithm to construct high quality Steiner trees in a short time which is suitable for real time multicast
routing in networks. After the breadth - first traversal of the minimal graph obtained by ACO, the terminal points are
divided into different convex hull sets, and the full Steiner tree is structured from the convex hull sets partition. The Steiner
points can be vaccinated by AIA to get an optimal graph. The average optimization effect of AIA is shorter than the
minimal graph obtained using ACO, and the performance of the algorithm is shown. We give an example of application
in wind farm network design.
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1. Introduction

Let be a natural number and D:= {a } ,…, be a given set
of points in the Euclidean plane. A natural task which arises in
many optimization problems is finding a connected graph with
minimal length whose set of vertices is D. If we are not allowed
to add other vertices to the graph, the solution is called a minimal
spanning tree. Finding such a solution is a purely combinatorial
problem. One can tackle the problem by considering the
complete tree (i.e., the tree containing all possible edges with set
of vertices D and weights on the arcs given by the distance
between the corresponding vertices. Then, one is asked to find a
connected subgraph of the given weighted graph, which contains
all the vertices and which has a minimal length. The problem
becomes much more difficult if one has the possibility to add
new vertices to the given set of points. This variant of the
problem is called the Steiner problem. It means finding a
connected graph with minimal length among all graphs whose
set of vertices contains the given set of points. The additional
vertices are called the Steiner points.
In this paper, a hybrid algorithm based on Ants Colony
Algorithm (ACO) and Artificial Immune Algorithm (AIA) is
proposed for solving the Steiner tree problem in a planar graph.

2. Minimal Steiner Tree Problem

The objective of the Euclidean Steiner Tree Problem (ESTP) is
to determine the minimal length tree (with respect to the
Euclidean metric) spanning a set of terminal points, while
permitting the introduction of extra Steiner points S into the tree
to reduce its overall length. A topology is a configuration of
terminal points and Steiner points where the connections are
specified, but the locations and number of the Steiner points are
not. A topology is said to be a Steiner topology if every Steiner
point has degree 3 and every terminal node has degree at most
3.    A Steiner topology where all terminal points have degree 3
is a Full Steiner Topology (FST) (see Fig.1. for two simple
examples). Any non-FST can be identified with a FST where
some edges have zero length. Such a FST is called degenerated
(see Fig. 2 for illustrative examples). The cause of degeneration
is due to the distribution of terminal points. A non-FST can be
decomposed into some FST’s. A solution to the ESTP is called
a Minimal Steiner Tree (MST). It can be shown that a MST has
a Steiner topology. Other know results regarding MST’s include
the following conditions (see [4]):

 Angle condition: angles between edges connecting
a Steiner point and its 3 neighbors are all 120
degrees.

 SMT is a concatenation of FST’s on subsets of
terminal points.

 SMT for a problem on n terminal points has at most
n - 2 Steiner points.
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Fig. 1. FST for 3 points and 4 points

Fig. 2. Degenerated FST

3. Minimal Network Route Construction using
the Ant Colony Optimization Algorithm

Ant colony optimization (ACO) paradigm is included in
relatively recent intelligent agents, based on ants’
biological inspiration [2]. By tracking the ants natural
behavior, it is discovered that they can find the shortest path
from the ant hill to a food source in absence of visual
information or a direct communication between them.
Also, ants can be adapted to environmental changes. ACO
tries to use such real ants’ skills to solve optimization
problems. Hereafter, we present an ACO particular
approach, adapted from graph theory for wind farm optimal
cable route determination. The solution uses a graph with n
vertex and all edges between them. Each edge (i, k) of a
complete graph is associated with a pheromone
concentration(τ ), used for the route chosen by an ant
from the supposed colony. Initially, the τ ’s are set to
small positive values (i.e., 0.01). In the ACO algorithm (see
[3]), the minimal route length was initialized with a high
value L = ∞) . The number of ants na will be
distributed as evenly as possible between the graph
vertices. It is admitted that the number of vertices n and the
number of ants na is chosen such that na = m n
(m has an nteger value). That is, in each node, there will
be m = na/n ants. Also, we note that Nod represents the
place where each ant j is located at each time. According to
the proposed problem, the optimization process contains
the restriction that an ant must pass through each node
without forming no cycle. Each ant route selection is done
in tabu list, which contains the elements that describe the
sequence of visited nodes. After the ants’ distribution on
the graph nodes, the tabu list assigned to each ant will be
initialized by the node where that ant was distributed.
Further, the ants should move in different graph nodes until
the tabu lists are complete. Each ant will then make a
complete graph tour. Next, for every ant j, the starting nodei = Nod and the destination node k∗ are considered. Thek∗ should not be included in tabu list. The probability for
an ant j in a node i to choose the node k as its destination is
defined as follows:

P j
ik = (τ ) ⋅ (η )∑ (∉ τ ) ⋅ (η ) if k ∉ Tabu ( )0 if k ∈ Tabu ( )

where Tabu (i) is the set of nodes that are neighbors to node i
that can be visited by the ant j. τ and η represent respectively
the amount of pheromone in the edge ik and visibility (distance

between nodes) probability. If β = 0, the P j
ik probabilities

depend only on pheromone concentration. Also, if α = 0, theP j
ik depend only on the nodes visibility. When all the ants pass

through all the graph nodes, each ant route will be closed without
returning to the origin node. Practically, this aspect is the ACO
algorithm adaptation to the studied problem. Further, according
to the ACO, the route lengths for all ants should be calculated
and will be stored as the minimal length, which coincides with
the final iteration. Before switching to another step, the
pheromone concentration must be updated on each graph edge
as follows τ = ρ ⋅ τ + Δτ
where ρ is a parameter set to 0.1 in most of the experiments. 1 −ρ is called the pheromone evaporation rate.Δτ represents the pheromone concentration correction on the
edge (i, k) determined by total ant number who move from i tok, using the equation: Δτ = Δ τ
where Δτ represents the deposited pheromone quantity on
edge (i, k) by ant j, determined as follows:

Δτ (t)= QL (t) if k ∈ Tabu , i = Tabu (p) and k = Tabu (p + 1)0 otherwise,
Finally, the stopping criterion coincides with the maximum
number of iterations T : while t < T , reset tabu lists of the
ants and the procedure is restarted by resetting first element of
every tabu list with current node number where each ant is
located. We should mention that ACO algorithm (see [3]) is
cooperative, versatile and robust.

4. Artificial Immune Algorithm (AIA)

AIA is a recent branch of stochastic search algorithms. It is
classified as a population-based metaheuristic method. Many
authors claim that AIA is a more efficient problem-solving
strategy in optimization. The original intention is inspired by the
simulation of the physiological immune systems of natural
living organisms defending the body from foreign pathogens
(bacteria or virus). The mechanisms work by first recognizing
foreign substances known as antigens. Immune systems then
generate a set of antibodies to eliminate the antigens. The
mechanisms are able to recognize which antibodies are better at
eliminating the antigens and producing more variations in the
next generation of antibodies. Each antibody is assigned a value
called affinity showing the capability of that antibody to
eliminate antigens. The antigen and affinity in the AIA are
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respectively equivalent to the problem to be solved or the
objective function and the feasible solution for a conventional
optimization method. The terminology ( see Fig. 3) of AIA is:

 Antigen: Problem to be solved, i.e., the objective function.

 Antibody: Solutions to the problem to be solved.

 Vaccine: Feature information extraction from the prior
knowledge of the problem to be solved.

 Fitness function: Judgment of individuals in the population
quality index.

4.1. Immune Algorithm for Obtaining the SMT

4.1.1 Dividing the minimal graph obtained using ACO into different
convex hull sets

A non-FST can be decomposed into some full Steiner trees. The
ideal partition is the critical issue. The Steiner points are
inoculated as vaccine to the minimal graph obtained by ACO.
For the terminal points set V = {a , a ,… , a } in the plane, we
follow the breadth - first traversal sequence on the minimal
graph obtained using ACO in order to divide the nodes into
different subsets. We notice that the nodes on the segmentation
may appear in two different subsets as in Fig. 4.

Fig. 3. Flowchart of Artificial Immune Algorithm

Fig. 4. Two different convex hulls partitions for 5 points

Fig. 5. Vaccines of 3 points in convex hull

In the division of a convex hull, one should respect the following
principles:

 Ensure that the minimal graph obtained by ACO is
carved up by adding the maximum number of Steiner
points.

 The topology structure of a convex hull should not be a
FST.

 The number of Steiner points is greater than the
maximum number of convex hull sets.

4.1.2. Vaccination method
For each convex hull set, we find Steiner points using Melzak
method (see [6]), and the added Steiner point is the extracted
vaccine. For three points, the obtained full Steiner topology is
sole. However, for four points, the obtained full Steiner topology
is two or one, as in Fig. 6.

1.1.3. Inoculation in minimal graph obtained by ACO
The extracted vaccines will be inoculated to the minimal graph
obtained by ACO as in Fig. 6, for instance.

Fig. 6. Two different vaccines of 4 points

For the set of terminal points V , let E(e ) and G( g ) be
respectively the edges of the minimal graph obtained by ACO
and after vaccination. We have:

1. L(ACO) = ∑ e
2. L(SMT) = ∑ ( g );
3. f(v) = ( )( )

Algorithm:

 Step 1: Set V as the initial Steiner tree solution obtained
by ACO and compute its length.

 Step 2: Make all possible partitions to convex hulls.

 Step 3: Extract all kinds of vaccines depending on the
obtained convex hulls: define the set of vaccines.
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 Step 4: Select vaccines, vaccinate in initial solution and
calculate the Steiner tree length, then delete the used
vaccines from the set of vaccines.

 Step 5: Calculate the fitness function, if its value is
shorter than before, save the present inoculation, else
cancel.

 Step 6: If f(v) < 0,87 or set of vaccines is null, end,
else go to Step 4.

5. Application in Designing a Wind Farm Cable Route

Radial or branched wind farm cable design is divided in two
phases: one uses ACO algorithm building the minimal cable
route length and the second improves the network by adding
supplementary branch nodes using AIA. The wind farm
structure or cable route improvement can be achieved by shifting
the source nodes to the ends and vice versa, with the particularity
that the latter would be preferable because the ends power flows
are known. By use of the method above, farm arborescence cable
route optimization application can be designed. The allocation
uses a combination of ACO and Artificial Immune Algorithm
and the objective function is obtaining a minimal cable route
length (between wind turbines and the step-up station) with
radial structure restrictions.
Our objective is to follow a hybrid approach that gives the
optimal cable route for a wind farm with 26 wind turbine. The
input data of test are presented in the following Fig. 8.
In a first step, we use the methodology aforementioned that is
based on the ACO successive search technique. The obtained
minimal length for the wind farm cable route is 16700m. This
configuration is shown in Fig. 9.
In a second step, to allow new route construction, 14 Steiner
points are added by AIA and the minimal wind farm cable route
length is reduced to 15040m.

Fig. 8. Initial Positioning of Turbines in the Analyzed Wind Farm

Fig. 9. Wind Farm Cable Route Optimization using ACO
Algorithm

Fig. 10. Optimal Convex Hulls Partition

Fig. 11. Steiner Minimal Tree Obtained using the Artificial
Immune Algorithm
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Table 1. Results

6. Conclusion

The proposed approach is capable of finding the optimal wind
farm cable route in a short time and less computational effort
comparing to exact methods, such as Kruskal and Prim
Algorithms.
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Length Length

Number of

Turbines

Number of

convex

hulls

Number of

Vaccines
L(ACO)

L(SMT)
Ratio

26 13 14 16700m 15040m 0,9


