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Abstract 

The performance of an experimental photovoltaic (PV) solar system is predicted using adaptive artificial neural 

networks (ANNs). The performance of the system is represented by its important efficiencies. An ANN model that 

predicts these efficiencies from relevant measurements exits in the literature. Adaptive online techniques are applied to 

the existing ANN model for the PV solar integrated system. The on-line ANN uses the error between the ANN predicted 

efficiency and the efficiency measurement from the appropriately selected sensors and efficiency laws to update the 

network’s parameters recursively. The adaptation scheme is based on the Kaczmarz’s algorithm and improves the ANN 

prediction accuracy when the PV solar system parts degrade, the date within the year changes and in the presence of 

modeling errors. Thus, the ANN prediction capability improves especially over the long time horizon. The adaptive 

model for the PV solar system can be used to estimate precisely the system parameters which will produce maximum 

efficiencies and consequently will enable the best design for the PV solar system. 
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1. Introduction 

It is extremely important to run solar systems at their maximum 

efficiencies to reduce their cost especially in the case of electric 

power generation from solar energy. The PV systems 

responsible for electric power generation from solar energy are 

still very expensive which motivates researchers to come up 

with innovative techniques to increase the efficiency of such 

systems and thus reduce their cost. This will make them more 

attractive. One of the major challenges in solar systems is to 

predict their efficiencies accurately due to the environmental 

changes and the fact that efficiency depends on many 

parameters. A good approach in this case is to use artificial 

neural networks to predict efficiencies from appropriate inputs. 

 

Artificial neural networks (ANN’s) have received a lot of 

attention in recent years due to their attractive capabilities in 

forecasting, modeling of complex nonlinear systems and 

control. Applications of neural networks are numerous and 

include many various fields among which are engineering and 

business. ANN’s have been used for forecasting solar system 

efficiencies [1], camless engine torque [2], load [3,4], gasoline 

consumption [5], energy [6], space weather [7], outdoor sound 

transmission [8], stream flow [9], wind waves [10] and 

financial indicators [11,12]. Examples of industrial processes 

for which modeling and control using neural networks have 

been investigated include internal combustion engines [2,13], 

two-stage combustor burning ethylene in air [14] and steel 

making process [15]. The ANN model is trained with historical 

time series input-output process data or observations and is 

then used to predict the output in the future. Due to gradual 

degradation of the underlying process, the short-term 

predictions will be more accurate than the long-term ones. 

Thus, there is a need to adapt the neural net in order to better 

accommodate the changing environment and improve the net’s 

prediction accuracy especially when the forecasting horizon is 

long. 

 

In this paper we consider an experimental PV solar integrated 

system which consists of a solar trainer which contains a 

photovoltaic panel, a DC centrifugal pump, flat plate 

collectors, storage tank, a flowmeter for measuring the water 

mass flow rate, pipes, pyranometer for measuring the solar 

intensity, thermocouples for measuring various system 

temperatures and wind speed meter. This PV solar integrated 

system was modeled with ANN’s in [16]. Historical input-

output system data collected experimentally was used to train 

an ANN that predicts the collector, PV module, pump and total 

efficiencies. The model predicts the efficiencies well and was 

utilized in [1] to find the operating conditions of the system 

that will produce the maximum system efficiencies. This 

information is very hard to obtain by just looking at the 

available historical input-output data. The neural net model of 
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the PV solar integrated system sets the background for 

achieving the best system performance. 

 

Adaptive online techniques are applied to the existing ANN 

model for the PV solar integrated system developed in [16]. 

The on-line ANN uses the error between the ANN predicted 

efficiency and the efficiency measurement from the 

appropriately selected sensors and efficiency laws to update the 

network’s parameters recursively. The adaptation scheme is 

based on the Kaczmarz’s algorithm which updates the linear 

parameters of the neural net, namely, the output weight vector 

and bias and consequently improves the ANN prediction 

accuracy when the PV solar system parts degrade, the date 

within the year changes and in the presence of modeling errors. 

Thus, the ANN prediction capability improves especially over 

the long time horizon. The adaptive model for the PV solar 

system can be used to estimate precisely the system parameters 

which will produce maximum efficiencies and consequently 

will enable the best design for the PV solar system. 

  

 

2. PV Solar Integrated System Description 

The solar system is shown in Fig. 1 and it consists of the 

following components as numbered in the figure: 1) solar 

trainer STR-811/EV which contains a photovoltaic panel, 2) a 

DC centrifugal pump, 3) flat plate collectors, 4) storage tank, 

5) a flowmeter for measuring the water mass flow rate, 6) 

pipes, 7) pyranometer for measuring the solar intensity, 8) 

thermocouples for measuring various system temperatures and 

9) wind speed meter. The photovoltaic panel converts the solar 

energy to electrical power that drives the DC pump. The pump 

drives the water in the pipes to the flat plate collectors passing 

through the flowmeter. The collectors heat the water by the 

solar energy and the heated water flows into the storage tank 

which is connected to the DC pump.  

 

 
  

Fig. 1. Photograph showing the PV solar system 

 

Data relevant to the system performance was collected for 

different days and every 15 minutes during the day. The 

following data was recorded: water inlet temperature to the 

collectors, water outlet temperature of the collectors, ambient 

temperature, temperature of the photovoltaic cells, solar 

intensity, wind speed, water mass flow rate, photovoltaic panel 

current and voltage.  Using this data four different system 

efficiencies were calculated, namely, the flat plate collectors 

efficiency, the photovoltaic panel (module) efficiency, the DC 

pump efficiency and the overall system efficiency. 

 

The collector efficiency is the ratio of heat gained by water to 

the incident solar radiation on the collectors and is written as 
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where, M is the water mass flow rate, Cp is water heat specific 

value, To is the outlet water temperature, Ti is the inlet water 

temperature, Is is the solar intensity and Ac is the solar 

collector area. 

The PV panel efficiency is the ratio of power produced by 

the panel to the incident solar radiation on the panel, that is 
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where, I is the module current and V is the module 

voltage. 

The efficiency of the pump is calculated as 

     
IV

gQH
p


                                                    (3) 

where,  is the water mass density, g is the gravity 

acceleration, Q is the water volume flow rate and H is the 

pump head. 

The total efficiency is defined as the product of the pump 

efficiency and the module efficiency and is written as 

     mpt                                                         (4) 

 

 

3. Neural Net Model 

We will model the PV solar system with artificial neural 

networks (ANN's). Knowledge about the system dynamics and 

mapping characteristics is implicitly stored within the network 

that is trained using historical time series input-output process 

data. The ANN model is a nonlinear functional approximation 

of the real system. Neural networks were originally inspired as 

being models of human nervous system. They have been 

shown to exhibit many abilities, such as learning, 

generalization, and abstraction [17]. Useful information and 

theory about ANN’s can be found in [18]. These networks are 

used as models for processes that have input-output data 

available. The historical observations allow the neural network 

to be trained such that the error between the real output and the 

estimated (neural net) output is minimized. The model is then 

used for different purposes among which are estimation and 

control. 

 

The neural net structure is shown in Fig. 2. The inputs feed 

forward through a hidden layer to the output. The hidden layer 

contains processing units called nodes or neurons. Each neuron 

is described by a nonlinear sigmoid function. The inputs are 

linked to the hidden layer which is in turn linked to the output. 

Each interconnection is associated with a multiplicative 

parameter called weight. The input weights are associated with 

the links between the inputs and the hidden layer, whereas the 

output weights are associated with the links between the hidden 

layer and the output.  
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Fig. 2. Neural net structure 

4. Neural Net Adaptation 

The artificial neural net mathematical model that represents the 

PV solar integrated system operation is written as 
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where, ynn (t+1) is the output of the neural net model that 

approximates the solar efficiencies, U(t) is a column vector of 

size N that contains the inputs to the ANN, Wo is a row vector 

of size h that contains the output weights from the hidden layer 

to the output with h being the optimum number of hidden 

nodes, Wi  is a matrix of size hxN that contains the input 

weights from the inputs to the hidden layer, Bi is a column 

vector of size h that contains the input biases and bo is the 

output bias. Note that tanh(Wi *U + Bi) is the activation 

function of the hidden layer. It is a column vector of size h. 

 

The ANN model is of the form given in equation (5) can be 

rewritten as 
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It is clear that the estimated (neural network) future value of 

the output is linear in the parameter  that is a column 

composed of the output weight vector and bias. 

 

The ANN is used to predict the real system outputs which are 

the PV solar integrated system efficiencies in the future. Due to 

possible error sources of the system, the short-term predictions 

will be more accurate than the long-term ones. The neural net 

of the PV configuration is adapted using the Kaczmarz’s 

algorithm in order to better accommodate the changing 

environment and improve the net’s prediction accuracy over 

the long run. This adaptation scheme leads to less 

computational complexity and quick convergence. The real-

time parameter estimation Kaczmarz’s algorithm when applied 

to the ANN model described by equation (6) gives the 

following recursive adaptation scheme for  
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where the error, e, is the difference between the real and 

estimated outputs at the time instant t, that is 

Note that the on-line adaptive algorithm described in equations 

(9) and (10) assumes that the output efficiency measurement at 

the current time t is available which is true in the PV solar 

integrated system since required measurements for efficiencies 

calculation are available. The adaptation scheme can be 

demonstrated with the aid of Fig. 3. The estimated output of 

the ANN model is compared with the measured efficiency. If 

there is a difference between the two values the parameter 

estimation Kaczmarz’s algorithm updates  (according to 

equation (9)) to be used in the subsequent predictions. The 

parameter estimator or adaptive algorithm compensates for 

system parts degradation and modelling errors, and provides 

more accurate long-term predictions.  

 
Fig. 2. Adaptation scheme demonstration 

 

 

The importance of the described adaptive ANN model lies 

behind the fact that the ANN model is used to estimate the 

inputs to the system that will produce maximum system 

efficiencies or best performance. The inputs estimation based 

on the non-adaptive ANN was done in [1] and can be utilized 

with the adaptive ANN easily since the structure of the net 

does not change. The parameter values of the net are only 

adapted to improve prediction accuracy. Thus, the results 

obtained by the technique developed in [1] will be more 

accurate with the aid of adaptive neural networks described in 

this paper. 

5. Conclusion 

 

An algorithm for adapting forward artificial neural networks 

was developed. The presented technique is useful for 

prediction applications. The adaptation scheme is based on the 

Kaczmarz’s projection algorithm that offers less computational 

complexity and quick convergence. It uses the real output 

measurement to correct for errors in the predicted (neural net) 

output by updating the linear parameters of the network on-

line.  The developed algorithm can be applied to the neural 

network model of a PV solar integrated system to estimate 

precisely the conditions that will produce maximum 

efficiencies which is a great benefit. 
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